Existence of density function for the running maximum of SDEs driven by nontruncated pure-jump Lévy processes        
        
    
        Volume 11, Issue 3 (2024), pp. 303–321
            
    
                    Pub. online: 23 January 2024
                    
        Type: Research Article
            
                
             Open Access
Open Access
        
            
    
                Received
19 June 2023
                                    19 June 2023
                Revised
17 November 2023
                                    17 November 2023
                Accepted
7 January 2024
                                    7 January 2024
                Published
23 January 2024
                    23 January 2024
Abstract
The existence of density function of the running maximum of a stochastic differential equation (SDE) driven by a Brownian motion and a nontruncated pure-jump process is verified. This is proved by the existence of density function of the running maximum of the Wiener–Poisson functionals resulting from Bismut’s approach to the Malliavin calculus for jump processes.
            References
 Applebaum, D.: Lévy Processes and Stochastic Calculus, 2nd edn. Cambridge Studies in Advanced Mathematics, vol. 116, p. 460. Cambridge University Press, Cambridge (2009). doi: https://doi.org/10.1017/CBO9780511809781. MR2512800
 Bismut, J.-M.: Calcul des variations stochastique et processus de sauts. Z. Wahrscheinlichkeitstheor. Verw. Geb. 63(2), 147–235 (1983). doi: https://doi.org/10.1007/BF00538963. MR701527
 Carvajal Pinto, M.B., van Schaik, K.: Optimally stopping at a given distance from the ultimate supremum of a spectrally negative Lévy process. Adv. Appl. Probab. 53(1), 279–299 (2021). doi: https://doi.org/10.1017/apr.2020.54. MR4232757
 Chaumont, L.: On the law of the supremum of Lévy processes. Ann. Probab. 41(3A), 1191–1217 (2013). doi: https://doi.org/10.1214/11-AOP708. MR3098676
 Coutin, L., Pontier, M., Ngom, W.: Joint distribution of a Lévy process and its running supremum. J. Appl. Probab. 55(2), 488–512 (2018). doi: https://doi.org/10.1017/jpr.2018.32. MR3832901
 González Cázares, J.I., Mijatović, A., Uribe Bravo, G.: Geometrically convergent simulation of the extrema of Lévy processes. Math. Oper. Res. 47(2), 1141–1168 (2022). doi: https://doi.org/10.1287/moor.2021.1163. MR4435010
 Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus, 2nd edn. Graduate Texts in Mathematics, vol. 113, p. 470. Springer (1991). doi: https://doi.org/10.1007/978-1-4612-0949-2. MR1121940
 Komatsu, T.: On the pathwise uniqueness of solutions of one-dimensional stochastic differential equations of jump type. Proc. Jpn. Acad., Ser. A, Math. Sci. 58(8), 353–356 (1982). MR683262
 Kurtz, T.G.: Random time changes and convergence in distribution under the Meyer-Zheng conditions. Ann. Probab. 19(3), 1010–1034 (1991). MR1112405
 Kuznetsov, A., Pardo, J.C.: Fluctuations of stable processes and exponential functionals of hypergeometric Lévy processes. Acta Appl. Math. 123, 113–139 (2013). doi: https://doi.org/10.1007/s10440-012-9718-y. MR3010227
 Nakagawa, T.: ${L^{\alpha -1}}$ distance between two one-dimensional stochastic differential equations driven by a symmetric α-stable process. Jpn. J. Ind. Appl. Math. 37(3), 929–956 (2020). doi: https://doi.org/10.1007/s13160-020-00429-9. MR4142265
 Protter, P.E.: Stochastic Integration and Differential Equations, 2nd edn. Stochastic Modelling and Applied Probability, vol. 21, p. 419. Springer (2005). doi: https://doi.org/10.1007/978-3-662-10061-5. Corrected third printing. MR2273672
 Sato, K.: Lévy Processes and Infinitely Divisible Distributions, Revised edn. Cambridge Studies in Advanced Mathematics, vol. 68, p. 521. Cambridge University Press, Cambridge (2013). Translated from the 1990 Japanese original. MR3185174
 Song, Y., Xie, Y.: Existence of density functions for the running maximum of a Lévy-Itô diffusion. Potential Anal. 48(1), 35–48 (2018). doi: https://doi.org/10.1007/s11118-017-9625-y. MR3745823
 Song, Y., Zhang, X.: Regularity of density for SDEs driven by degenerate Lévy noises. Electron. J. Probab. 20, 21–27 (2015). doi: https://doi.org/10.1214/EJP.v20-3287. MR3325091
 Williams, D.: Probability with Martingales. Cambridge Mathematical Textbooks, p. 251. Cambridge University Press, Cambridge (1991). doi: https://doi.org/10.1017/CBO9780511813658. MR1155402
 
                 
            