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1 Introduction

Consider a real-valued measurable zero-mean strictly stationary process Y(t), t ∈ Z,
obeying the following assumption.

Assumption 1. E|Y(t)|k < ∞ for all k, and Y(t) has (cumulant) spectral densities of
orders k = 2, 3, . . . , that is, there exist the functions fk(λ1, . . . , λk−1) ∈ L1(Λ

k−1),
Λ = (−π, π], k = 2, 3, . . ., such that the cumulant function of order k is given by

ck(t1, . . . , tk−1) =
∫

Λk−1
fk(λ1, . . . , λk−1)e

i�k−1
1 λj tj dλ1 . . . dλk−1.

Suppose that we are given the observations {Y(t), t∈KT }, where KT = {−T , . . . ,

T }, T ∈ Z.
In this paper, we will study large sample properties of the empirical spectral func-

tionals of the form

Jk,T (ϕ) =
∫

Λ

ϕ(λ)I k
T (λ) dλ (1)

for appropriate functions ϕ(λ) with ϕ(λ)f k
2 (λ) ∈ L1(Λ), where I k

T (λ) is the kth
power of the periodogram based on the tapered data {hT (t)Y (t), t ∈ KT }, and k is
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a positive integer. The taper will be of the form hT (t) = h( t
T

) with h satisfying the
following standard assumption.

Assumption H. The function h(t), t ∈ R, is an even positive function of bounded
variation with bounded support: h(t) = 0 for |t | > 1.

The periodogram corresponding to the tapered data is defined as

IT (λ) = 1

2πH2,T (0)

∣∣dT (λ)
∣∣2

, λ ∈ Λ,

where dT (λ) is the finite Fourier transform based on tapered data:

dT (λ) = dh
T (λ) =

∑
t∈KT

e−iλthT (t)Y (t), λ ∈ Λ,

Hk,T (λ) =
∫

KT

hk
T (t)e−iλt dt,

and we suppose that H2,T (0) �= 0.
Functionals of the form (1) for k = 1 have been extensively studied in the liter-

ature, in particular, due to their applications for parameter estimation in the spectral
domain: their behavior as T → ∞ is important for establishing asymptotic properties
of so-called minimum contrast estimators such as Whittle and Ibragimov estimators
(see, e.g., [9, 1], and references therein). The case of the squared periodogram was
treated, for example, in [8], with application to a goodness-of-fit statistics, and in
[12], with application to minimum contrast estimation.

Asymptotic results for the functionals of the form (1) with general k ≥ 2 were
studied in [6] and applied to derivation of properties of weighted least squares esti-
mators in the frequency domain and also in [11], with several applications discussed,
in particular, a frequency domain goodness-of-fit testing.

In this paper, we derive asymptotic results for functionals (1) with general k ≥ 2
in a more general setting, using the tapered data, and under a different set of condi-
tions in comparison with those used in [6] and [11]; in the Gaussian case, we state
our results in terms of integrability conditions for the spectral density and weight
function. Methods for the proofs are similar to those used in [12] with appropriate
modifications required for the more general case under consideration in the present
paper.

2 Results and discussion

We begin with the following assumptions.

Assumption 2. The spectral densities fk(λ1, . . . , λk−1), k = 2, 3, . . . , of the stochas-
tic process Y(t) are bounded and continuous.

Assumption 3. The weight function ϕ(λ) is bounded and continuous.

In what follows, we denote the second-order spectral density f2(λ) simply by
f (λ) omitting the subscript 2.
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Theorem 1. Let Assumptions 1, 2, and H hold, and let the functions ϕ, ϕ1(λ), . . . ,

ϕk(λ) satisfy Assumption 3. Then, as T → ∞,

(1) EJk,T (ϕ) → k!
∫

Λ

ϕ(λ)f k(λ) dλ;

(2) cov
(
Jk,T (ϕ1), Jl,T (ϕ2)

)
∼ 2π

T
e(h)klk!l!

[∫
Λ

ϕ1(λ)
[
ϕ2(λ) + ϕ2(−λ)

]
f k+l(λ) dλ

+
∫

Λ2
ϕ1(λ1)ϕ2(λ2)f

k−1(λ1)f
l−1(λ2)f4(λ1,−λ1, λ2) dλ1 dλ2

]
,

where

e(h) =
{∫

h2(t) dt

}−2 ∫
h4(t) dt;

(3) cum
(
Jm1,T (ϕ1), . . . , Jmk,T (ϕk)

) = O
(
T 1−k

)
.

Suppose now that the process Y(t) is Gaussian. In this case the above asymptotic
results can be stated under the conditions of integrability on the weight function and
spectral density.

Theorem 2. Let Y(t), t ∈ Z, be a Gaussian stationary process with spectral density
f (λ), λ ∈ Λ, such that f (λ) ∈ Lp(Λ), and let the functions ϕ, ϕ1, . . . , ϕk ∈ Lq(Λ),
where 1 ≤ p, q ≤ ∞. Suppose also that Assumption H holds.

(1) If p and q satisfy the relation

1

q
+ k

1

p
= 1,

then, as T → ∞,

EJk,T (ϕ) → k!
∫

Λ

ϕ(λ)f k(λ) dλ.

(2) If p and q satisfy the relation

1

q
+ k + l

2
· 1

p
= 1

2
,

then, as T → ∞,

cov
(
Jk,T (ϕ1), Jl,T (ϕ2)

)
∼ 2π

T
e(h)klk!l!

∫
Λ

ϕ1(λ)
[
ϕ2(λ) + ϕ2(−λ)

]
f k+l (λ) dλ.

(3) If p and q satisfy the relation

1

q
+ k

1

p
= 1

2
,

then the cumulants of orders r ≥ 3 of the normalized functionals Jk,T (ϕi) tend to
zero as T → ∞:

cum
(
T 1/2Jk,T (ϕ1), . . . , T

1/2Jk,T (ϕr)
) → 0.



184 L. Sakhno

(4) If p and q satisfy the relation

1

q
+ k1 + · · · + kr

r
· 1

p
= 1

2
,

then the cumulant of rth order, r ≥ 3, of the normalized functionals Jki ,T (ϕi), i =
1, . . . , r , tends to zero as T → ∞:

cum
(
T 1/2Jk1,T (ϕ1), . . . , T

1/2Jkr ,T (ϕr)
) → 0.

As corollaries of the above theorems, we obtain the next asymptotic normality
results.

Let us fix the weight functions ϕ1, . . . , ϕm and denote

JT = {
Jk,T (ϕi)

}
i=1,...,m

and J̃ = {
J̃k(ϕi)

}
i=1,...,m

,

where J̃k(ϕ) = k! ∫
Λ

ϕ(λ)f k(λ) dλ.
Let ξ = {ξi}i=1,...,m be a Gaussian random vector with zero mean and second-

order moments

wij = Eξi ξ̄j

= 2πe(h)(kk!)2
(∫

Λ

ϕi(λ)
[
ϕ̄j (λ) + ϕ̄j (−λ)

]
f 2k(λ) dλ

+
∫

Λ2
ϕi(λ1)ϕ̄j (λ2)f

k−1(λ1)f
k−1(λ2)f4(λ1,−λ1, λ2) dλ1 dλ2

)
.

Assumption 4. The spectral density of the second order f (λ), the weight function
ϕ(λ), and the taper h are such that T 1/2(EJk,T (ϕ) − J̃k(ϕ)) → 0.

Theorem 3. Let Assumptions 1, 2, and H hold, and let the functions ϕi , i = 1, . . . , m,
satisfy Assumption 3. Then

T 1/2(JT − EJT )
D→ ξ as T → ∞;

moreover, if Assumption 4 holds for the functions ϕi , i = 1, . . . , m, then

T 1/2(JT − J̃ )
D→ ξ as T → ∞.

Let ζ = {ζi}i=1,...,m be a Gaussian random vector with zero mean and second-
order moments

vij = Eζi ζ̄j = 2πe(h)(kk!)2
∫

Λ

ϕi(λ)
[
ϕ̄j (λ) + ϕ̄j (−λ)

]
f 2k(λ) dλ.

Theorem 4. Let Y(t), t ∈ Z, be a Gaussian stationary process with spectral density
f (λ) ∈ Lp(Λ), and let the functions ϕ1, . . . , ϕm ∈ Lq(Λ), where 1 ≤ p, q ≤ ∞, be
such that 1

q
+ k 1

p
= 1

2 . Suppose also that Assumption H holds. Then

T 1/2(JT − EJT )
D→ ζ as T → ∞;

moreover, if Assumption 4 holds for the functions ϕi , i = 1, . . . , m, then

T 1/2(JT − J̃ )
D→ ζ as T → ∞.
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We next state more general results, the joint asymptotic normality for functionals
of different powers of the periodogram.

Consider

Jk1,...,km,T = {
Jki ,T (ϕi)

}
i=1,...,m

and J̃k1,...,km = {
J̃ki

(ϕi)
}
i=1,...,m

,

where J̃k(ϕ) = k! ∫
Λ

ϕ(λ)f k(λ) dλ.
Let ξ̃ = {ξ̃i}i=1,...,m be a Gaussian random vector with zero mean and second-

order moments

w̃ij = Eξ̃i ξ̃j

= 2πe(h)kiki !kj kj !
(∫

Λ

ϕi(λ)
[
ϕ̄j (λ) + ϕ̄j (−λ)

]
f ki+kj (λ) dλ

+
∫

Λ2
ϕi(λ1)ϕ̄j (λ2)f

ki−1(λ1)f
kj −1(λ2)f4(λ1,−λ1, λ2) dλ1 dλ2

)
.

Theorem 5. Let Assumptions 1, 2, and H hold, and let the functions ϕi , i = 1, . . . , m,
satisfy Assumption 3. Then

T 1/2(Jk1,...,km,T − EJk1,...,km,T )
D→ ξ as T → ∞;

moreover, if Assumption 4 holds with k = ki , ϕ = ϕi , i = 1, . . . , m, then

T 1/2(Jk1,...,km,T − J̃k1,...,km)
D→ ξ as T → ∞.

Let ζ̃ = {ζ̃i}i=1,...,m be a Gaussian random vector with zero mean and second-
order moments

ṽij = Eζ̃i ζ̃j = 2πe(h)kiki !kj kj !
∫

Λ

ϕi(λ)
[
ϕ̄j (λ) + ϕ̄j (−λ)

]
f ki+kj (λ) dλ.

Theorem 6. Let Y(t), t ∈ Z, be a Gaussian stationary process with a spectral density
f (λ) ∈ Lp(Λ), and let the functions ϕ1, . . . , ϕm ∈ Lq(Λ), where 1 ≤ p, q ≤ ∞, be
such that 1

q
+ min{ki} 1

p
= 1

2 . Suppose also that Assumption H holds. Then

T 1/2(Jk1,...,km,T − EJk1,...,km,T )
D→ ζ̃ as T → ∞;

moreover, if Assumption 4 holds with k = ki , ϕ = ϕi , i = 1, . . . , m, then

T 1/2(Jk1,...,km,T − J̃k1,...,km)
D→ ζ̃ as T → ∞.

Remark 1. Integrals of nonlinear functions of the periodogram (including, in par-
ticular, powers of positive orders of the periodogram) were studied, for example, in
[13] for discrete time processes under the assumption of boundedness of the spec-
tral density. In [8], the integral functionals of the squared periodogram were studied
for stationary Gaussian series given by the moving-average representation, and the
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asymptotic normality result was stated under the particular assumption of summa-
bility of the coefficients of the representation and continuity of the derivative of the
spectral density. In [6] and [11], the asymptotic results for functionals of powers of
the periodogram of general order have been studied under the conditions of summa-
bility of cumulants of the process. In this paper, we state the results for discrete-time
non-Gaussian processes under the condition of boundedness of spectral densities of
all orders (which are supposed to exist), and we also derive the results for Gaussian
case under the conditions of integrability of the spectral density and weight func-
tion.

Remark 2. Conditions on the spectral density under which Assumption 4 will be
satisfied can be formulated analogously to the corresponding conditions in [1] for the
case where h(t) ≡ 1 and analogously to the conditions in [2] for the general h(t) of
Assumption H.

Remark 3. The results on asymptotic properties of the integrals of the powers of the
periodogram can be useful for some problems of statistical inference. One possible
application is hypothesis testing concerning the form of the spectral density of the
process. For example, in [8], a quadratic goodness-of-fit test in the spectral domain
was studied for Gaussian processes. Note that the asymptotic normality result for the
corresponding test statistic stated in [8] can be also derived from our Theorem 6,
that is, under a different set of conditions. More applications of the integrals of the
powers of the periodogram for goodness-of-fit testing, peak testing, and assessing
model misspecification are presented in [11]. In [6] and [12], the integrals of the
squared periodogram were applied for parametric estimation in the spectral domain.

3 Proofs

For the proofs of the results of Section 2, we use the technique based the properties
of the multidimensional kernels of Fejér type (see, e.g., [5, 1], and references therein)
and the Hölder–Young–Brascamp–Lieb inequality (see [3, 4], and references therein;
see also [12]). In what follows, we will refer to the latter as the HYBL inequality. The
application of these tools leads to very transparent and elegant proofs. We will also
use the formula giving expressions for cumulants of products of random variables via
products of cumulants of the individual variables (see, e.g., [10, 5]) and the multi-
linearity property of cumulants. The lines of reasonings are very close to those used
in [12].

Proof of Theorem 1. Consider

EIk
T (λ) = 1

(2πH2,T (0))k
E

[
(cum

(
dT (λ)dT (−λ)

)k]
= 1

(2πH2,T (0))k
E

[
cum(dT (λ)dT (−λ) · · · cum(dT (λ)dT (−λ)

]
.

We apply now the formula for cumulants of products of random variables (see, e.g.,
[10]); it is convenient to assign the indices to λs in the following way: we can enu-
merate all λs appearing in the above row from 1 to 2k, having in mind that λi with
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odd indices are simply equal to λ, whereas λi with even i are equal to −λ. Then we
can write down the expectation in the following form:

EIk
T (λ) = 1

(2πH2,T (0))k

∑
ν=(ν1,...,ν1)

partition of (1,...,2k)

p∏
l=1

cum
(
dT (λi), i ∈ νl

)

×
k∏

i=1

δ(λ2i−1 − λ)

k∏
i=1

δ(λ2i + λ). (2)

The cumulants of the finite Fourier transforms dT (λ), λ ∈ Λ, can be written as
follows:

cum
(
dT (α1), . . . , dT (αk)

)
=

∫
Kk

T

k∏
i=1

hT (ti)e
−i�k

1αj tj ck(t1 − tk, . . . , tk−1 − tk) dt1 . . . dtk

=
∫

Λk−1
fk(γ1, . . . , γk−1)

×
k−1∏
j=1

H1,T (γj − αj )H1,T

(
−

k−1∑
j=1

γj − αk

)
dγ1 . . . dγk−1,

where

H1,T (λ) =
∫

KT

hT (t)e−itλ dt.

Correspondingly, we obtain the following formula for the expectation of Jk,T (ϕ):

EJk,T (ϕ) = E

∫
Λ

ϕ(λ)I k
T (λ) dλ

=
∫

Λ

ϕ(λ)
1

(2πH2,T (0))k

∑
ν=(ν1,...,νp)

partition of (1,...,2k)

∫
Λ2k−p

p∏
i=1

f|νi |(γj , j ∈ ν̃i )

×
2k∏

j=1

H1,T (γj − λj )

p∏
l=1

δ

(∑
j∈νl

γj

) k∏
i=1

δ(λ2i−1 − λ)

k∏
i=1

δ(λ2i + λ) dγ ′ dλ.

(3)

Here and in similar formulas below, we use the following notation: for a set of
natural numbers ν, we denote by |ν| the number of elements in ν and by ν̃ the subset
of ν that contains all elements of ν except the last one. Integration in the inner integral
in the above formula is understood with respect to (2k − p)-dimensional vector γ ′
obtained from the vector γ = (γ1, . . . , γ2k) due to p restrictions on the variables γj ,
j = 1, . . . , 2k, described by the Kronecker delta functions δ.

Now we note that the products
∏k

j=1 H1,T (λj ) in the case where
∑k

j=1 λj = 0
give rise to a class of δ-type kernels (or Fejér-type kernels). Namely, if Assumption H
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holds and Hk,T (0) �= 0, then

Φh
k,T (λ1, . . . , λk−1) := 1

(2π)k−1Hk,T (0)

k−1∏
j=1

H1,T (λj )H1,T

(
−

k−1∑
j=1

λj

)
(4)

is a kernel over Λk−1, which is an approximate identity for convolution (see, e.g.,
[7]), and

lim
T →∞

∫
Λk−1

G(u1 − v1, . . . , uk−1 − vk−1)Φ
h
k,T (u1, . . . , uk−1) du1 . . . duk−1

= G(v1, . . . , vk−1), (5)

provided that the function G(·, . . . , ·) is bounded and continuous at the point (v1, . . . ,

vk−1).
The asymptotic behavior of the right-hand side of (3) can be evaluated basing on

the property (5).
Let us first consider the partitions ν composed by pairs. For those partitions, when

the products of only the cumulants of the form cum(dT (λ), dT (−λ)) appear in (2), we
obtain under the integral sign in (3) the terms of the form

1

(2πH2,T (0))k

{∫
f (γ )H1,T (γ − λ)H1,T (−γ + λ) dγ

}k

=
{∫

f (γ )Φh
2,T (γ − λ) dγ

}k

.

We note that there are k! such terms, therefore, in the expression for EJk,T (ϕ), we
have the term

k!
∫

Λ

ϕ(λ)

{∫
Λ

f (γ )Φh
2,T (γ − λ)dγ

}k

dλ, (6)

and this is the only case where we have k kernels, and all k factors 1
2πH2,T (0)

are used

to compose these kernels Φh
2,T (·).

In all other partitions, we will be able to compose from 1 to k − 1 kernels taking
combination of H1,T (·) with suitable arguments: for each 2nd-order kernel, we will
use one of the factors 1

2πH2,T (0)
from 1

(2πH2,T (0))k
; otherwise, when composing the

lth order kernel with l �= 2, we will need the normalizing factor 1
(2π)l−1Hl,T (0)

, and

therefore we will modify the factor 1
(2πH2,T (0))k

by taking, instead, (2π)l−1Hl,T (0)

(2πH2,T (0))k
.

So, for those partitions, when we compose kernels of orders, say, l1, . . . , lr , with∑r
i=1 li = 2k, the corresponding integral in (3) will be represented in the form of a

generalized convolution of some product of spectral densities of different orders with
the product of kernels of orders l1, . . . , lr , and the factor∏r

i=1(2π)li−1Hli,T (0)

(2πH2,T (0))k
(7)
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will be supplied to the integral. For example, in the simplest case where p = 1, the
corresponding term in (3) can be represented as follows:

(2π)2k−1H2k,T (0)

(2πH2,T (0))k

∫
Λ

ϕ(λ)

∫
Λ2k−1

f2k(γ1, . . . , γk−1)

× Φh
2k,T (γ1 − λ1, . . . , γ2k−1 − λ2k−1)

×
k∏

i=1

δ(λ2i−1 − λ)

k∏
i=1

δ(λ2i + λ)

2k−1∏
i=1

dγi dλ.

Now we take into account the following asymptotics for Hk,T (0): Hk,T (0) ∼
T Hk(0), where Hk(0) = ∫

hk(λ) dλ, and conclude that, in the case of r kernels,
1 ≤ r ≤ k − 1, the factor (7) is asymptotically of order 1

T k−r ; the corresponding
integrals containing these kernels will converge to finite limits under the conditions
of the theorem according to (5). Therefore, the expectation is obtained as the limit
of (6). This gives statement (1) of the theorem.

Consider

cov
(
Jk,T (ϕ1), Jl,T (ϕ2)

)
= 1

(2πH2,T (0))k+l

×
∫

Λ2
ϕ1(α)ϕ2(β)cum

((
dT (α)dT (−α)

)k
,
(
dT (β)dT (−β)

)l)
dα dβ. (8)

The cumulant under the integral sign in (8) according to the formula for calculation
of cumulants of products of random variables can be written in the form

∑
ν=(ν1,...,νp)

p∏
i=1

cum
(
dT (μj ), μj ∈ νi

)
, (9)

where the summation is taken over all indecomposable partitions ν = (ν1, . . . , νp),
|νi | > 1, of the table T2 with two rows, {α,−α, . . . , α, −α} (of length 2k) and
{β,−β, . . . , β,−β} (of length 2l). For asymptotic analysis of expression (8), we can
use the reasonings analogous to those for the case of functionals of squared peri-
odogram in [12], but now, dealing with the tapered case, we need to keep track of
normalizing factors for appearing kernels. Again, similarly to the previous consid-
eration of the expectation, we analyze all possible partitions and kernels that can be
composed for every particular partition. Let us first consider the terms in (9) that
correspond to partitions by pairs, that is,

k+l∏
i=1

cum
(
dT (μi), dT (λi)

)
, (10)

where μi, λi ∈ {α,−α, β,−β}, and ν = {(μi, λi), i = 1, . . . , k + l} forms an inde-
composable partition of the table T2.
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In the case where we have the k − 1 cumulants cum(dT (α), dT (−α)) and l − 1
cumulants cum(dT (β), dT (−β)) in the product (10), according to formula (4), we can
compose k+l−1 kernels (k+l−2 kernels of order 2 and one of order 4), and the factor
before the integral in (8) becomes of the form 2πH4,T (0)

(H2,T (0))2 , which is asymptotically of

order 1
T

. Only the terms of this kind in (9) give the main contribution (of order 1
T

) into
the covariance (8); all other terms in (10) produce a smaller-order contribution to the
covariance (8). More precisely, in order to describe the asymptotics of the covariance,
we have to consider, among the terms in (9), the following ones:(

cum
(
dT (α), dT (−α)

))k−1(
cum

(
dT (β), dT (−β)

))l−1

× [
cum

(
dT (α), dT (β)

)
cum

(
dT (−α), dT (−β)

)
+ cum

(
dT (α), dT (−β)

)
cum

(
dT (−α), dT (β)

)]
. (11)

Their contribution to the covariance is of the form

1

(2πH2,T (0))k+l

∫ ∫
ϕ1(α)ϕ2(β)

×
[∫

f (γ1)H1,T (γ1 − α)H1,T (−γ1 + α) dγ1

]k−1

×
[∫

f (γ2)H1,T (γ2 − β)H1,T (−γ2 + β) dγ2

]l−1

×
[∫

f (γ3)H1,T (γ3 − α)H1,T (−γ3 − β) dγ3

×
∫

f (γ4)H1,T (γ4 + α)H1,T (−γ4 + β) dγ4

+
∫

f (γ3)H1,T (γ3 − α)H1,T (−γ3 + β) dγ3

×
∫

f (γ4)H1,T (γ4 + α)H1,T (−γ4 − β) dγ4

]
dα dβ

= 2πH4,T (0)

(H2,T (0))2

∫ ∫
ϕ1(α)ϕ2(β)

[∫
f (γ1)Φ

h
2,T (γ1 − α) dγ1

]k−1

×
[∫

f (γ2)Φ
h
2,T (γ2 − β) dγ2

]l−1

×
∫ ∫

f (γ3)f (γ4)
[
Φh

4,T (γ3 − α,−γ3 − β, γ4 + α)

+ Φh
4,T (γ3 − α,−γ3 + β, γ4 + α)

]
dγ3 dγ4 dα dβ.

Taking into account formula (5), we can evaluate the latter as

∼ 2π

T

∫
h4(t) dt

(
∫

h2(t) dt)2

∫
Λ

ϕ1(λ)
[
ϕ2(λ) + ϕ2(−λ)

]
f k+l(λ) dλ as T → ∞.

We note also that there are klk!l! terms of the form (11) in (9).
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Let us now consider the terms in (9) that correspond to other partitions. We can
see that one more possibility is left to compose k + l − 1 kernels, namely, the case of
the terms of the form[

cum
(
dT (α), dT (−α)

)]k−1[
cum

(
dT (β), dT (−β)

)]l−1

× cum
(
dT (α), dT (−α), dT (β), dT (−β)

)
in the sum (9) (there are klk!l! such terms), and the corresponding contribution to the
covariance (8) is of the form

1

(2πH2,T (0))k+l

∫ ∫
ϕ1(α)ϕ2(β)

×
[∫

f (γ1)H1,T (γ1 − α)H1,T (−γ1 + α) dγ1

]k−1

×
[∫

f (γ2)H1,T (γ2 − β)H1,T (−γ2 + β) dγ2

]l−1

×
∫ ∫ ∫

f4(μ1, μ2, μ3)H1,T (μ1 − α)H1,T (μ2 + α)

× H1,T (μ3 − β)HT
1

(
−

3∑
i=1

μi + β

)
dμ1 dμ2 dμ3 dα dβ

= 2πH4,T (0)

(H2,T (0))2

∫ ∫
ϕ1(α)ϕ2(β)

×
∫

f (γ1)Φ
h
2,T (γ1 − α) dγ1

∫
f (γ2)Φ

h
2,T (γ2 − β) dγ2

×
∫ ∫ ∫

f4(μ1, μ2, μ3)Φ
h
4,T (μ1 − α,μ2 + α,μ3 − β) dμ1 dμ2 dμ3 dα dβ

∼ 2π

T

∫
h4(t) dt

(
∫

h2(t) dt)2

∫ ∫
ϕ1(α)ϕ2(β)f (α)f (β)f4(α,−α, β) dα dβ as T → ∞.

In all other cases, we can compose less than k + l −1 kernels; the corresponding inte-
grals will converge to finite limits supplied by the factor of orders not exceeding 1

T 2 .
Summarizing the above reasonings, we come to the asymptotics for the covari-

ance as given in statement (2) of the theorem.
We now evaluate the asymptotic behavior of the cumulant of order k ≥ 3:

cum
(
Jm1,T (ϕ1), . . . , Jmk,T (ϕk)

)
= 1

(2πH2,T (0))M

∫
Λk

ϕ1(α1) · · · ϕk(αk)

× cum
((

dT (α1)dT (−α1)
)m1, . . . ,

(
dT (αk)dT (−αk)

)mk
)
dα1 . . . dαk,

where M = ∑k
i=1 mi .

The cumulant under the integral sign can be represented as the sum

∑
ν=(ν1,...,νp)

p∏
i=1

cum
(
dT (μj ), μj ∈ νi

)
, (12)
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where the summation now is taken over all indecomposable partitions ν = (ν1, . . . ,

νp), |νi | > 1, of the table Tk with k rows {αi,−αi, . . . , αi,−αi}, i = 1, . . . , k,
the length of the ith row being 2mi . Starting again with consideration of partitions by
pairs, we can see that with these partitions we can compose at most

∑k
i=1(mi −

1) + 1 = M − k + 1 kernels (M − k kernels Φh
2,T and one kernel Φh

4,T ), and
the corresponding integrals will converge to finite limits supplied with the factor

(2π)3H4,T (0)

(2πH2,T (0))M−(M−k) = (2π)3H4,T (0)

(2πH2,T (0))k
, which is asymptotically of order 1

T k−1 . With all

other partitions, we will be able to compose no more that M − k + 1 kernels; there-
fore, their contribution to cumulant (12) will be of order less than 1

T k−1 . This gives
statement (3) of the theorem.

Proof of Theorem 2. We use the same calculations as those in the proof of Theo-
rem 1, but to analyze the limit behavior of the integrals representing the cumulants,
we will appeal to the HYBL inequality (see [3, 4, 12]). The reasonings follow the
same lines as in [12], so here we just point out the key steps.

For the Gaussian case, we will have only partitions by pairs in (3):

EJk,T (ϕ) = E

∫
Λ

ϕ(λ)I k
T (λ) dλ

=
∫

Λ

ϕ(λ)
1

(2πH2,T (0))k

∑
ν=(ν1,...,νk),|νk |=2,
partition of (1,...,2k)

∫
Λk

k∏
i=1

f (γj , j ∈ ν̃i )

×
2k∏

j=1

H1,T (γj − λj )

k∏
l=1

δ

(∑
j∈νl

γj

) k∏
i=1

δ(λ2i−1 − λ)

k∏
i=1

δ(λ2i + λ) dγ ′ dλ.

(13)

We consider separately the term (6):

k!
∫

Λ

ϕ(λ)

{∫
Λ

f (γ )Φh
2,T (γ − λ)dγ

}k

dλ

= k!
∫

Λk

[∫
Λ

ϕ(λ)

k∏
j=1

f (γj − λ) dλ

] k∏
j=1

Φh
2,T (γj )

k∏
j=1

dγj .

Note that the convergence to the finite limit k! ∫
Λ

ϕ(λ)f k(λ) dλ will be assured if we
assume the conditions for statement (1) of the theorem.

Now consider the remaining terms: we have the integrals over Λk+1 with inte-
grands composed by products of the functions ϕ with k functions f and 2k functions
H1,T with some linear relations between the arguments of these functions; these in-
tegrals are supplied with the factor 1

(2πH2,T (0))k
.

Applying the HYBL inequality, we can bound each such integral by the expres-
sion

1

(2πH2,T (0))k
const‖ϕ‖q‖f ‖k

p‖H1,T ‖2k
r , (14)
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provided that ϕ(λ) ∈ Lq(Λ), f (λ) ∈ Lp(Λ), and H1,T (λ) ∈ Lr(Λ) with

1

q
+ k

1

p
+ 2k

1

r
= k + 1.

If we choose r = 2 and take into account that, under Assumption H, we have
‖H1,T ‖r ≤ CT 1−1/r and H1,T (0) ∼ T , then from (14) we arrive at the bound
const‖ϕ‖q‖f ‖k

p as T → ∞, with the restrictions on p and q as in statement (1)
of the theorem. From this point we can repeat the same arguments as in [12] to show
that, in fact, this bound can be strengthen to o(1) as T → ∞.

The similar reasonings are applied to derive statements (2)–(4) of Theorem 2.

References

[1] Anh, V.V., Leonenko, N.N., Sakhno, L.M.: Statistical inference based on the infor-
mation of the second and third order. J. Stat. Plan. Inference 137, 1302–1331 (2007)
MR2301481. doi:10.1016/j.jspi.2006.03.001

[2] Anh, V.V., Leonenko, N.N., Sakhno, L.M.: Evaluation of bias in higher-order spectral
estimation. Teor. Imovir. Mat. Stat. 80, 1–14 (2009); English edition: Theory Probab.
Math. Stat. 80, 1–14 (2010) MR2541947

[3] Avram, F., Leonenko, N., Sakhno, L. On the generalized Szegö theorem, Hölder-
Young-Brascamp-Lieb Inequality and the asymptotic theory of integrals and quadratic
forms of stationary fields. ESAIM Probab. Stat. 14, 210–255 (2010) MR2741966.
doi:10.1051/ps:2008031

[4] Avram, F., Leonenko, N., Sakhno, L.: Limit theorems for additive functionals of station-
ary fields, under integrability assumptions on the higher order spectral densities. Stoch.
Process. Appl. (2015) doi:10.1016/j.spa.2014.11.010

[5] Bentkus, R.: Cumulants of estimates of the spectrum of a stationary sequence. Liet. Mat.
Rink. 16, 37–61 (1976) (in Russian); English translation: Lith. Math. J. 16, 501–518
(1976) MR0431571

[6] Chiu, S.: Weighted least squares estimators on the frequency domain for the parame-
ters of a time series. Ann. Stat. 16, 1315–1326 (1988) MR0959204. doi:10.1214/aos/
1176350963

[7] Dahlhaus, R.: Spectral analysis with tapered data. J. Time Ser. Anal. 4, 163–175 (1983)
MR0732895. doi:10.1111/j.1467-9892.1983.tb00366.x

[8] Deo, R.S., Chen, W.W.: On the integral of the squared periodogram. Stoch. Process. Appl.
85, 159–176 (2000) MR1730613. doi:10.1016/S0304-4149(99)00071-X

[9] Leonenko, N.N., Sakhno, L.M.: On the Whittle estimators for some classes of contin-
uous parameter random processes and fields. Stat. Probab. Lett. 76, 781–795 (2006)
MR2266092. doi:10.1016/j.spl.2005.10.010

[10] Leonov, V.V., Shiryaev, A.N.: On a method of calculation of semi-invariants. Theory
Probab. Appl. 4, 319–329 (1959) MR0123345

[11] McElroy, T., Holland, S.: A local spectral approach for assessing time series model mis-
specification. J. Multivar. Anal. 100, 604–621 (2009) MR2478185. doi:10.1016/j.jmva.
2008.06.010

http://www.ams.org/mathscinet-getitem?mr=2301481
http://dx.doi.org/10.1016/j.jspi.2006.03.001
http://www.ams.org/mathscinet-getitem?mr=2541947
http://www.ams.org/mathscinet-getitem?mr=2741966
http://dx.doi.org/10.1051/ps:2008031
http://dx.doi.org/10.1016/j.spa.2014.11.010
http://www.ams.org/mathscinet-getitem?mr=0431571
http://www.ams.org/mathscinet-getitem?mr=0959204
http://dx.doi.org/10.1214/aos/1176350963\
http://dx.doi.org/10.1214/aos/1176350963\
http://www.ams.org/mathscinet-getitem?mr=0732895
http://dx.doi.org/10.1111/j.1467-9892.1983.tb00366.x
http://www.ams.org/mathscinet-getitem?mr=1730613
http://dx.doi.org/10.1016/S0304-4149(99)00071-X
http://www.ams.org/mathscinet-getitem?mr=2266092
http://dx.doi.org/10.1016/j.spl.2005.10.010
http://www.ams.org/mathscinet-getitem?mr=0123345
http://www.ams.org/mathscinet-getitem?mr=2478185
http://dx.doi.org/10.1016/j.jmva.2008.06.010\
http://dx.doi.org/10.1016/j.jmva.2008.06.010\


194 L. Sakhno

[12] Sakhno, L.: Minimum contrast estimation of stationary processes based on the
squared periodogram. Lith. Math. J. 52, 400–419 (2012) MR3001040. doi:10.1007/
s10986-012-9183-3

[13] Taniguchi, M.: On estimation of the integrals of certain functions of spectral density.
J. Appl. Probab. 17, 73–83 (1980) MR0557436

http://www.ams.org/mathscinet-getitem?mr=3001040
http://dx.doi.org/10.1007/s10986-012-9183-3\
http://dx.doi.org/10.1007/s10986-012-9183-3\
http://www.ams.org/mathscinet-getitem?mr=0557436

	Introduction
	Results and discussion
	Proofs

