Asymptotics for functionals of powers of a periodogram        
        
    
        Volume 1, Issue 2 (2014), pp. 181–194
            
    
                    Pub. online: 4 February 2015
                    
        Type: Research Article
            
                
            
Open Access
        
            
    
                Received
22 November 2014
                                                22 November 2014
                Accepted
8 January 2015
                                    8 January 2015
                Published
4 February 2015
                    4 February 2015
Abstract
We present large sample properties and conditions for asymptotic normality of linear functionals of powers of the periodogram constructed with the use of tapered data.
            References
 Anh, V.V., Leonenko, N.N., Sakhno, L.M.: Statistical inference based on the information of the second and third order. J. Stat. Plan. Inference 137, 1302–1331 (2007) MR2301481. doi:10.1016/j.jspi.2006.03.001 
 Anh, V.V., Leonenko, N.N., Sakhno, L.M.: Evaluation of bias in higher-order spectral estimation. Teor. Imovir. Mat. Stat. 80, 1–14 (2009); English edition: Theory Probab. Math. Stat. 80, 1–14 (2010) MR2541947 
 Avram, F., Leonenko, N., Sakhno, L. On the generalized Szegö theorem, Hölder-Young-Brascamp-Lieb Inequality and the asymptotic theory of integrals and quadratic forms of stationary fields. ESAIM Probab. Stat. 14, 210–255 (2010) MR2741966. doi:10.1051/ps:2008031 
 Avram, F., Leonenko, N., Sakhno, L.: Limit theorems for additive functionals of stationary fields, under integrability assumptions on the higher order spectral densities. Stoch. Process. Appl. (2015) doi:10.1016/j.spa.2014.11.010 
 Bentkus, R.: Cumulants of estimates of the spectrum of a stationary sequence. Liet. Mat. Rink. 16, 37–61 (1976) (in Russian); English translation: Lith. Math. J. 16, 501–518 (1976) MR0431571 
 Chiu, S.: Weighted least squares estimators on the frequency domain for the parameters of a time series. Ann. Stat. 16, 1315–1326 (1988) MR0959204. doi:10.1214/aos/1176350963 
 Dahlhaus, R.: Spectral analysis with tapered data. J. Time Ser. Anal. 4, 163–175 (1983) MR0732895. doi:10.1111/j.1467-9892.1983.tb00366.x 
 Deo, R.S., Chen, W.W.: On the integral of the squared periodogram. Stoch. Process. Appl. 85, 159–176 (2000) MR1730613. doi:10.1016/S0304-4149(99)00071-X 
 Leonenko, N.N., Sakhno, L.M.: On the Whittle estimators for some classes of continuous parameter random processes and fields. Stat. Probab. Lett. 76, 781–795 (2006) MR2266092. doi:10.1016/j.spl.2005.10.010 
 Leonov, V.V., Shiryaev, A.N.: On a method of calculation of semi-invariants. Theory Probab. Appl. 4, 319–329 (1959) MR0123345 
 McElroy, T., Holland, S.: A local spectral approach for assessing time series model misspecification. J. Multivar. Anal. 100, 604–621 (2009) MR2478185. doi:10.1016/j.jmva.2008.06.010 
 Sakhno, L.: Minimum contrast estimation of stationary processes based on the squared periodogram. Lith. Math. J. 52, 400–419 (2012) MR3001040. doi:10.1007/s10986-012-9183-3 
 Taniguchi, M.: On estimation of the integrals of certain functions of spectral density. J. Appl. Probab. 17, 73–83 (1980) MR0557436