Multidimensional generalized backward stochastic differential equations (GBSDEs) are studied within a general filtration that supports a Brownian motion under weak assumptions on the associated data. The existence and uniqueness of solutions in ${\mathbb{L}^{p}}$ for $p\in (1,2)$ are established. The results apply to generators that are stochastic monotone in the y-variable, stochastic Lipschitz in the z-variable, and satisfy a general stochastic linear growth condition.