Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 11, Issue 3 (2024)
  4. Existence of density function for the ru ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • More
    Article info Full article Related articles

Existence of density function for the running maximum of SDEs driven by nontruncated pure-jump Lévy processes
Volume 11, Issue 3 (2024), pp. 303–321
Takuya Nakagawa ORCID icon link to view author Takuya Nakagawa details   Ryoichi Suzuki ORCID icon link to view author Ryoichi Suzuki details  

Authors

 
Placeholder
https://doi.org/10.15559/24-VMSTA245
Pub. online: 23 January 2024      Type: Research Article      Open accessOpen Access

Received
19 June 2023
Revised
17 November 2023
Accepted
7 January 2024
Published
23 January 2024

Abstract

The existence of density function of the running maximum of a stochastic differential equation (SDE) driven by a Brownian motion and a nontruncated pure-jump process is verified. This is proved by the existence of density function of the running maximum of the Wiener–Poisson functionals resulting from Bismut’s approach to the Malliavin calculus for jump processes.

1 Introduction

We consider a solution of the following one-dimensional SDE
(1.1)
\[ \mathrm{d}{X_{t}}=b({X_{t}})\mathrm{d}t+{\sigma _{1}}\mathrm{d}{W_{t}}+{\sigma _{2}}\mathrm{d}{L_{t}},\hspace{2.5pt}{X_{0}}=x\in \mathbb{R},\]
for $t\ge 0$, where ${\sigma _{1}}$ and ${\sigma _{2}}$ are constants, $b:\mathbb{R}\to \mathbb{R}$ is differentiable and its derivative is bounded, $W={\{{W_{t}}\}_{t\in [0,T]}}$ is a standard Brownian motion and $L={\{{L_{t}}\}_{t\in [0,T]}}$ is a Lévy process with the Lévy triplet $(0,0,\nu )$. The infinitesimal generator A of L is defined by
\[ Af(x):={\int _{\mathbb{R}\setminus \{0\}}}\big\{f(x+y)-f(x)-{1_{\{|y|\lt 1\}}}y{f^{\prime }}(x)\big\}\nu (\mathrm{d}y)\]
for any $f\in {C_{b}^{2}}(\mathbb{R})$ and $\hspace{2.5pt}x\in \mathbb{R}$. See, e.g., equation (3.18) in [1]. The Lévy measure ν satisfies assumptions (2.1) and (2.2). We assume that W and L are independent. In considering SDE (1.1), we introduce the following SDE for each $n\in \mathbb{N}$:
(1.2)
\[ \mathrm{d}{X_{t}^{(n)}}=b\big({X_{t}^{(n)}}\big)\mathrm{d}t+{\sigma _{1}}\mathrm{d}{W_{t}}+{\sigma _{2}}\mathrm{d}{L_{t}^{(n)}},\hspace{2.5pt}{X_{0}^{(n)}}=x\in \mathbb{R},\]
for $t\in [0,T]$, where ${L^{(n)}}={\{{L_{t}^{(n)}}\}_{t\in [0,T]}}$ is a truncated pure-jump process L with jump sizes larger than n. Let ${X^{\ast }}:={\{{X_{t}^{\ast }}\}_{t\in [0,T]}}$ and ${X^{(\ast ,n)}}:={\{{X_{t}^{(\ast ,n)}}\}_{t\in [0,T]}}$, defined as
\[ {X_{t}^{\ast }}=\underset{t\in [0,t]}{\sup }{X_{s}},\hspace{2.5pt}{X_{t}^{(\ast ,n)}}=\underset{s\in [0,t]}{\sup }{X_{s}^{(n)}}\hspace{2.5pt}\text{for each}\hspace{2.5pt}t\in [0,T]\hspace{2.5pt}\text{and}\hspace{2.5pt}n\in \mathbb{N},\]
be the running maximums of the solutions X and ${X^{(n)}}$ to SDE (1.1) and (1.2), respectively. It is well known that when b is Lipschitz continuous, SDEs (1.1) and (1.2) have a unique solution (e.g., see [12]). The purpose of this paper is to show that the distribution of ${X_{t}^{\ast }}$ is absolutely continuous with respect to the Lebesgue measure on $\mathbb{R}$ for all $t\gt 0$. The running maximum process has received widespread attention in recent years as an interesting objectboth practically and theoretically (cf. [6, 3]). The following results for the special cases of the law of ${X^{\ast }}$ are known. The density function of the maximum of Brownian motion (i.e. $x=b={\sigma _{2}}=0$ and ${\sigma _{1}}=1$) is well known. See, e.g., [7]. The law of the maximum of Lévy motion (i.e. $x=b={\sigma _{1}}=0$ and ${\sigma _{2}}=1$) is also well known. See, for example, [4, 10].
The following prior studies are based on the simultaneous dealing of Brownian motion and truncation Lévy processes. If L is a compound Poisson process, Coutin et al. [5] consider a joint density of $({X_{t}^{\ast }},{X_{t}})$. Song and Zhang [15] study the existence of distributional density of ${X_{t}}$ and the weak continuity in the first variable of the distributional density under full Hörmander’s conditions. This proof is given by showing the statement for ${X_{t}^{(1)}}$. Song and Xie [14] show the existence of density functions for the running maximum ${X_{t}^{(\ast ,1)}}$ of a Lévy–Itô diffusion. They claimed that if b is Lipschitz continuous in Lemma 4.3 of [14], they can prove the existence of the density function of ${X_{t}^{(\ast ,1)}}$. However, we cannot follow them because the product of weakly convergent sequences does not necessarily converge to the product of their limits. These [15, 14] are proved similarly if jump size n is a finite value. However, to the best of our knowledge, the results of the nontruncated Lévy process are not known. This is since Bismut’s approach to the Malliavin calculus for jump processes in [2] can simply calculate the concrete form only for finite jumps by using Proposition 2.11 of [15]. In this paper, we show the existence of a density function for ${X^{\ast }}$ using the proof method of [14] and the fact that the Malliavin calculus for L can be defined by the limit of that of ${L^{(n)}}$.
The structure of this paper is as follows. In Section 2, we introduce the notations employed throughout this paper and present our main theorem. Section 3 revisits Bismut’s approach to the Malliavin calculus with jumps. In Section 4, we discuss the results of Song and Xie [14] and extend their results. Section 5 is dedicated to applying the outcomes derived in the preceding section to our stochastic differential equations. Our primary contribution, Theorem 2.1, is proven in Section 6. Lastly, Section A offers several lemmas essential for the proof of the our main results.

2 Notations and a result

Let $L={\{{L_{t}}\}_{0\le t\le T}}$ and ${L^{(n)}}={\{{L_{t}^{(n)}}\}_{t\in [0,T]}}$ be a pure-jump process and the one truncated by $[-n,n]\setminus \{0\}$, respectively. The jump size of L and ${L^{(n)}}$ at time t is defined by $\Delta {L_{t}}={L_{t}}-{L_{t-}}$ and $\Delta {L_{t}^{(n)}}:={L_{t}^{(n)}}-{L_{t-}^{(n)}}$ for any $t\gt 0$ and $\Delta {L_{0}}:=0$ and $\Delta {L_{0}^{(n)}}:=0$. The Poisson random measures associated with L and ${L^{(n)}}$ on $\mathcal{B}([0,T])\times \mathcal{B}(\mathbb{R}\setminus \{0\})$ are denoted by $N(t,F)={\textstyle\sum _{0\le s\le t}}{1_{F}}(\Delta {L_{s}})$ and ${N^{(n)}}(t,G)={\textstyle\sum _{0\le s\le t}}{1_{F}}(\Delta {L_{s}^{(n)}})$ for $t\in [0,T]$ and $F\in \mathcal{B}(\mathbb{R}\setminus \{0\})$, respectively. The Lévy measures of L and ${L^{(n)}}$ on $\mathcal{B}(\mathbb{R}\setminus \{0\})$ are defined as $\nu (\mathrm{d}z)=c(z)\mathrm{d}z$ and $c(z){1_{\{|z|\le n\}}}(z)\mathrm{d}z$, where the positive function c satisfies the following requirements: there exist some constants $\beta \gt 1$ and $C\gt 0$ such that
(2.1)
\[\begin{aligned}{}& {\int _{\mathbb{R}\setminus \{0\}}}\hspace{-0.1667em}\big(1\wedge |z{|^{2}}\big)\nu (\mathrm{d}z)\hspace{-0.1667em}\lt \hspace{-0.1667em}\infty ,\hspace{1em}\underset{n\to \infty }{\lim }{\int _{\mathbb{R}\setminus \{0\}}}|z{|^{p}}{1_{\{|z|\gt n\}}}(z)\nu (\mathrm{d}z)\hspace{-0.1667em}=\hspace{-0.1667em}0\hspace{2.5pt}\text{for any}\hspace{2.5pt}p\hspace{-0.1667em}\in \hspace{-0.1667em}(1,\beta ),\end{aligned}\]
(2.2)
\[\begin{aligned}{}& \underset{n\in \mathbb{N}}{\sup }\bigg|{\int _{1\le |z|\le n}}z\nu (\mathrm{d}z)\bigg|\lt \infty \hspace{5pt}\text{and}\hspace{5pt}{\int _{0+}}\nu (\mathrm{d}z)=\infty ,\hspace{1em}\bigg|\frac{{c^{\prime }}(z)}{c(z)}\bigg|\le C\bigg(1\vee \frac{1}{|z|}\bigg)\\ {} & \hspace{1em}\text{for any}\hspace{2.5pt}z\ne 0.\end{aligned}\]
The compensated Poisson random measures of L and ${L^{(n)}}$ are defined as $\widetilde{N}$ and ${\widetilde{N}^{(n)}}$, respectively.
Example 2.1.
If L is a symmetric α-stable process with $\alpha \in (1,2)$, then for any $z\ne 0$
\[ c(z)=\frac{{c_{\alpha }}}{|z{|^{1+\alpha }}},\hspace{2.5pt}\text{where}\hspace{2.5pt}{c_{\alpha }}={\pi ^{-1}}\Gamma (\alpha +1)\sin \bigg(\frac{\alpha \pi }{2}\bigg),\]
so that a Lévy measure ν satisfies assumptions (2.1) and (2.2) for any $p\in (1,\alpha )$.
Our results are described below.
Theorem 2.1.
Assume that $b:\mathbb{R}\to \mathbb{R}$ is once differentiable and its derivative is bounded, and that a Lévy measure ν of L satisfies (2.1) and (2.2). Let ${\{{X_{t}}\}_{t\in [0,T]}}$ be the solution to equation (1.1). If ${\sigma _{1}^{2}}+{\sigma _{2}^{2}}\ne 0$, then for any $T\gt 0$ the law of ${X_{T}^{\ast }}$ is absolutely continuous with respect to the Lebesgue measure.
We will prove this result in Section 6. To prepare for that proof, we introduce the Malliavin calculus.

3 Bismut’s approach to the Malliavin calculus with jumps

This section provides a brief overview of Bismut’s approach in the context of Malliavin calculus for jump processes (cf. [2, 14, 15], etc.). Consider an open set $\Gamma \subset {\mathbb{R}^{d}}$ containing the origin. We define
(3.1)
\[ {\Gamma _{0}}:=\Gamma \setminus \{0\},\hspace{1em}\varrho (z):=1\vee \mathbf{d}{\big(z,{\Gamma _{0}^{c}}\big)^{-1}},\]
where $\mathbf{d}(z,{\Gamma _{0}^{c}})$ is the distance of z to the complement of ${\Gamma _{0}}$. Let Ω denote the canonical space consisting of all pairs $\omega =(w,\mu )$, where
  • • $w:[0,1]\to {\mathbb{R}^{d}}$ is a continuous function satisfying $w(0)=0$;
  • • μ represents an integer-valued measure on $[0,1]\times {\Gamma _{0}}$ such that $\mu (A)\lt +\infty $ for any compact subset $A\subset [0,1]\times {\Gamma _{0}}$.
Let us define the canonical process on Ω by setting for $\omega =(w,\mu )$:
\[ {W_{t}}(\omega ):=w(t),\hspace{1em}N(\omega ;\mathrm{d}t,\mathrm{d}z):=\mu (\omega ;\mathrm{d}t,\mathrm{d}z):=\mu (\mathrm{d}t,\mathrm{d}z).\]
We consider the smallest right-continuous filtration ${({\mathcal{F}_{t}})_{t\in [0,1]}}$ on Ω ensuring that both W and N are optional processes. Throughout our discussion, we set $\mathcal{F}:={\mathcal{F}_{1}}$. The space $(\Omega ,\mathcal{F})$ is equipped with a unique probability measure $\mathbb{P}$ satisfying the following conditions:
  • • W is a standard d-dimensional Brownian motion;
  • • N is a Poisson random measure with intensity $\mathrm{d}t\nu (\mathrm{d}z)$, where $\nu (\mathrm{d}z)=\kappa (z)\mathrm{d}z$ with
    (3.2)
    \[ \kappa \in {C^{1}}\big({\Gamma _{0}};(0,\infty )\big),\hspace{2.5pt}{\int _{{\Gamma _{0}}}}\big(1\wedge |z{|^{2}}\big)\kappa (z)\mathrm{d}z\lt +\infty ,\hspace{2.5pt}|\nabla \log \kappa (z)|\le C\varrho (z),\]
    where $\varrho (z)$ is defined by equation (3.1);
  • • W and N are independent.
We denote the compensated Poisson random measure N by
\[ \widetilde{N}(\mathrm{d}t,\mathrm{d}z):=N(\mathrm{d}t,\mathrm{d}z)-\nu (\mathrm{d}z)\mathrm{d}t.\]
Let $p\ge 1$, $i\in \{1,2\}$, and let k be an integer. We introduce the following spaces for subsequent discussions.
  • • We denote ${L^{p}}(\Omega )$ as the space of all $\mathcal{F}$-measurable random variables for which the norm represented by
    \[ \| F{\| _{p}}:=\mathbb{E}{\big[|F{|^{p}}\big]^{\frac{1}{p}}}\]
    is finite.
  • • Let ${\mathbb{L}_{p}^{i}}$ be the space of all predictable processes $\xi :\Omega \times [0,1]\times {\Gamma _{0}}\to {\mathbb{R}^{k}}$ with finite norm
    \[\begin{aligned}{}\| \xi {\| _{{\mathbb{L}_{p}^{i}}}}& :=\mathbb{E}{\Bigg[{\Bigg({\int _{0}^{1}}{\int _{{\Gamma _{0}}}}|\xi (s,z){|^{i}}\nu (\mathrm{d}z)\mathrm{d}s\Bigg)^{\frac{p}{i}}}\Bigg]^{\frac{1}{p}}}\\ {} & \hspace{1em}+\mathbb{E}{\Bigg[{\int _{0}^{1}}{\int _{{\Gamma _{0}}}}|\xi (s,z){|^{p}}\nu (\mathrm{d}z)\mathrm{d}s\Bigg]^{\frac{1}{p}}}\lt \infty .\end{aligned}\]
  • • We introduce ${\mathbb{H}_{p}}$ as the set of all measurable adapted processes $h:\Omega \times [0,1]\to {\mathbb{R}^{d}}$ that possess a finite norm defined by
    \[ \| h{\| _{{\mathbb{H}_{p}}}}:=\mathbb{E}{\Bigg[{\Bigg({\int _{0}^{1}}|h(s){|^{2}}\mathrm{d}s\Bigg)^{\frac{p}{2}}}\Bigg]^{\frac{1}{p}}}\lt \infty .\]
  • • Consider the space ${\mathbb{V}_{p}}$ of all predictable processes $\mathbf{v}:\Omega \times [0,1]\times {\Gamma _{0}}\to {\mathbb{R}^{d}}$ that satisfy the finite norm condition
    \[ \| \mathbf{v}{\| _{{\mathbb{V}_{p}}}}:=\| {\nabla _{z}}\mathbf{v}{\| _{{\mathbb{L}_{p}^{1}}}}+\| \mathbf{v}\varrho {\| _{{\mathbb{L}_{p}^{1}}}}\lt \infty ,\]
    where $\varrho (z)$ is defined by equation (3.1). For later discussions, we will use the notations
    \[ {\mathbb{H}_{\infty -}}:=\bigcap \limits_{p\ge 1}{\mathbb{H}_{p}},\hspace{1em}{\mathbb{V}_{\infty -}}:=\bigcap \limits_{p\ge 1}{\mathbb{V}_{p}}.\]
  • • The space ${\mathbb{H}_{0}}$ encompasses all bounded, measurable, and adapted processes $h:\Omega \times [0,1]\to {\mathbb{R}^{d}}$.
  • • The space ${\mathbb{V}_{0}}$ is constituted of all predictable processes $\mathbf{v}:\Omega \times [0,1]\times {\Gamma _{0}}\to {\mathbb{R}^{d}}$ satisfying the following conditions:
    • (i) both v and ${\nabla _{z}}\mathbf{v}$ are bounded;
    • (ii) there exists a compact subset $U\subset {\Gamma _{0}}$ such that
      \[ \mathbf{v}(t,z)=0,\hspace{1em}\forall z\in U.\]
Let ${C_{p}^{\infty }}({\mathbb{R}^{m}})$ denote the set of smooth functions on ${\mathbb{R}^{m}}$ for which all derivatives exhibit at most polynomial growth. Define the collection of Wiener–Poisson functionals on Ω given by
\[ F(\omega )=f\big(W({h_{1}}),\dots ,W({h_{{m_{1}}}}),N({g_{1}}),\dots ,N({g_{{m_{2}}}})\big),\]
where f belongs to ${C_{p}^{\infty }}({\mathbb{R}^{{m_{1}}+{m_{2}}}})$, ${h_{1}},\dots ,{h_{{m_{1}}}}$ are elements of ${\mathbb{H}_{0}}$, and ${g_{1}},\dots ,{g_{{m_{2}}}}$ are in ${\mathbb{V}_{0}}$, with all of them being nonrandom and real-valued. Additionally, for each j in the range $1\le j\le {m_{1}}$ and each k in the range $1\le k\le {m_{2}}$, we define
\[ W({h_{j}}):={\int _{0}^{1}}{\langle {h_{j}}(s),\mathrm{d}{W_{s}}\rangle _{{\mathbb{R}^{d}}}}\hspace{2.5pt}\text{and}\hspace{2.5pt}N({g_{k}}):={\int _{0}^{1}}{\int _{{\Gamma _{0}}}}{g_{k}}(s,z)N(\mathrm{d}s,\mathrm{d}z).\]
Given any $p\gt 1$ and $\Theta =(h,\mathbf{v})\in {\mathbb{H}_{p}}\times {\mathbb{V}_{p}}$, we denote
\[\begin{aligned}{}{D_{\Theta }}F& :={\sum \limits_{i=1}^{{m_{1}}}}({\partial _{i}}f)(\cdot ){\int _{0}^{1}}{\langle h(s),{h_{i}}\rangle _{{\mathbb{R}^{d}}}}\mathrm{d}s\\ {} & \hspace{1em}+{\sum \limits_{j=1}^{{m_{2}}}}({\partial _{j+{m_{1}}}}f)(\cdot ){\int _{0}^{1}}{\int _{{\Gamma _{0}}}}{\langle \mathbf{v}(s,z),{\nabla _{z}}{g_{j}}\rangle _{{\mathbb{R}^{d}}}}N(\mathrm{d}s,\mathrm{d}z),\end{aligned}\]
where “$(\cdot )$” represents the collection $W({h_{1}}),\dots ,W({h_{{m_{1}}}}),N({g_{1}}),\dots ,N({g_{{m_{2}}}})$.
Definition 3.1.
Given $p\gt 1$ and $\Theta =(h,\mathbf{v})\in {\mathbb{H}_{p}}\times {\mathbb{V}_{p}}$, we introduce the first-order Sobolev space ${\mathbb{W}_{\Theta }^{1,p}}$ as the completion of $\mathcal{F}{C_{p}}$ in ${L^{p}}(\Omega )$ with respect to the norm
\[ \| F{\| _{\Theta ;1,p}}:=\| F{\| _{{L^{p}}}}+\| {D_{\Theta }}F{\| _{{L^{p}}}}.\]
It is well known that the Banach space ${\mathbb{W}_{\Theta }^{1,p}}$ possesses weak compactness, a crucial property for the proof of Theorem 2.1 (see Lemma 2.3 in [14]). We next present the results obtained by applying the Malliavin calculus developed above to the running maximum processes.

4 Regularity of the running maximum processes

In this section we discuss the results of Song and Xie [14] and their extensions. Let ${X^{(n)}}={\{{X_{s}^{(n)}}\}_{s\ge 0}}$ be a right continuous real-valued process. For any fixed $T\gt 0$ and $n\in \mathbb{N}$, in the following we shall write
\[ {X_{T}^{(\ast ,n)}}:=\underset{s\in [0,T]}{\sup }{X_{s}^{(n)}},\hspace{2.5pt}{X_{T}^{\ast }}:=\underset{s\in [0,T]}{\sup }{X_{s}}.\]
Lemma 4.1.
Let ${X^{(n)}}={\{{X_{s}^{(n)}}\}_{s\ge 0}}$ and $X={\{{X_{s}}\}_{s\ge 0}}$ be a right continuous process for each $n\in \mathbb{N}$. Suppose that for some $p\gt 1$ and $\Theta =(h,\mathbf{v})\in {\mathbb{H}_{\infty -}}\times {\mathbb{V}_{\infty -}}$:
  • 1. ${\sup _{n\in \mathbb{N}}}\mathbb{E}[|{X_{s}^{(\ast ,n)}}{|^{p}}]\lt \infty $, and for any $s\in [0,T]$, ${X_{s}^{(n)}}\in {\mathbb{W}_{\Theta }^{1,p}}$, and
    \[ \underset{n\in \mathbb{N}}{\sup }\mathbb{E}\Big[\underset{s\in [0,T]}{\sup }{\big|{D_{\Theta }}{X_{s}^{(n)}}\big|^{p}}\Big]\lt \infty ;\]
  • 2. the process ${\{{D_{\Theta }}{X_{s}^{(n)}}\}_{s\in [0,T]}}$ possesses a right continuous version for each $n\in \mathbb{N}$;
  • 3. ${\lim \nolimits_{n\to \infty }}\mathbb{E}[{\sup _{s\in [0,T]}}|{X_{s}^{(n)}}-{X_{s}}{|^{p}}]=0.$
Then ${X_{T}^{\ast }}\in {\mathbb{W}_{\theta }^{1,p}}$ and the sequence ${\{{D_{\Theta }}{X_{s}^{(n)}}\}_{s\in [0,T]}}$ converges to ${D_{\Theta }}X={\{{D_{\Theta }}{X_{s}}\}_{s\in [0,T]}}$ in the weak topology of ${L^{p}}(\Omega \times [0,T])$. Moreover, if this ${D_{\Theta }}X$ has a right continuous version and
(4.1)
\[ \mathbb{P}\big({D_{\Theta }}{X_{t}}\ne 0\hspace{2.5pt}\textit{on}\hspace{2.5pt}\big\{t\in (0,T]:{X_{t}}={X_{T}^{\ast }}\big\}\big)=1,\]
then the law of ${X_{T}^{\ast }}$ is absolutely continuous with respect to the Lebesgue measure.
Proof.
It can be seen that ${X_{T}^{(\ast ,n)}}\in {\mathbb{W}_{\theta }^{1,p}}$ follows from Proposition 3.1 in [14] for each $n\in \mathbb{N}$. From Lemma 2.3 in [14], we obtain ${X_{T}^{\ast }}\in {\mathbb{W}_{\theta }^{1,p}}$ and
\[ \underset{n\to \infty }{\lim }{D_{\Theta }}{X_{\cdot }^{(n)}}={D_{\Theta }}{X_{\cdot }}\hspace{5pt}\text{weakly in}\hspace{2.5pt}{L^{p}}\big(\Omega \times [0,T]\big).\]
In exactly the same way as in Theorem 3.2 in [14], the following equality follows if ${D_{\Theta }}X$ has a right continuous path almost surely:
\[\begin{aligned}{}1& =\mathbb{P}\big({\big\{\exists t\in [0,T]\hspace{2.5pt}\text{such that}\hspace{2.5pt}{D_{\Theta }}{X_{t}}\ne {D_{\Theta }}{X_{T}^{\ast }}\hspace{2.5pt}\text{and}\hspace{2.5pt}{X_{t}}={X_{T}^{\ast }}\big\}^{c}}\big)\\ {} & =\mathbb{P}\big({D_{\Theta }}{X_{t}}={D_{\Theta }}{X_{T}^{\ast }}\hspace{2.5pt}\text{on}\hspace{2.5pt}\big\{t\in [0,T]:{X_{t}}={X_{t}^{\ast }}\big\}\big)\\ {} & \le \mathbb{P}\big({D_{\Theta }}{X_{t}}={D_{\Theta }}{X_{T}^{\ast }}\hspace{2.5pt}\text{on}\hspace{2.5pt}\big\{t\in (0,T]:{X_{t}}={X_{t}^{\ast }}\big\}\big)\\ {} & =1.\end{aligned}\]
Subsequently, we prove that ${X_{T}^{\ast }}$ has a density function if (4.1) holds. In addition, by the closability of ${D_{\Theta }}$ (see Theorem 2.6 in [14]), we obtain
\[ \mathbb{P}\big({1_{A}}\big({D_{\Theta }}{X_{T}^{\ast }}\big){D_{\Theta }}{X_{T}^{\ast }}=0\big)=1,\]
for any $A\in \mathcal{B}(\mathbb{R})$ with $\text{Leb}(A)=0$. With these facts and (4.1) we obtain the following equation:
\[\begin{aligned}{}1& =\mathbb{P}\big(\big\{{1_{A}}\big({D_{\Theta }}{X_{T}^{\ast }}\big){D_{\Theta }}{X_{T}^{\ast }}=0\big\}\cap \big\{{D_{\Theta }}{X_{t}}={D_{\Theta }}{X_{T}^{\ast }}\hspace{2.5pt}\text{on}\hspace{2.5pt}\big\{t\in (0,T]:{X_{t}}={X_{t}^{\ast }}\big\}\big\}\\ {} & \hspace{1em}\hspace{1em}\cap \big\{{D_{\Theta }}{X_{t}}\ne 0\hspace{2.5pt}\text{on}\hspace{2.5pt}\big\{t\in (0,T]:{X_{t}}={X_{t}^{\ast }}\big\}\big\}\big)\\ {} & =\mathbb{P}\big(\big\{{1_{A}}\big({D_{\Theta }}{X_{T}^{\ast }}\big){D_{\Theta }}{X_{t}}=0\hspace{2.5pt}\text{on}\hspace{2.5pt}\big\{t\in (0,T]:{X_{t}}={X_{t}^{\ast }}\big\}\big\}\\ {} & \hspace{1em}\hspace{1em}\cap \big\{{D_{\Theta }}{X_{t}}={D_{\Theta }}{X_{T}^{\ast }}\hspace{2.5pt}\text{on}\hspace{2.5pt}\big\{t\in (0,T]:{X_{t}}={X_{t}^{\ast }}\big\}\big\}\\ {} & \hspace{1em}\hspace{1em}\cap \big\{{D_{\Theta }}{X_{t}}\ne 0\hspace{2.5pt}\text{on}\hspace{2.5pt}\big\{t\in (0,T]:{X_{t}}={X_{t}^{\ast }}\big\}\big\}\big)\\ {} & =\mathbb{P}\big(\big\{{1_{A}}\big({D_{\Theta }}{X_{T}^{\ast }}\big)=0\big\}\cap \big\{{D_{\Theta }}{X_{t}}={D_{\Theta }}{X_{T}^{\ast }}\hspace{2.5pt}\text{on}\hspace{2.5pt}\big\{t\in (0,T]:{X_{t}}={X_{t}^{\ast }}\big\}\big\}\\ {} & \hspace{1em}\hspace{1em}\cap \big\{{D_{\Theta }}{X_{t}}\ne 0\hspace{2.5pt}\text{on}\hspace{2.5pt}\big\{t\in (0,T]:{X_{t}}={X_{t}^{\ast }}\big\}\big\}\big)\\ {} & \le \mathbb{P}\big({1_{A}}\big({D_{\Theta }}{X_{T}^{\ast }}\big)=0\big)\\ {} & =1.\end{aligned}\]
Therefore, this lemma is completed.  □
Now we know the relationship between the Malliavin calculus of the running maximum processes and the existence of the density function. Next, we note the results of applying of the Malliavin calculus to the SDE (1.1).

5 Applying of Malliavin calculus to SDEs

In this section, to find an equation satisfied by ${D_{\Theta }}X$ for X in equation (1.1), we check an equation satisfied by ${D_{\Theta }}{X^{(n)}}$ for ${X^{(n)}}$ in equation (1.2). The following lemma is shown in the same way as for Lemma 4.3 in [14].
Lemma 5.1 ([14], Lemma 4.3).
Assume that $b:\mathbb{R}\to \mathbb{R}$ is once differentiable and its derivative is bounded. Then for any $\Theta =(h,\mathbf{v})\in {\mathbb{H}_{\infty -}}\times {\mathbb{V}_{\infty -}}$ and $t\in [0,T]$, ${X_{t}^{(n)}}\in {\mathbb{W}_{\Theta }^{1,2}}$ and
\[\begin{aligned}{}& {D_{\Theta }}{X_{t}^{(n)}}\\ {} & ={\int _{0}^{t}}{b^{\prime }}\big({X_{s}^{(n)}}\big){D_{\Theta }}{X_{s}^{(n)}}\mathrm{d}s+{\sigma _{1}}{\int _{0}^{t}}h(s)\mathrm{d}s+{\sigma _{2}}{\int _{0}^{t}}{\int _{0\lt |z|\le n}}\mathbf{v}(s,z)N(\mathrm{d}s,\mathrm{d}z).\end{aligned}\]
The following lemma defines ${D_{\Theta }}X$ and confirms that it satisfies (5.1) below.
Lemma 5.2.
Assume the same assumptions as in Lemma 5.1. Then for some $p\in (1,\beta )$, for some $n\in \mathbb{N}$, for any $q\in (1,\beta )$ and for any $\Theta =(h,\mathbf{v})\in {\mathbb{H}_{\infty -}}\times {\mathbb{V}_{\infty -}}$, where
\[ \underset{n\to \infty }{\lim }{\int _{0}^{T}}{\int _{|z|\gt n}}{\big|\mathbf{v}(s,z)\big|^{\frac{q}{\beta }}}\mathrm{d}s\nu (\mathrm{d}z)=0\hspace{5pt}\textit{and}\hspace{5pt}{\int _{0}^{T}}{\int _{|z|\gt n}}{\big|\mathbf{v}(s,z)\big|^{q}}\mathrm{d}s\nu (\mathrm{d}z)\lt \infty ,\]
${X_{t}^{\ast }}\in {\mathbb{W}_{\Theta }^{1,p}}$ for any $t\in [0,T]$, and
(5.1)
\[ {D_{\Theta }}{X_{t}}={\int _{0}^{t}}{b^{\prime }}({X_{s}}){D_{\Theta }}{X_{s}}\mathrm{d}s+{\sigma _{1}}{\int _{0}^{t}}h(s)\mathrm{d}s+{\sigma _{2}}{\int _{0}^{t}}{\int _{|z|\gt 0}}\mathbf{v}(s,z)N(\mathrm{d}s,\mathrm{d}z).\]
Then this ${D_{\Theta }}X$ is the limit of weak ${L^{p}}(\Omega \times [0,T])$ convergence of the sequence ${D_{\Theta }}{X^{(n)}}$, and this sequence is strongly ${L^{p}}(\Omega \times [0,T])$ convergent in practice.
Proof.
It can be seen immediately from Lemma 5.1 that Assumptions 1 and 2 of Lemma 4.1 are satisfied. Note that the ${L^{p}}$ integrability of ${D_{\Theta }}{X^{(n)}}$ in Assumption 1 shall be checked later. See Lemma A.5 for the fact that Assumption 3 is satisfied. By using Lemma 2.3 in [14], Lemma A.5 and the closability of ${D_{\Theta }}$ (cf. Lemma 2.7 in [15]), we have
\[ \underset{n\to \infty }{\lim }{D_{\Theta }}{X_{\cdot }^{(n)}}={D_{\Theta }}{X_{\cdot }}\hspace{5pt}\text{weakly in}\hspace{5pt}{L^{p}}\big(\Omega \times [0,T]\big).\]
We verify that this ${D_{\Theta }}X={\{{D_{\Theta }}{X_{t}}\}_{t\in [0,T]}}$ satisfies equation (5.1). We set ${\{{Y_{t}}\}_{t\in [0,T]}}$ as a solution of
\[\begin{aligned}{}{Y_{t}}& ={\int _{0}^{t}}{b^{\prime }}({X_{s}}){Y_{s}}\mathrm{d}s+{C_{t}},\hspace{5pt}\text{where}\\ {} {C_{t}}& ={\sigma _{1}}{\int _{0}^{t}}h(s)\mathrm{d}s+{\sigma _{2}}{\int _{0}^{t}}{\int _{|z|\gt 0}}\mathbf{v}(s,z)N(\mathrm{d}s,\mathrm{d}z),\\ {} {C_{t}^{(n)}}& ={\sigma _{1}}{\int _{0}^{t}}h(s)\mathrm{d}s+{\sigma _{2}}{\int _{0}^{t}}{\int _{0\lt |z|\le n}}\mathbf{v}(s,z)N(\mathrm{d}s,\mathrm{d}z).\end{aligned}\]
We prove
(5.2)
\[ \underset{n\to \infty }{\lim }\mathbb{E}\Big[\underset{t\in [0,T]}{\sup }{\big|{D_{\Theta }}{X_{t}^{(n)}}-{Y_{t}}\big|^{p}}\Big]=0.\]
By using an inequality $|a+b{|^{p}}\le {2^{p-1}}(|a{|^{p}}+|b{|^{p}})$ for any $a,b\in \mathbb{R}$, we obtain
\[\begin{aligned}{}& \mathbb{E}\Big[\underset{t\in [0,T]}{\sup }{\big|{D_{\Theta }}{X_{t}^{(n)}}-{Y_{t}}\big|^{p}}\Big]\\ {} & \le {2^{p-1}}\mathbb{E}\Bigg[\underset{t\in [0,T]}{\sup }{\Bigg|{\int _{0}^{t}}\big\{{b^{\prime }}\big({X_{s}^{(n)}}\big){D_{\Theta }}{X_{s}^{(n)}}-{b^{\prime }}({X_{s}}){Y_{s}}\big\}\mathrm{d}s\Bigg|^{p}}\Bigg]\\ {} & \hspace{1em}+{2^{p-1}}\mathbb{E}\Big[\underset{t\in [0,T]}{\sup }{\big|{C_{t}^{(n)}}-{C_{t}}\big|^{p}}\Big]\\ {} & \le {2^{2(p-1)}}{\int _{0}^{T}}\mathbb{E}\big[{\big|{b^{\prime }}\big({X_{s}^{(n)}}\big)-{b^{\prime }}({X_{s}})\big|^{p}}{\big|{D_{\Theta }}{X_{s}^{(n)}}\big|^{p}}\big]\mathrm{d}s\\ {} & \hspace{1em}+{2^{2(p-1)}}{\big\| {b^{\prime }}\big\| _{\infty }^{p}}{\int _{0}^{T}}\mathbb{E}\big[{\big|{D_{\Theta }}{X_{s}^{(n)}}-{Y_{s}}\big|^{p}}\big]\mathrm{d}s+{2^{p-1}}\mathbb{E}\Big[\underset{t\in [0,T]}{\sup }{\big|{C_{t}^{(n)}}-{C_{t}}\big|^{p}}\Big].\end{aligned}\]
The last and last second inequalities in the last chain follow from Jensen’s inequality and Fubini’s theorem. By using Gronwall’s inequality, we have
\[\begin{aligned}{}& \mathbb{E}\Big[\underset{t\in [0,T]}{\sup }{\big|{D_{\Theta }}{X_{t}^{(n)}}-{Y_{t}}\big|^{p}}\Big]\\ {} & \le {2^{2(p-1)}}\exp \big({2^{2(p-1)}}\| {b^{\prime }}{\| _{\infty }^{p}}\big){\int _{0}^{T}}\mathbb{E}\big[{\big|{b^{\prime }}\big({X_{s}^{(n)}}\big)-{b^{\prime }}({X_{s}})\big|^{p}}{\big|{D_{\Theta }}{X_{s}^{(n)}}\big|^{p}}\big]\mathrm{d}s\\ {} & \hspace{1em}+{2^{2(p-1)}}\exp \big({2^{2(p-1)}}\| {b^{\prime }}{\| _{\infty }^{p}}\big)\mathbb{E}\Big[\underset{t\in [0,T]}{\sup }{\big|{C_{t}^{(n)}}-{C_{t}}\big|^{p}}\Big].\end{aligned}\]
We show
(5.3)
\[\begin{aligned}{}\underset{n\to \infty }{\lim }{\int _{0}^{T}}\mathbb{E}\big[{\big|{b^{\prime }}\big({X_{s}^{(n)}}\big)-{b^{\prime }}({X_{s}})\big|^{p}}{\big|{D_{\Theta }}{X_{s}^{(n)}}\big|^{p}}\big]\mathrm{d}s& =0,\end{aligned}\]
(5.4)
\[\begin{aligned}{}\underset{n\to \infty }{\lim }\mathbb{E}\Big[\underset{t\in [0,T]}{\sup }{\big|{C_{t}^{(n)}}-{C_{t}}\big|^{p}}\Big]& =0.\end{aligned}\]
See Lemma A.6 for proof of (5.4). Here we show equation (5.3). Notice that $p\in (1,\beta )$, there exists $q\gt 1$ such that $pq\lt \beta $ because of the denseness of rational numbers. By using the Hölder inequality, we have
\[\begin{aligned}{}& {\int _{0}^{T}}\mathbb{E}\big[{\big|{b^{\prime }}\big({X_{s}^{(n)}}\big)-{b^{\prime }}({X_{s}})\big|^{p}}{\big|{D_{\Theta }}{X_{s}^{(n)}}\big|^{p}}\big]\mathrm{d}s\\ {} & \le {\int _{0}^{T}}\mathbb{E}{\big[{\big|{b^{\prime }}\big({X_{s}^{(n)}}\big)-{b^{\prime }}({X_{s}})\big|^{\frac{pq}{q-1}}}\big]^{\frac{q-1}{q}}}\mathbb{E}{\big[{\big|{D_{\Theta }}{X_{s}^{(n)}}\big|^{pq}}\big]^{\frac{1}{q}}}\mathrm{d}s\\ {} & \le T\mathbb{E}{\Big[\underset{t\in [0,T]}{\sup }{\big|{b^{\prime }}\big({X_{t}^{(n)}}\big)-{b^{\prime }}({X_{t}})\big|^{\frac{pq}{q-1}}}\Big]^{\frac{q-1}{q}}}\mathbb{E}{\Big[\underset{t\in [0,T]}{\sup }{\big|{D_{\Theta }}{X_{t}^{(n)}}\big|^{pq}}\Big]^{\frac{1}{q}}}.\end{aligned}\]
Due to an inequality $|a+b{|^{p}}\le {2^{p-1}}(|a{|^{p}}+|b{|^{p}})$ for any $a,b\in \mathbb{R}$ and $p\ge 1$ and Jensen’s inequality, we have
\[\begin{aligned}{}& \mathbb{E}\Big[\underset{t\in [0,T]}{\sup }{\big|{D_{\Theta }}{X_{t}^{(n)}}\big|^{pq}}\Big]\\ {} & \le {2^{pq-1}}\mathbb{E}\Bigg[\underset{t\in [0,T]}{\sup }{\Bigg|{\int _{0}^{t}}{b^{\prime }}\big({X_{s}^{(n)}}\big){D_{\Theta }}{X_{s}^{(n)}}\mathrm{d}s\Bigg|^{pq}}\Bigg]+{2^{2(pq-1)}}\mathbb{E}\Bigg[\underset{t\in [0,T]}{\sup }{\Bigg|{\int _{0}^{t}}h(s)\mathrm{d}s\Bigg|^{pq}}\Bigg]\\ {} & \hspace{1em}+{2^{2(pq-1)}}\mathbb{E}\Bigg[\underset{t\in [0,T]}{\sup }{\Bigg|{\int _{0}^{t}}{\int _{0\lt |z|\le n}}\mathbf{v}(s,z)N(\mathrm{d}s,\mathrm{d}z)\Bigg|^{pq}}\Bigg]\\ {} & \le {2^{pq-1}}\| {b^{\prime }}{\| _{\infty }^{pq}}{\int _{0}^{T}}\mathbb{E}\Big[\underset{u\in [0,s]}{\sup }{\big|{D_{\Theta }}{X_{u}^{(n)}}\big|^{pq}}\Big]\mathrm{d}s\\ {} & \hspace{1em}+{2^{2(pq-1)}}\Bigg(\mathbb{E}\Bigg[{\int _{0}^{T}}{\big|h(s)\big|^{pq}}\mathrm{d}s\Bigg]+\mathbb{E}\Bigg[\underset{t\in [0,T]}{\sup }{\Bigg|{\int _{0}^{t}}{\int _{0\lt |z|\le n}}\mathbf{v}(s,z)N(\mathrm{d}s,\mathrm{d}z)\Bigg|^{pq}}\Bigg]\Bigg).\end{aligned}\]
Gronwall’s inequality implies
\[\begin{aligned}{}& \mathbb{E}\Big[\underset{t\in [0,T]}{\sup }{\big|{D_{\Theta }}{X_{t}^{(n)}}\big|^{pq}}\Big]\\ {} & \le {2^{2(pq-1)}}\Bigg(\mathbb{E}\Bigg[{\int _{0}^{T}}{\big|h(s)\big|^{pq}}\mathrm{d}s\Bigg]\\ {} & \hspace{1em}+\mathbb{E}\Bigg[\underset{t\in [0,T]}{\sup }{\Bigg|{\int _{0}^{t}}{\int _{0\lt |z|\le n}}\mathbf{v}(s,z)N(\mathrm{d}s,\mathrm{d}z)\Bigg|^{pq}}\Bigg]\Bigg){e^{{2^{pq-1}}T\| {b^{\prime }}{\| _{\infty }^{pq}}}}.\end{aligned}\]
The boundedness of the mean of sup with respect to time can be proved as in Lemma A.5 (ii). Due to assumptions on h and v, we have
\[ \underset{n\in \mathbb{N}}{\sup }\mathbb{E}\Big[\underset{t\in [0,T]}{\sup }{\big|{D_{\Theta }}{X_{t}^{(n)}}\big|^{pq}}\Big]\lt \infty .\]
This allows us to confirm the ${L^{p}}(\Omega \times [0,T])$ integrability of ${D_{\Theta }}{X^{(n)}}$ for assumption 1 in Lemma 4.1, and that ${D_{\Theta }}X$ can be defined as the limit of weak ${L^{p}}(\Omega \times [0,T])$ convergence of ${D_{\Theta }}{X^{(n)}}$. By Lemma A.5, boundedness of ${b^{\prime }}$ and continuous mapping theorem, we have
\[ \underset{n\to \infty }{\lim }\mathbb{E}{\Big[\underset{t\in [0,T]}{\sup }{\big|{b^{\prime }}\big({X_{t}^{(n)}}\big)-{b^{\prime }}({X_{t}})\big|^{\frac{pq}{q-1}}}\Big]^{\frac{q-1}{q}}}=0,\]
so that we obtain (5.3). Thus, by (5.2) and completeness of ${L^{p}}(\Omega \times [0,T])$, (5.1) follows.  □
From this proof, we see that ${X^{(n)}}$ and X satisfy the assumptions of Lemma 4.1. The proof of Theorem 2.1 is now ready to be presented.

6 Proof of Theorem 2.1

Proof.
Applying the Itô formula to ${e^{-{\textstyle\int _{0}^{t}}{b^{\prime }}({X_{s}})\mathrm{d}s}}{D_{\Theta }}{X_{t}}$ (e.g., see [12], Corollary (Integration by Parts), P. 84), we obtain
\[\begin{aligned}{}{e^{-{\textstyle\textstyle\int _{0}^{t}}{b^{\prime }}({X_{s}})\mathrm{d}s}}{D_{\Theta }}{X_{t}}& ={\int _{0+}^{t}}{e^{-{\textstyle\textstyle\int _{0}^{s}}{b^{\prime }}({X_{u}})\mathrm{d}u}}\circ \mathrm{d}{D_{\Theta }}{X_{s-}}+{\int _{0+}^{t}}{D_{\Theta }}{X_{s-}}\circ \mathrm{d}{e^{-{\textstyle\textstyle\int _{0}^{s}}{b^{\prime }}({X_{u}})\mathrm{d}u}}\\ {} & ={\int _{0}^{t}}{e^{-{\textstyle\textstyle\int _{0}^{s}}{b^{\prime }}({X_{u}})\mathrm{d}u}}\mathrm{d}{D_{\Theta }}{X_{s-}}+{\int _{0}^{t}}{D_{\Theta }}{X_{s-}}\mathrm{d}{e^{-{\textstyle\textstyle\int _{0}^{s}}{b^{\prime }}({X_{u}})\mathrm{d}u}}\\ {} & ={\int _{0}^{t}}{e^{-{\textstyle\textstyle\int _{0}^{s}}{b^{\prime }}({X_{u}})\mathrm{d}u}}\big({b^{\prime }}({X_{s}}){D_{\Theta }}{X_{s}}+{\sigma _{1}}h(s)\big)\mathrm{d}s\\ {} & \hspace{2em}+{\int _{0}^{t}}{e^{-{\textstyle\textstyle\int _{0}^{s}}{b^{\prime }}({X_{u}})\mathrm{d}u}}{\sigma _{2}}{\int _{|z|\gt 0}}\mathbf{v}(s,z)N(\mathrm{d}s,\mathrm{d}z)\\ {} & \hspace{2em}+{\int _{0}^{t}}{D_{\Theta }}{X_{s-}}\Bigg(-{b^{\prime }}({X_{s}}){\int _{0}^{t}}{e^{-{\textstyle\textstyle\int _{0}^{s}}{b^{\prime }}({X_{u}})\mathrm{d}u}}\Bigg)\mathrm{d}s.\end{aligned}\]
For any $t\gt 0$, we set
(6.1)
\[\begin{aligned}{}& h(t):={\sigma _{1}}{e^{-{\textstyle\textstyle\int _{0}^{t}}{b^{\prime }}({X_{s}})\mathrm{d}s}},\hspace{1em}\mathbf{v}(t,z):={\sigma _{2}}{e^{-{\textstyle\textstyle\int _{0}^{t}}{b^{\prime }}({X_{s}})\mathrm{d}s}}\eta (z),\\ {} & \eta (z)=\left\{\begin{array}{l@{\hskip10.0pt}l}|z{|^{2}},\hspace{1em}& |z|\le \frac{1}{4},\\ {} 0,\hspace{1em}& |z|\gt \frac{1}{2},\\ {} \text{smooth},\hspace{1em}& \text{otherwise}.\end{array}\right.\end{aligned}\]
Since the function v is bounded, it satisfies the assumptions of Lemma 5.2. Hence, of course, X satisfies the assumptions of Lemma 4.1. Substituting these, we have
\[\begin{aligned}{}& {D_{\Theta }}{X_{t}}\\ {} & ={e^{{\textstyle\textstyle\int _{0}^{t}}{b^{\prime }}({X_{s}})\mathrm{d}s}}\Bigg({\sigma _{1}^{2}}{\int _{0}^{t}}{e^{-2{\textstyle\textstyle\int _{0}^{s}}{b^{\prime }}({X_{u}})\mathrm{d}u}}\mathrm{d}s+{\sigma _{2}^{2}}{\int _{0}^{t}}{\int _{|z|\gt 0}}{e^{-2{\textstyle\textstyle\int _{0}^{s}}{b^{\prime }}({X_{u}})\mathrm{d}u}}\eta (z)N(\mathrm{d}s,\mathrm{d}z)\Bigg)\\ {} & \ge {e^{{\textstyle\textstyle\int _{0}^{t}}({b^{\prime }}({X_{s}})-2\| b{\| _{\text{Lip}}})\mathrm{d}s}}\Bigg({\sigma _{1}^{2}}t+{\sigma _{2}^{2}}{\int _{0}^{t}}{\int _{|z|\gt 0}}\eta (z)N(\mathrm{d}s,\mathrm{d}z)\Bigg).\end{aligned}\]
Noticing the condition ${\sigma _{1}^{2}}+{\sigma _{2}^{2}}\ne 0$ and the fact
(6.2)
\[ \mathbb{P}\Bigg({\int _{0}^{t}}{\int _{|z|\gt 0}}\eta (z)N(\mathrm{d}s,\mathrm{d}z)\gt 0,\hspace{2.5pt}\forall t\gt 0\Bigg)=1,\]
we have
\[ \mathbb{P}({D_{\Theta }}{X_{t}}\gt 0,\hspace{2.5pt}\forall t\in (0,T])=1.\]
See Section A.1 for a proof of equation (6.2). So we have
\[ 1=\mathbb{P}\big({D_{\Theta }}{X_{t}}\gt 0,\hspace{2.5pt}\forall t\in (0,T]\big)\le \mathbb{P}\big({D_{\Theta }}{X_{t}}\ne 0\hspace{2.5pt}\text{on}\hspace{2.5pt}\big\{t\in (0,T]:{X_{t}}={X_{T}^{\ast }}\big\}\big)=1.\]
Therefore, we conclude by Lemma 4.1 that the law of ${X_{T}^{\ast }}$ is absolutely continuous with respect to the Lebesgue measure.  □

Conflict of interest

The authors have no relevant financial or nonfinancial interests to disclose.

A Appendices

We give some lemmas to show Theorem 2.1. In Subsection A.1, we prove equation (6.2). In Subsection A.3, we confirm equation (6.2) and in Subsection A.2 we provide some results useful for Subsection A.3.

A.1 A proof of equation (6.2)

In this section, we prove equation (6.2). We set $t\gt 0$, η as (6.1) and ${\varepsilon _{k}}=\frac{1}{{2^{k}}}$ for any $k\in \mathbb{N}$. Since
\[\begin{aligned}{}\underset{k\to \infty }{\lim }{\int _{0}^{t}}{\int _{|z|\gt {\varepsilon _{k}}}}\eta (z)N(\mathrm{d}s,\mathrm{d}z)& ={\int _{0}^{t}}{\int _{|z|\gt 0}}\eta (z)N(\mathrm{d}s,\mathrm{d}z)\hspace{5pt}\text{in}\hspace{5pt}{L^{2}}(\Omega ),\\ {} \underset{k\to \infty }{\lim }{\int _{0}^{t}}{\int _{|z|\gt {\varepsilon _{k}}}}\eta (z)N(\mathrm{d}s,\mathrm{d}z)& ={\int _{0}^{t}}{\int _{|z|\gt 0}}\eta (z)N(\mathrm{d}s,\mathrm{d}z)\hspace{5pt}\text{in distribution.}\end{aligned}\]
Noting that the support of η, for any $t\gt 0$, we have
\[\begin{aligned}{}& \mathbb{P}\Bigg({\int _{0}^{t}}{\int _{|z|\gt 0}}\eta (z)N(\mathrm{d}s,\mathrm{d}z)=0\Bigg)\\ {} & =\underset{k\to \infty }{\lim }\mathbb{P}\Bigg({\int _{0}^{t}}{\int _{|z|\gt {\varepsilon _{k}}}}\eta (z)N(\mathrm{d}s,\mathrm{d}z)=0\Bigg)\\ {} & =\underset{k\to \infty }{\lim }\mathbb{P}\bigg({\int _{|z|\gt {\varepsilon _{k}}}}\eta (z)N(t,\mathrm{d}z)=0\bigg)\\ {} & \le \underset{k\to \infty }{\lim }\mathbb{P}\bigg(N\bigg(t,\bigg({\varepsilon _{k}},\frac{1}{2}\bigg]\cup \bigg(-\frac{1}{2},-{\varepsilon _{k}}\bigg]\bigg)=0\bigg).\end{aligned}\]
Here, since for any $A\in \mathcal{B}(\mathbb{R})\setminus \{0\}$, ${\{N(t,A)\}_{t\ge 0}}$ is a Poisson process with intensity $\nu (A)$ (e.g., see [1], Th. 2.3.5), we have
\[\begin{aligned}{}& \underset{k\to \infty }{\lim }\mathbb{P}\bigg(N\bigg(t,\bigg({\varepsilon _{k}},\frac{1}{2}\bigg]\cup \bigg(-\frac{1}{2},-{\varepsilon _{k}}\bigg]\bigg)=0\bigg)\\ {} & =\underset{k\to \infty }{\lim }\exp \bigg(-t\nu \bigg(\bigg({\varepsilon _{k}},\frac{1}{2}\bigg]\cup \bigg(-\frac{1}{2},-{\varepsilon _{k}}\bigg]\bigg)\bigg)\\ {} & =0.\end{aligned}\]
The last equation follows from assumption (2.2). We set for each $t\gt 0$,
\[\begin{aligned}{}{I_{t}}& ={\int _{0}^{t}}{\int _{|z|\gt 0}}\eta (z)N(\mathrm{d}s,\mathrm{d}z);\end{aligned}\]
from countable additivity we have
\[ \mathbb{P}\bigg(\bigcup \limits_{t\in (0,\infty )\cap \mathbb{Q}}\{{I_{t}}=0\}\bigg)\le \sum \limits_{t\in (0,\infty )\cap \mathbb{Q}}\mathbb{P}\big(\{{I_{t}}=0\}\big)=0\hspace{1em}\big(\text{see, e.g., [16], 1.9(b)}\big).\]
Thus we obtain
\[ \mathbb{P}\bigg(\bigcap \limits_{t\in (0,\infty )\cap \mathbb{Q}}\{{I_{t}}\gt 0\}\bigg)=1.\]
Here, since $\eta \ge 0$, we obtain
\[\begin{aligned}{}\mathbb{P}& \bigg(\bigcap \limits_{0\le s\le u}\{{I_{s}}\le {I_{u}}\}\bigg)=1.\end{aligned}\]
By denseness of rational numbers, we obtain the following:
\[\begin{aligned}{}\mathbb{P}(\forall t\gt 0,\hspace{2.5pt}{I_{t}}\gt 0)& \ge \mathbb{P}\bigg(\bigcap \limits_{t\in (0,\infty )\cap \mathbb{Q}}\{{I_{t}}\gt 0\}\cap \bigcap \limits_{0\le s\le u}\{{I_{s}}\le {I_{u}}\}\bigg)\\ {} & =1.\end{aligned}\]

A.2 Preparation for proof of convergence of ${X^{(n)}}$

To prove Theorem 2.1, we apply a variation of the method introduced by Komatsu ([8], proof of Theorem 1) in order to prove the convergence of ${X^{(n)}}$. This technique has been used in [11].
Lemma A.1.
For $\varepsilon \gt 0$, $\delta \gt 1$ and $r\in (0,1]$, we can choose a smooth function ${\psi _{\delta ,\varepsilon }}$ which satisfies the conditions
\[ {\psi _{\delta ,\varepsilon }}(x)=\left\{\begin{array}{l@{\hskip10.0pt}l}\textit{between}\hspace{2.5pt}0\hspace{2.5pt}\textit{and}\hspace{2.5pt}2{(x\log \delta )^{-1}},\hspace{1em}& \hspace{1em}\varepsilon {\delta ^{-1}}\lt x\lt \varepsilon ,\\ {} 0,\hspace{1em}& \hspace{1em}\textit{otherwise},\end{array}\right.\]
and ${\textstyle\int _{\varepsilon {\delta ^{-1}}}^{\varepsilon }}{\psi _{\delta ,\varepsilon }}(y)dy=1$. We define ${u_{r}}(x)=|x{|^{r}}$ and ${u_{r,\delta ,\varepsilon }}={u_{r}}\ast {\psi _{\delta ,\varepsilon }}$. Then, ${u_{r,\delta ,\varepsilon }}\in {C^{2}}$ and for any $x\in \mathbb{R}$,
(A.1)
\[\begin{aligned}{}|x{|^{r}}& \le {\varepsilon ^{r}}+{u_{r,\delta ,\varepsilon }}(x),\end{aligned}\]
(A.2)
\[\begin{aligned}{}{u_{r,\delta ,\varepsilon }}(x)& \le |x{|^{r}}+{\varepsilon ^{r}}.\end{aligned}\]
We introduce a quasimartingale and its properties. Let $T\in [0,\infty ]$ and Z be a càdlàg adapted process defined on $[0,T]$. A finite subdivision of $[0,T]$ is defined by $\Delta t=({t_{0}},{t_{1}},\dots ,{t_{n+1}})$ such that $0={t_{0}}\lt {t_{1}}\lt \cdots \lt {t_{n+1}}=T$.
Definition A.2.
The mean variation of X is defined by
\[ {V_{T}}(X):=\underset{\Delta t}{\sup }\mathbb{E}\Bigg[{\sum \limits_{i=0}^{n}}\big|\mathbb{E}[{X_{{t_{i}}}}-{X_{{t_{i+1}}}}|{\mathcal{F}_{{t_{i}}}}]\big|\Bigg].\]
Definition A.3.
A càdlàg adapted process Z is a quasimartingale on $[0,T]$ if for each $t\in [0,T]$, $\mathbb{E}[|{Z_{t}}|]\lt \infty $ and ${V_{T}}(Z)\lt \infty $.
Kurtz [9] proved the following lemma by using Rao’s theorem ([12], Section III, Theorem 17).
Lemma A.4 ([9], Lemma 5.3).
Let Z be a càdlàg adapted process defined on $[0,T]$. Suppose that for each $t\in [0,T]$, $\mathbb{E}[|{Z_{t}}|]\lt \infty $ and ${V_{t}}(Z)\lt \infty $. Then, for each $h\gt 0$,
\[ h\mathbb{P}\Big(\underset{t\in [0,T]}{\sup }|{Z_{t}}|\gt h\Big)\le {V_{T}}(Z)+\mathbb{E}\big[|{Z_{T}}|\big].\]

A.3 Proof of ${L^{p}}$-convergence of ${X^{(n)}}$

In this section, we prove several lemmas in order to give complete proof of Lemma 5.2. To that purpose, we show the following two statements.
Lemma A.5.
We assume the same assumptions as in Theorem 2.1. Then
\[ \underset{n\to \infty }{\lim }\mathbb{E}\Big[\underset{t\in [0,T]}{\sup }{\big|{X_{t}^{(n)}}-{X_{t}}\big|^{p}}\Big]=0\hspace{0.2778em}\textit{for any}\hspace{5pt}p\in (1,\beta ).\]
This is because the following two conditions are valid.
  • (i) ${\sup _{t\in [0,T]}}|{X_{t}^{(n)}}-{X_{t}}{|^{p}}\to 0$ in probability as $n\to \infty $.
  • (ii) The class of random variables
    \[ {\Big\{\underset{s\in [0,t]}{\sup }{\big|{X_{s}^{(n)}}-{X_{s}}\big|^{p}}\Big\}_{t\in [0,T]}}\]
    is uniformly integrable.
Proof.
(i) For clarity, we write $r=\frac{p}{\beta }$. By using the triangle inequality and Jensen’s inequality, we have
\[\begin{aligned}{}\big|{X_{t}^{(n)}}-{X_{t}}\big|& \le {\int _{0}^{t}}\big|b\big({X_{s}^{(n)}}\big)-b({X_{s}})\big|\mathrm{d}s+{\sigma _{2}}\big|{L_{t}^{(n)}}-{L_{t}}\big|.\end{aligned}\]
By the definition of supremum, we have
\[\begin{aligned}{}\underset{t\in [0,T]}{\sup }\big|{X_{t}^{(n)}}-{X_{t}}\big|& \le T\underset{t\in [0,T]}{\sup }\big|b\big({X_{t}^{(n)}}\big)-b({X_{t}})\big|+{\sigma _{2}}\underset{t\in [0,T]}{\sup }\big|{L_{t}^{(n)}}-{L_{t}}\big|.\end{aligned}\]
Since b is Lipschitz continuous, we have
\[\begin{aligned}{}\underset{t\in [0,T]}{\sup }\big|{X_{t}^{(n)}}-{X_{t}}\big|& \le CT\underset{t\in [0,T]}{\sup }\big|{X_{t}^{(n)}}-{X_{t}}\big|\mathrm{d}s+{\sigma _{2}}\underset{t\in [0,T]}{\sup }\big|{L_{t}^{(n)}}-{L_{t}}\big|.\end{aligned}\]
By using Gronwall’s inequality and Jensen’s inequality, we have
(A.3)
\[ \underset{t\in [0,T]}{\sup }\big|{X_{t}^{(n)}}-{X_{t}}\big|\le C{\sigma _{2}}\exp (CT)\underset{t\in [0,T]}{\sup }\big|{L_{t}^{(n)}}-{L_{t}}\big|.\]
Here, by the above inequality and Lemma A.4, for any $h\gt 0$,
\[\begin{aligned}{}& \mathbb{P}\Big(\underset{t\in [0,T]}{\sup }{\big|{X_{t}^{(n)}}-{X_{t}}\big|^{p}}\gt h\Big)\\ {} & \le \mathbb{P}\bigg(\underset{t\in [0,T]}{\sup }{\big|{L_{t}^{(n)}}-{L_{t}}\big|^{r}}\gt {\bigg(\frac{h}{C{\sigma _{2}}\exp (CT)}\bigg)^{\frac{1}{\beta }}}\bigg)\\ {} & \le \mathbb{P}\bigg(\underset{t\in [0,T]}{\sup }\big({\varepsilon ^{p}}+{u_{r,\delta ,\varepsilon }}\big({L_{t}^{(n)}}-{L_{t}}\big)\big)\gt {\bigg(\frac{h}{C{\sigma _{2}}\exp (CT)}\bigg)^{\frac{1}{\beta }}}\bigg)\\ {} & \le {\bigg(\frac{C{\sigma _{2}}\exp (CT)}{h}\bigg)^{\frac{1}{\beta }}}\big({V_{T}}\big({\varepsilon ^{p}}+{u_{r,\delta ,\varepsilon }}\big({L^{(n)}}-L\big)\big)\\ {} & \hspace{2em}+\mathbb{E}\big[\big|{\varepsilon ^{p}}+{u_{r,\delta ,\varepsilon }}\big({L_{T}^{(n)}}-{L_{T}}\big)\big|\big]\big).\end{aligned}\]
Here, by the definition of the mean variation and (A.2), we have
\[\begin{aligned}{}{V_{T}}\big({\varepsilon ^{p}}+{u_{r,\delta ,\varepsilon }}\big({L^{(n)}}-L\big)\big)& ={V_{T}}\big({u_{r,\delta ,\varepsilon }}\big({L^{(n)}}-L\big)\big),\\ {} \mathbb{E}\big[\big|{\varepsilon ^{p}}+{u_{r,\delta ,\varepsilon }}\big({L_{t}^{(n)}}-{L_{t}}\big)\big|\big]& =\mathbb{E}\big[{\varepsilon ^{p}}+{u_{r,\delta ,\varepsilon }}\big({L_{T}^{(n)}}-{L_{T}}\big)\big].\end{aligned}\]
By using the Lévy–Itô decomposition ([1], Theorem 2.4.16), we have
\[\begin{aligned}{}{L_{t}^{(n)}}-{L_{t}}& ={\int _{0}^{t}}{\int _{|z|\gt 1}}z{1_{\{0\lt |z|\le n\}}}N(\mathrm{d}s,\mathrm{d}z)+{\int _{0}^{t}}{\int _{0\lt |z|\le 1}}z{1_{\{0\lt |z|\le n\}}}\widetilde{N}(\mathrm{d}s,\mathrm{d}z)\\ {} & \hspace{2em}-{\int _{0}^{t}}{\int _{|z|\gt 1}}zN(\mathrm{d}s,\mathrm{d}z)-{\int _{0}^{t}}{\int _{0\lt |z|\le 1}}z\widetilde{N}(\mathrm{d}s,\mathrm{d}z),\\ {} & =-{\int _{0}^{t}}{\int _{|z|\gt 1}}z{1_{\{|z|\gt n\}}}N(\mathrm{d}s,\mathrm{d}z)-{\int _{0}^{t}}{\int _{0\lt |z|\le 1}}z{1_{\{|z|\gt n\}}}\widetilde{N}(\mathrm{d}s,\mathrm{d}z),\\ {} & =-{\int _{0}^{t}}{\int _{|z|\gt 1}}z{1_{\{|z|\gt n\}}}N(\mathrm{d}s,\mathrm{d}z).\end{aligned}\]
The last equality follows by $n\ge 1$. Using the Itô formula ([1], Theorem 4.4.7), $N(\mathrm{d}t,\mathrm{d}z)=\widetilde{N}(\mathrm{d}t,\mathrm{d}z)+\nu (\mathrm{d}z)\mathrm{d}t$ and the function ${u_{r,\delta ,\varepsilon }}$ defined in Lemma A.1, we have
\[\begin{aligned}{}& {u_{r,\delta ,\varepsilon }}\big({L_{t}^{(n)}}-{L_{t}}\big)\\ {} & ={\int _{0}^{t}}{\int _{|z|\ge 1}}\big\{{u_{r,\delta ,\varepsilon }}\big({L_{s-}^{(n)}}-{L_{s-}}-z{1_{\{|z|\gt n\}}}\big)-{u_{r,\delta ,\varepsilon }}\big({L_{s-}^{(n)}}-{L_{s-}}\big)\big\}N(\mathrm{d}s,\mathrm{d}z)\\ {} & ={\int _{0}^{t}}{\int _{|z|\ge 1}}\big\{{u_{r,\delta ,\varepsilon }}\big({L_{s-}^{(n)}}-{L_{s-}}-z{1_{\{|z|\gt n\}}}\big)-{u_{r,\delta ,\varepsilon }}\big({L_{s-}^{(n)}}-{L_{s-}}\big)\big\}\widetilde{N}(\mathrm{d}s,\mathrm{d}z)\\ {} & \hspace{2em}+{\int _{0}^{t}}{\int _{|z|\ge 1}}\big\{{u_{r,\delta ,\varepsilon }}\big({L_{s-}^{(n)}}-{L_{s-}}-z{1_{\{|z|\gt n\}}}\big)-{u_{r,\delta ,\varepsilon }}\big({L_{s-}^{(n)}}-{L_{s-}}\big)\big\}\mathrm{d}s\nu (\mathrm{d}z)\\ {} & =:{M_{t}^{\delta ,\varepsilon }}+{I_{t}^{\delta ,\varepsilon }}.\end{aligned}\]
Here, by (A.1), for any $x,y\in \mathbb{R}$,
\[\begin{aligned}{}-{u_{r,\delta ,\varepsilon }}(y)& \le {\varepsilon ^{r}}-|y{|^{r}},\\ {} {u_{r,\delta ,\varepsilon }}(x)-{u_{r,\delta ,\varepsilon }}(y)& \le 2{\varepsilon ^{r}}+|x{|^{r}}-|y{|^{r}}\\ {} & \le 2{\varepsilon ^{r}}+\big||x{|^{r}}-|y{|^{r}}\big|\\ {} & \le 2{\varepsilon ^{r}}+|x-y{|^{r}}.\end{aligned}\]
So we have
\[\begin{aligned}{}& {u_{r,\delta ,\varepsilon }}\big({L_{T}^{(n)}}-{L_{T}}\big)\\ {} & \le {\int _{0}^{T}}{\int _{|z|\ge 1}}\big\{{u_{r,\delta ,\varepsilon }}\big({L_{s-}^{(n)}}-{L_{s-}}-z{1_{\{|z|\gt n\}}}\big)-{u_{r,\delta ,\varepsilon }}\big({L_{s-}^{(n)}}-{L_{s-}}\big)\big\}\widetilde{N}(\mathrm{d}s,\mathrm{d}z)\\ {} & \hspace{2em}+{\int _{0}^{T}}{\int _{|z|\ge 1}}\big\{2{\varepsilon ^{r}}+|z{|^{r}}{1_{\{|z|\gt n\}}}\big\}\mathrm{d}s\nu (\mathrm{d}z).\end{aligned}\]
Also,
\[ {\int _{0}^{T}}{\int _{|z|\ge 1}}\big\{2{\varepsilon ^{r}}+|z{|^{r}}{1_{\{|z|\gt n\}}}\big\}\mathrm{d}s\nu (\mathrm{d}z)\le 2CT{\varepsilon ^{r}}+T{\int _{\mathbb{R}\setminus \{0\}}}|z{|^{r}}{1_{\{|z|\gt n\}}}\nu (\mathrm{d}z).\]
We can evaluate
\[\begin{aligned}{}& {V_{T}}\big({u_{r,\delta ,\varepsilon }}\big({L^{(n)}}-L\big)\big)\\ {} & =\underset{\Delta t}{\sup }\mathbb{E}\Bigg[{\sum \limits_{i=0}^{n}}\big|\mathbb{E}\big[{u_{r,\delta ,\varepsilon }}\big({L_{{t_{i}}}^{(n)}}-{L_{{t_{i}}}}\big)-{u_{r,\delta ,\varepsilon }}\big({L_{{t_{i+1}}}^{(n)}}-{L_{{t_{i+1}}}}\big)\mid {\mathcal{F}_{{t_{i}}}}\big]\big|\Bigg]\\ {} & =\underset{\Delta t}{\sup }\mathbb{E}\Bigg[{\sum \limits_{i=0}^{n}}\big|\mathbb{E}\big[{M_{{t_{i}}}^{\delta ,\varepsilon }}+{I_{{t_{i}}}^{\delta ,\varepsilon }}-{M_{{t_{i+1}}}^{\delta ,\varepsilon }}-{I_{{t_{i+1}}}^{\delta ,\varepsilon }}\mid {\mathcal{F}_{{t_{i}}}}\big]\big|\Bigg]\\ {} & =\underset{\Delta t}{\sup }\mathbb{E}\Bigg[{\sum \limits_{i=0}^{n}}\big|\mathbb{E}\big[{I_{{t_{i}}}^{\delta ,\varepsilon }}-{I_{{t_{i+1}}}^{\delta ,\varepsilon }}\mid {\mathcal{F}_{{t_{i}}}}\big]\big|\Bigg].\end{aligned}\]
The last equality is valid, since ${({M_{t}^{\delta ,\varepsilon }})_{t\in [0,T]}}$ is a martingale. By using Jensen’s inequality, we have
\[\begin{aligned}{}& {V_{T}}\big({u_{r,\delta ,\varepsilon }}\big({L^{(n)}}-L\big)\big)\\ {} & \le \underset{\Delta t}{\sup }\mathbb{E}\Bigg[{\sum \limits_{i=0}^{n}}\mathbb{E}\big[\big|{I_{{t_{i}}}^{\delta ,\varepsilon }}-{I_{{t_{i+1}}}^{\delta ,\varepsilon }}\big|\mid {\mathcal{F}_{{t_{i}}}}\big]\Bigg]\\ {} & =\underset{\Delta t}{\sup }{\sum \limits_{i=0}^{n}}\mathbb{E}\Bigg[\Bigg|{\int _{{t_{i}}}^{{t_{i+1}}}}{\int _{|z|\ge 1}}\big\{{u_{r,\delta ,\varepsilon }}\big({L_{s-}^{(n)}}-{L_{s-}}-z{1_{\{|z|\gt n\}}}\big)\\ {} & \hspace{2em}-{u_{r,\delta ,\varepsilon }}\big({L_{s-}^{(n)}}-{L_{s-}}\big)\big\}\mathrm{d}s\nu (\mathrm{d}z)\Bigg|\Bigg]\\ {} & \le \underset{\Delta t}{\sup }{\sum \limits_{i=0}^{n}}\mathbb{E}\Bigg[{\int _{{t_{i}}}^{{t_{i+1}}}}{\int _{|z|\ge 1}}\big|{u_{r,\delta ,\varepsilon }}\big({L_{s-}^{(n)}}-{L_{s-}}-z{1_{\{|z|\gt n\}}}\big)\\ {} & \hspace{2em}-{u_{r,\delta ,\varepsilon }}\big({L_{s-}^{(n)}}-{L_{s-}}\big)\big|\mathrm{d}s\nu (\mathrm{d}z)\Bigg]\\ {} & \le \underset{\Delta t}{\sup }{\sum \limits_{i=0}^{n}}\mathbb{E}\Bigg[{\int _{{t_{i}}}^{{t_{i+1}}}}{\int _{|z|\ge 1}}\big(2{\varepsilon ^{r}}+|z{|^{r}}{1_{\{|z|\gt n\}}}\big)\mathrm{d}s\nu (\mathrm{d}z)\Bigg]\\ {} & \le {\int _{0}^{T}}{\int _{|z|\ge 1}}\big(2{\varepsilon ^{r}}+|z{|^{r}}{1_{\{|z|\gt n\}}}\big)\mathrm{d}s\nu (\mathrm{d}z).\end{aligned}\]
Therefore, we have
\[\begin{aligned}{}& \mathbb{P}\Big(\underset{t\in [0,T]}{\sup }{\big|{X_{t}^{(n)}}-{X_{t}}\big|^{p}}\gt h\Big)\\ {} & \le {\bigg(\frac{C{\sigma _{2}}\exp (CT)}{h}\bigg)^{\frac{1}{\beta }}}\bigg\{(4CT+1){\varepsilon ^{r}}+2T{\int _{\mathbb{R}\setminus \{0\}}}|z{|^{r}}{1_{\{|z|\gt n\}}}\nu (\mathrm{d}z)\bigg\}.\end{aligned}\]
Since the above inequality holds for any $\varepsilon \gt 0$, we obtain
\[ \mathbb{P}\Big(\underset{t\in [0,T]}{\sup }{\big|{X_{t}^{(n)}}-{X_{t}}\big|^{p}}\gt h\Big)\le 2T{\bigg(\frac{C{\sigma _{2}}\exp (CT)}{h}\bigg)^{\frac{1}{\beta }}}{\int _{\mathbb{R}\setminus \{0\}}}|z{|^{r}}{1_{\{|z|\gt n\}}}\nu (\mathrm{d}z).\]
By the assumption, for any $h\gt 0$, we have
\[ \underset{n\to \infty }{\lim }\mathbb{P}\Big(\underset{t\in [0,T]}{\sup }{\big|{X_{t}^{(n)}}-{X_{t}}\big|^{p}}\gt h\Big)=0.\]
(ii) Next, we show that the process
\[ {\Big\{\underset{t\in [0,T]}{\sup }{\big|{X_{t}^{(n)}}-{X_{t}}\big|^{p}}\Big\}_{T\ge 0}}\]
is uniformly integrable. To show this, by using inequality (A.3) it suffices to show for some $q\gt 1$,
\[ \mathbb{E}\Big[{\Big(\underset{t\in [0,T]}{\sup }{\big|{L_{t}^{(n)}}-{L_{t}}\big|^{p}}\vee 1\Big)^{q}}\Big]\lt \infty .\]
By assumption of (2.1) and the denseness of rational numbers, we can set $q\gt 1$ such that $pq\lt \beta $ so that for each $n\in \mathbb{N}$,
(A.4)
\[ {\int _{|z|\gt n}}|z{|^{pq}}\nu (\mathrm{d}z)\lt \infty .\]
Here, we set $g(x)=|x{|^{pq}}\vee 1$; then g is a nonnegative increasing submultiplicative function and ${\lim \nolimits_{x\to \infty }}g(x)=\infty $. Using Theorem 25.18 in [13], we will show that
\[ \mathbb{E}\big[g\big(\big|{L_{t}^{(n)}}-{L_{t}}\big|\big)\big]\lt \infty \hspace{1em}\hspace{5pt}\text{for some}\hspace{5pt}t\gt 0.\]
For some $t\gt 0$,
\[\begin{aligned}{}\mathbb{E}\big[g\big(\big|{L_{t}^{(n)}}-{L_{t}}\big|\big)\big]& =\mathbb{E}[{1_{\{|{L_{t}^{(n)}}-{L_{t}}|\le 1\}}}]+\mathbb{E}\big[{\big|{L_{t}^{(n)}}-{L_{t}}\big|^{pq}}{1_{\{|{L_{t}^{(n)}}-{L_{t}}|\gt 1\}}}\big]\\ {} & \le 1+\mathbb{E}\big[{\big|{L_{t}^{(n)}}-{L_{t}}\big|^{pq}}\big]\\ {} & \lt \infty .\end{aligned}\]
The last inequality does not depend on $n\in \mathbb{N}$ because of (A.4) and Example 25.10 in [13]. Since we have shown (i) and (ii) from the above, the proof is completed.  □
We recall
\[\begin{aligned}{}{C_{t}}& ={\sigma _{1}}{\int _{0}^{t}}h(s)\mathrm{d}s+{\sigma _{2}}{\int _{0}^{t}}{\int _{|z|\gt 0}}\mathbf{v}(s,z)N(\mathrm{d}s,\mathrm{d}z),\\ {} {C_{t}^{(n)}}& ={\sigma _{1}}{\int _{0}^{t}}h(s)\mathrm{d}s+{\sigma _{2}}{\int _{0}^{t}}{\int _{0\lt |z|\le n}}\mathbf{v}(s,z)N(\mathrm{d}s,\mathrm{d}z).\end{aligned}\]
To complete the proof of Lemma 5.2, we show the following.
Lemma A.6.
In the setup of Lemma 5.2, the following convergence holds:
\[ \underset{n\to \infty }{\lim }\mathbb{E}\Big[\underset{t\in [0,T]}{\sup }{\big|{C_{t}^{(n)}}-{C_{t}}\big|^{p}}\Big]=0.\]
Proof.
It can be proved in the same way as in Lemma A.5. In fact, by using the function ${u_{r,\delta ,\varepsilon }}$ defined in Lemma A.1 with $r=\frac{p}{\beta }$, we have
\[\begin{aligned}{}& {u_{r,\delta ,\varepsilon }}\big({C_{t}^{(n)}}-{C_{t}}\big)\\ {} & ={\int _{0}^{t}}{\int _{|z|\ge 1}}\big\{{u_{r,\delta ,\varepsilon }}\big({C_{t}^{(n)}}-{C_{t}}+\mathbf{v}(s,z){1_{\{|z|\gt n\}}}\big)-{u_{r,\delta ,\varepsilon }}\big({C_{t}^{(n)}}-{C_{t}}\big)\big\}N(\mathrm{d}s,\mathrm{d}z).\end{aligned}\]
Note that ${\{{C_{t}^{(n)}}-{C_{t}}\}_{t\ge 0}}$ is a compound Poisson process and assumptions of Lemma 5.2 are fulfilled. We can confirm the ${L^{p}}(\Omega \times [0,T])$ convergence by showing convergence in probability and uniform integrability in the same way as in Lemma A.5.  □

Acknowledgement

We would like to express our heartfelt gratitude to the editor Prof. Yuliya Mishura and the anonymous referees, whose suggestions and attentive reading resulted in considerable alterations from the original version, thereby significantly enhancing the article’s readability. Additionally, the authors extend our deepest gratitude to Prof. Arturo Kohatsu-Higa, Prof. Atsushi Takeuchi and Dr. Gô Yûki for their invaluable discussions and insightful comments, which have significantly enriched this paper.

References

[1] 
Applebaum, D.: Lévy Processes and Stochastic Calculus, 2nd edn. Cambridge Studies in Advanced Mathematics, vol. 116, p. 460. Cambridge University Press, Cambridge (2009). doi: https://doi.org/10.1017/CBO9780511809781. MR2512800
[2] 
Bismut, J.-M.: Calcul des variations stochastique et processus de sauts. Z. Wahrscheinlichkeitstheor. Verw. Geb. 63(2), 147–235 (1983). doi: https://doi.org/10.1007/BF00538963. MR701527
[3] 
Carvajal Pinto, M.B., van Schaik, K.: Optimally stopping at a given distance from the ultimate supremum of a spectrally negative Lévy process. Adv. Appl. Probab. 53(1), 279–299 (2021). doi: https://doi.org/10.1017/apr.2020.54. MR4232757
[4] 
Chaumont, L.: On the law of the supremum of Lévy processes. Ann. Probab. 41(3A), 1191–1217 (2013). doi: https://doi.org/10.1214/11-AOP708. MR3098676
[5] 
Coutin, L., Pontier, M., Ngom, W.: Joint distribution of a Lévy process and its running supremum. J. Appl. Probab. 55(2), 488–512 (2018). doi: https://doi.org/10.1017/jpr.2018.32. MR3832901
[6] 
González Cázares, J.I., Mijatović, A., Uribe Bravo, G.: Geometrically convergent simulation of the extrema of Lévy processes. Math. Oper. Res. 47(2), 1141–1168 (2022). doi: https://doi.org/10.1287/moor.2021.1163. MR4435010
[7] 
Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus, 2nd edn. Graduate Texts in Mathematics, vol. 113, p. 470. Springer (1991). doi: https://doi.org/10.1007/978-1-4612-0949-2. MR1121940
[8] 
Komatsu, T.: On the pathwise uniqueness of solutions of one-dimensional stochastic differential equations of jump type. Proc. Jpn. Acad., Ser. A, Math. Sci. 58(8), 353–356 (1982). MR683262
[9] 
Kurtz, T.G.: Random time changes and convergence in distribution under the Meyer-Zheng conditions. Ann. Probab. 19(3), 1010–1034 (1991). MR1112405
[10] 
Kuznetsov, A., Pardo, J.C.: Fluctuations of stable processes and exponential functionals of hypergeometric Lévy processes. Acta Appl. Math. 123, 113–139 (2013). doi: https://doi.org/10.1007/s10440-012-9718-y. MR3010227
[11] 
Nakagawa, T.: ${L^{\alpha -1}}$ distance between two one-dimensional stochastic differential equations driven by a symmetric α-stable process. Jpn. J. Ind. Appl. Math. 37(3), 929–956 (2020). doi: https://doi.org/10.1007/s13160-020-00429-9. MR4142265
[12] 
Protter, P.E.: Stochastic Integration and Differential Equations, 2nd edn. Stochastic Modelling and Applied Probability, vol. 21, p. 419. Springer (2005). doi: https://doi.org/10.1007/978-3-662-10061-5. Corrected third printing. MR2273672
[13] 
Sato, K.: Lévy Processes and Infinitely Divisible Distributions, Revised edn. Cambridge Studies in Advanced Mathematics, vol. 68, p. 521. Cambridge University Press, Cambridge (2013). Translated from the 1990 Japanese original. MR3185174
[14] 
Song, Y., Xie, Y.: Existence of density functions for the running maximum of a Lévy-Itô diffusion. Potential Anal. 48(1), 35–48 (2018). doi: https://doi.org/10.1007/s11118-017-9625-y. MR3745823
[15] 
Song, Y., Zhang, X.: Regularity of density for SDEs driven by degenerate Lévy noises. Electron. J. Probab. 20, 21–27 (2015). doi: https://doi.org/10.1214/EJP.v20-3287. MR3325091
[16] 
Williams, D.: Probability with Martingales. Cambridge Mathematical Textbooks, p. 251. Cambridge University Press, Cambridge (1991). doi: https://doi.org/10.1017/CBO9780511813658. MR1155402
Reading mode PDF XML

Table of contents
  • 1 Introduction
  • 2 Notations and a result
  • 3 Bismut’s approach to the Malliavin calculus with jumps
  • 4 Regularity of the running maximum processes
  • 5 Applying of Malliavin calculus to SDEs
  • 6 Proof of Theorem 2.1
  • Conflict of interest
  • A Appendices
  • Acknowledgement
  • References

Copyright
© 2024 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Running maximum density functions Malliavin calculus stochastic differential equations Lévy processes

MSC2010
60H10 60G52 60H07

Funding
The second author was supported by JSPS KAKENHI Grant Number 23K12507.

Metrics
since March 2018
592

Article info
views

182

Full article
views

189

PDF
downloads

68

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

  • Theorems
    1
Theorem 2.1.
Theorem 2.1.
Assume that $b:\mathbb{R}\to \mathbb{R}$ is once differentiable and its derivative is bounded, and that a Lévy measure ν of L satisfies (2.1) and (2.2). Let ${\{{X_{t}}\}_{t\in [0,T]}}$ be the solution to equation (1.1). If ${\sigma _{1}^{2}}+{\sigma _{2}^{2}}\ne 0$, then for any $T\gt 0$ the law of ${X_{T}^{\ast }}$ is absolutely continuous with respect to the Lebesgue measure.

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy