Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. To appear
  3. The Ornstein–Uhlenbeck process driven by ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • More
    Article info Full article Related articles

The Ornstein–Uhlenbeck process driven by the Hermite–Ornstein–Uhlenbeck process
Charles-Philippe Diez   Ciprian A. Tudor ORCID icon link to view author Ciprian A. Tudor details  

Authors

 
Placeholder
https://doi.org/10.15559/26-VMSTA292
Pub. online: 10 February 2026      Type: Research Article      Open accessOpen Access

Received
15 October 2025
Revised
26 January 2026
Accepted
26 January 2026
Published
10 February 2026

Abstract

In this paper, a non-Gaussian Ornstein–Uhlenbeck process driven by a Hermite–Ornstein–Uhlenbeck process is introduced, which belongs to the qth Wiener chaos. A systematic procedure to identify the drift parameter θ and the Hurst parameter H is given based on the study of the limit behavior of its quadratic variations. Estimators for these two parameters and their asymptotic properties are studied.

References

[1] 
Assaad, O., Tudor, C.A.: Parameter identification for the Hermite Ornstein–Uhlenbeck process. Stat. Inference Stoch. Process. 23, 251–270 (2020) MR4123924. https://doi.org/10.1007/s11203-020-09219-z
[2] 
Assaad, O., Diez, C.-P., Tudor, C.A.: Generalized Wiener–Hermite integrals and rough non-Gaussian Ornstein–Uhlenbeck process. Stoch. Int. J. Probab. Stoch. Process. 95(7), 1–20 (2023) MR4557678. https://doi.org/10.1080/17442508.2022.2068955
[3] 
Ayache, A., Tudor, C.A.: Asymptotic normality for a modified quadratic variation of the Hermite process. Bernoulli 30(2), 1154–1176 (2024) MR4699548. https://doi.org/10.3150/23-bej1627
[4] 
Barndorff-Nielsen, O.E., Shephard, N.: Non-Gaussian Ornstein–Uhlenbeck-based models and some of their uses in financial economics. J. R. Stat. Soc., Ser. B Stat. Methodol. 63(2), 167–241 (2001) MR1841412. https://doi.org/10.1111/1467-9868.00282
[5] 
Barndorff-Nielsen, O.E., Veraart, A.: Stochastic volatility of volatility and variance risk premia. J. Financ. Econom. 11(1), 1–46 (2013)
[6] 
Beghin, L., Cristofaro, L., Mishura, Y.: A class of processes defined in the white noise space through generalized fractional operators. Stoch. Process. Appl. 178, 104494 (2024) MR4799860. https://doi.org/10.1016/j.spa.2024.104494
[7] 
Bercu, B., Proia, F., Savy, N.: On Ornstein–Uhlenbeck driven by Ornstein–Uhlenbeck processes. Stat. Probab. Lett. 85, 36–44 (2014) MR3157879. https://doi.org/10.1016/j.spl.2013.11.002
[8] 
Bock, W., Cristofaro, L.: Characterization and analysis of generalized grey incomplete gamma noise. Stochastics,97(8) 1–17 (2024) MR4994219. https://doi.org/10.1080/17442508.2024.2383619
[9] 
Bock, W., Desmettre, S., da Silva, J.L.: Integral representation of generalized grey Brownian motion. Stochastics 92(4), 552–565 (2020) MR4115989. https://doi.org/10.1080/17442508.2019.1641093
[10] 
Coupek, P., Kriz, P., Maslowski, B.: Parameter estimation and singularity of laws on the path space for sdes driven by Rosenblatt processes. Stoch. Process. Appl. 179, 104499 (2025) MR4810212. https://doi.org/10.1016/j.spa.2024.104499
[11] 
Diez, C.-P., Tudor, C.A.: Non-central limit theorem for large Wishart matrices with Hermite entries. J. Stoch. Anal. 2(1), 2 (2021) MR4213892
[12] 
El Onsy, B., Es-Sebaiy, K., Viens, F.G.: Parameter estimation for a partially observed Ornstein–Uhlenbeck process with long-memory noise. Stochastics 89(2), 431–468 (2017) MR3590429. https://doi.org/10.1080/17442508.2016.1248967
[13] 
Gatheral, J., Jaisson, T., Rosenbaum, M.: Volatility is rough. Quant. Finance 18(6), 933–949 (2018) MR3805308. https://doi.org/10.1080/14697688.2017.1393551
[14] 
Heston, S.: A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. Financ. Stud. 6(2), 327–343 (1993) MR3929676. https://doi.org/10.1093/rfs/6.2.327
[15] 
Nourdin, I., Peccati, G.: Normal Approximations with Malliavin Calculus: From Stein’s Method to Universality. Cambridge University Press (2012) MR2962301. https://doi.org/10.1017/CBO9781139084659
[16] 
Nourdin, I., Tran, D.: Statistical inference for Vasicek-type model driven by Hermite processes. Stoch. Process. Appl. 129(10), 3774–3791 (2019) MR3997661. https://doi.org/10.1016/j.spa.2018.10.005
[17] 
Nualart, D.: Malliavin Calculus and Related Topics, 2nd edn. Springer, New York (2006) MR2200233
[18] 
Pipiras, V., Taqqu, M.S.: Long-Range Dependence and Self-Similarity. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press (2017) MR3729426
[19] 
Slaoui, M., Tudor, C.A.: Behavior with respect to the Hurst index of the Wiener–Hermite integrals and application to spdes. J. Math. Anal. Appl. 479(1), 350–383 (2019) MR3987039. https://doi.org/10.1016/j.jmaa.2019.06.031
[20] 
Tudor, C.A.: Non-Gaussian Selfsimilar Stochastic Processes. SpringerBriefs in Probability and Mathematical Statistics. Springer (2023) MR4647498. https://doi.org/10.1007/978-3-031-33772-7
[21] 
Tudor, C.A., Viens, F.G.: Variations and estimators for self-similarity parameters via Malliavin calculus. Ann. Probab. 37, 2093–2134 (2009) MR2573552. https://doi.org/10.1214/09-AOP459
[22] 
Uhlenbeck, G.E., Ornstein, L.S.: On the theory of Brownian motion. Phys. Rev. 36, 823–841 (1930)
[23] 
Vasicek, O.: An equilibrium characterization of the term structure. J. Financ. Econ. 5, 177–188 (1977)

Full article Related articles PDF XML
Full article Related articles PDF XML

Copyright
© 2026 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Hermite process fractional Brownian motion Wiener chaos parameter estimation Ornstein–Uhlenbeck

MSC2020
60H15 60H07 60G35

Funding
C. Tudor acknowledges support from the ANR project SDAIM 22-CE40-0015, MathAMsud project 240037 EXPLORE-SDE and by the Ministry of Research, Innovation and Digitalization (Romania), grant CF-194-PNRR-III-C9-2023.

Metrics
since March 2018
13

Article info
views

4

Full article
views

2

PDF
downloads

0

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

Journal

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy