A change of measures technique for compound mixed renewal processes with applications in Risk Theory
Pub. online: 12 August 2025
Type: Research Article
Open Access
Received
4 April 2025
4 April 2025
Accepted
30 June 2025
30 June 2025
Published
12 August 2025
12 August 2025
Abstract
Given a compound mixed renewal process S under a probability measure P, we provide a characterization of all progressively equivalent martingale probability measures Q on the domain of P, that convert S into a compound mixed Poisson process. This result extends earlier works of Delbaen and Haezendonck, Lyberopoulos and Macheras, and the authors, and enables us to find a wide class of price processes satisfying the condition of no free lunch with vanishing risk. Implications to the ruin problem and to the computation of premium calculation principles in an arbitrage-free insurance market are also discussed.
References
Albrecher, H., Constantinescu, C., Loisel, S.: Explicit ruin formulas for models with dependence among risks. Insur. Math. Econ. 48, 265–270 (2011). MR2799308. https://doi.org/10.1016/j.insmatheco.2010.11.007
Asmussen, S., Albrecher, H.: Ruin Probabilities, 2nd edn. World Scientific, Singapore (2010). MR2766220. https://doi.org/10.1142/9789814282536
Bauer, H.: Probability Theory. De Gruyter Studies in Mathematics 23. Walter de Gruyter (1996). MR1385460. https://doi.org/10.1515/9783110814668
Cohn, D.L.: Measure Theory, 2nd edn. Birkhäuser/Springer, New York (2013). MR3098996. https://doi.org/10.1007/978-1-4614-6956-8
Constantinescu, C., Samorodnitsky, G., Zhu, W.: Ruin probabilities in classical risk models with gamma claims. Scand. Actuar. J. 2018, 555–575 (2018). MR3836389. https://doi.org/10.1080/03461238.2017.1402817
Dassios, A., Embrechts, P.: Martingales and insurance risk. Commun. Stat., Stoch. Models 5, 181–217 (1989). MR1000630. https://doi.org/10.1080/15326348908807105
Delbaen, F., Haezendonck, J.: A martingale approach to premium calculation principles in an arbitrage free market. Insur. Math. Econ. 4, 269–277 (1989). MR1029895. https://doi.org/10.1016/0167-6687(89)90002-4
Delbaen, F., Schachermayer, W.: The Mathematics of Arbitrage. Springer, Berlin Heidelberg (2006). MR2200584
Embrechts, P., Schmidli, H., Grandell, J.: Finite-time Lundberg inequalities in the Cox case. Scand. Actuar. J. 1993, 17–41 (1993). MR1241568. https://doi.org/10.1080/03461238.1993.10413911
Grandell, J.: Mixed Poisson Processes. Chapman & Hall/CRC (1997). MR1463943. https://doi.org/10.1007/978-1-4899-3117-7
Gut, A.: Stopped Random Walks: Limit Theorems and Applications, 2nd edn. Springer, New York (2009). MR2489436. https://doi.org/10.1007/978-0-387-87835-5
Harrison, J.M., Kreps, D.M.: Martingales and arbitrage in multiperiod securities markets. J. Econ. Theory 20, 381–408 (1979). MR0540823. https://doi.org/10.1016/0022-0531(79)90043-7
Jacod, J.: Calcul Stochastique et Problèmes de Martingales. Springer, Berlin Heidelberg (1979). MR0542115
Landriault, D., Willmot, G.: On the Gerber–Shiu discounted penalty function in the Sparre Andersen model with an arbitrary interclaim time distribution. Insur. Math. Econ. 42, 600–608 (2008). MR2404316. https://doi.org/10.1016/j.insmatheco.2007.06.004
Lyberopoulos, D.P., Macheras, N.D.: Some characterizations of mixed Poisson processes. Sankhya, Ser. A 74, 57–79 (2012). MR3010292. https://doi.org/10.1007/s13171-012-0011-y
Lyberopoulos, D.P., Macheras, N.D.: A characterization of martingale-equivalent compound mixed Poisson processes. arXiv:1905.07629, 1–28 (2019). MR4254495. https://doi.org/10.1214/20-aap1604
Lyberopoulos, D.P., Macheras, N.D.: A characterization of martingale-equivalent mixed compound Poisson processes. Ann. Appl. Probab. 31, 778–805 (2021). MR4254495. https://doi.org/10.1214/20-aap1604
Lyberopoulos, D.P., Macheras, N.D.: Some characterizations of mixed renewal processes. Math. Slovaca 72, 197–216 (2022). MR4382740. https://doi.org/10.1515/ms-2022-0014
Macheras, N.D., Tzaninis, S.M.: A characterization of equivalent martingale measures in a renewal risk model with applications to premium calculation principles. Mod. Stoch. Theory Appl. 7, 43–60 (2020). MR4085675. https://doi.org/10.15559/20-vmsta148
Ng, A.C.Y., Yang, H.: Lundberg-type bounds for the joint distribution of surplus immediately before and at ruin under the Sparre Andersen model. N. Am. Actuar. J. 9, 85–100 (2005). MR2160109. https://doi.org/10.1080/10920277.2005.10596203
Rolski, T., Schmidli, H., Schmidt, V., Teugels, J.L.: Stochastic Processes for Insurance and Finance. Wiley, Chichester (1999). MR1680267. https://doi.org/10.1002/9780470317044
Schmidli, H.: Cramér-Lundberg approximations for ruin probabilities of risk processes perturbed by diffusion. Insur. Math. Econ. 16, 135–149 (1995). MR1347857. https://doi.org/10.1016/0167-6687(95)00003-B
Schmidli, H.: On the Gerber–Shiu function and change of measure. Insur. Math. Econ. 46, 3–11 (2010). MR2586151. https://doi.org/10.1016/j.insmatheco.2009.04.004
Schmidt, K.D.: On inequalities for moments and the covariance of monotone functions. Insur. Math. Econ. 55, 91–95 (2014). MR3179802. https://doi.org/10.1016/j.insmatheco.2013.12.006
Schmidt, K.D.: Lectures on Risk Theory. B. G. Teubner, Stuttgart (1996). MR1402016. https://doi.org/10.1007/978-3-322-90570-3
Sondermann, D.: Reinsurance in arbitrage-free markets. Insur. Math. Econ. 10, 191–202 (1991). MR1160672. https://doi.org/10.1016/0167-6687(91)90049-4
Tzaninis, S.M.: Applications of a change of measures technique for compound mixed renewal processes to the ruin problem. Mod. Stoch. Theory Appl. 9, 45–64 (2022). MR4388709. https://doi.org/10.15559/21-vmsta192
Tzaninis, S.M., Macheras, N.D.: A characterization of progressively equivalent probability measures preserving the structure of a compound mixed renewal process. ALEA Lat. Am. J. Probab. Math. Stat. 20, 225–247 (2023). MR4554230. https://doi.org/10.30757/alea.v20-09
Wang, S.: Insurance pricing and increased limits ratemaking by proportional hazards transforms. Insur. Math. Econ. 17, 43–54 (1995). MR1363642. https://doi.org/10.1016/0167-6687(95)91054-P