The Ornstein–Uhlenbeck process driven by the Hermite–Ornstein–Uhlenbeck process
Pub. online: 10 February 2026
Type: Research Article
Open Access
Received
15 October 2025
15 October 2025
Revised
26 January 2026
26 January 2026
Accepted
26 January 2026
26 January 2026
Published
10 February 2026
10 February 2026
Abstract
In this paper, a non-Gaussian Ornstein–Uhlenbeck process driven by a Hermite–Ornstein–Uhlenbeck process is introduced, which belongs to the qth Wiener chaos. A systematic procedure to identify the drift parameter θ and the Hurst parameter H is given based on the study of the limit behavior of its quadratic variations. Estimators for these two parameters and their asymptotic properties are studied.
References
Assaad, O., Tudor, C.A.: Parameter identification for the Hermite Ornstein–Uhlenbeck process. Stat. Inference Stoch. Process. 23, 251–270 (2020) MR4123924. https://doi.org/10.1007/s11203-020-09219-z
Assaad, O., Diez, C.-P., Tudor, C.A.: Generalized Wiener–Hermite integrals and rough non-Gaussian Ornstein–Uhlenbeck process. Stoch. Int. J. Probab. Stoch. Process. 95(7), 1–20 (2023) MR4557678. https://doi.org/10.1080/17442508.2022.2068955
Ayache, A., Tudor, C.A.: Asymptotic normality for a modified quadratic variation of the Hermite process. Bernoulli 30(2), 1154–1176 (2024) MR4699548. https://doi.org/10.3150/23-bej1627
Barndorff-Nielsen, O.E., Shephard, N.: Non-Gaussian Ornstein–Uhlenbeck-based models and some of their uses in financial economics. J. R. Stat. Soc., Ser. B Stat. Methodol. 63(2), 167–241 (2001) MR1841412. https://doi.org/10.1111/1467-9868.00282
Beghin, L., Cristofaro, L., Mishura, Y.: A class of processes defined in the white noise space through generalized fractional operators. Stoch. Process. Appl. 178, 104494 (2024) MR4799860. https://doi.org/10.1016/j.spa.2024.104494
Bercu, B., Proia, F., Savy, N.: On Ornstein–Uhlenbeck driven by Ornstein–Uhlenbeck processes. Stat. Probab. Lett. 85, 36–44 (2014) MR3157879. https://doi.org/10.1016/j.spl.2013.11.002
Bock, W., Cristofaro, L.: Characterization and analysis of generalized grey incomplete gamma noise. Stochastics,97(8) 1–17 (2024) MR4994219. https://doi.org/10.1080/17442508.2024.2383619
Bock, W., Desmettre, S., da Silva, J.L.: Integral representation of generalized grey Brownian motion. Stochastics 92(4), 552–565 (2020) MR4115989. https://doi.org/10.1080/17442508.2019.1641093
Coupek, P., Kriz, P., Maslowski, B.: Parameter estimation and singularity of laws on the path space for sdes driven by Rosenblatt processes. Stoch. Process. Appl. 179, 104499 (2025) MR4810212. https://doi.org/10.1016/j.spa.2024.104499
Diez, C.-P., Tudor, C.A.: Non-central limit theorem for large Wishart matrices with Hermite entries. J. Stoch. Anal. 2(1), 2 (2021) MR4213892
El Onsy, B., Es-Sebaiy, K., Viens, F.G.: Parameter estimation for a partially observed Ornstein–Uhlenbeck process with long-memory noise. Stochastics 89(2), 431–468 (2017) MR3590429. https://doi.org/10.1080/17442508.2016.1248967
Gatheral, J., Jaisson, T., Rosenbaum, M.: Volatility is rough. Quant. Finance 18(6), 933–949 (2018) MR3805308. https://doi.org/10.1080/14697688.2017.1393551
Heston, S.: A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. Financ. Stud. 6(2), 327–343 (1993) MR3929676. https://doi.org/10.1093/rfs/6.2.327
Nourdin, I., Peccati, G.: Normal Approximations with Malliavin Calculus: From Stein’s Method to Universality. Cambridge University Press (2012) MR2962301. https://doi.org/10.1017/CBO9781139084659
Nourdin, I., Tran, D.: Statistical inference for Vasicek-type model driven by Hermite processes. Stoch. Process. Appl. 129(10), 3774–3791 (2019) MR3997661. https://doi.org/10.1016/j.spa.2018.10.005
Nualart, D.: Malliavin Calculus and Related Topics, 2nd edn. Springer, New York (2006) MR2200233
Pipiras, V., Taqqu, M.S.: Long-Range Dependence and Self-Similarity. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press (2017) MR3729426
Slaoui, M., Tudor, C.A.: Behavior with respect to the Hurst index of the Wiener–Hermite integrals and application to spdes. J. Math. Anal. Appl. 479(1), 350–383 (2019) MR3987039. https://doi.org/10.1016/j.jmaa.2019.06.031
Tudor, C.A.: Non-Gaussian Selfsimilar Stochastic Processes. SpringerBriefs in Probability and Mathematical Statistics. Springer (2023) MR4647498. https://doi.org/10.1007/978-3-031-33772-7
Tudor, C.A., Viens, F.G.: Variations and estimators for self-similarity parameters via Malliavin calculus. Ann. Probab. 37, 2093–2134 (2009) MR2573552. https://doi.org/10.1214/09-AOP459