Given a compound mixed renewal process S under a probability measure P, we provide a characterization of all progressively equivalent martingale probability measures Q on the domain of P, that convert S into a compound mixed Poisson process. This result extends earlier works of Delbaen and Haezendonck, Lyberopoulos and Macheras, and the authors, and enables us to find a wide class of price processes satisfying the condition of no free lunch with vanishing risk. Implications to the ruin problem and to the computation of premium calculation principles in an arbitrage-free insurance market are also discussed.
Generalizing earlier work of Delbaen and Haezendonck for given compound renewal process S under a probability measure P we characterize all probability measures Q on the domain of P such that Q and P are progressively equivalent and S remains a compound renewal process under Q. As a consequence, we prove that any compound renewal process can be converted into a compound Poisson process through a change of measures and we show how this approach is related to premium calculation principles.