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Abstract Given a compound mixed renewal process 𝑆 under a probability measure 𝑃, we 
provide a characterization of all progressively equivalent martingale probability measures 𝑄 on 
the domain of 𝑃, that convert 𝑆 into a compound mixed Poisson process. This result extends 
earlier works of Delbaen and Haezendonck, Lyberopoulos and Macheras, and the authors, and 
enables us to find a wide class of price processes satisfying the condition of no free lunch with 
vanishing risk. Implications to the ruin problem and to the computation of premium calculation 
principles in an arbitrage-free insurance market are also discussed.

Keywords Compound mixed renewal processes, change of measures, martingales, premium 
calculation principles, ruin probability
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1 Introduction

Given a price process 𝑈T := {𝑈𝑡}𝑡∈T, where T := [0, 𝑇], 𝑇 > 0, on a probability space 
(𝛺, 𝛴, 𝑃), a basic method in Mathematical Finance is to replace the initial probability 
measure 𝑃 by an equivalent one 𝑄, which converts 𝑈T into a martingale with respect 
to 𝑄. The new probability measure, often called risk-neutral or equivalent martingale 
measure (written EMM for short), see Section 3 for the definition, is then used for 
pricing and hedging contingent claims (e.g., options, futures, etc.). Note that such a 
method for pricing contingent claims is originated from the field of Actuarial Science 
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(see Delbaen and Schachermayer [9], pages 149–150 for more details). However, in 
contrast to the situation of the classical Black–Scholes option pricing formula, where 
the EMM is unique, in Actuarial Mathematics which is certainly not the case, as the 
insurance market is not, in general, complete (see, e.g., Sondermann [31], Section 4). 
Thus, if 𝑈T represents the liabilities of an insurance company, then there exist infinitely 
many equivalent martingale measures for 𝑈T, so that pricing is directly linked with an 
attitude towards risk, see [8], pages 269–270, for more details. The latter led Delbaen 
and Haezendonck [8] to a positive answer to the problem of characterizing all those 
EMMs 𝑄 which preserve the structure of a given compound Poisson process under 𝑃, 
see [8], Proposition 2.2. The work of Delbaen and Haezendonck played a key role in 
understanding the interplay between financial and actuarial pricing of insurance (see 
Embrechts [10] for an overview), and has influenced the studies of many researchers 
(see [22], page 44, and the references therein for more details). Nevertheless, such 
a characterization of EMMs for 𝑈T does not always provide a viable pricing system 
in actuarial practice, since it is not appropriate for describing inhomogeneous risk 
portfolios. For this reason, the work of Delbaen and Haezendonck [8] was generalized 
by Embrechts and Meister [11] and Lyberopoulos and Macheras [19, 20] to mixed 
Poisson risk models. However, since the (mixed) Poisson risk model presents some 
serious deficiencies as far as practical models are considered (see [22], page 44, and 
[33], page 226, and the references therein), it seems reasonable to investigate the 
existence of EMMs for the price process 𝑈T in the more general mixed renewal risk 
model.

In [33], Corollary 4.8, a characterization of all progressively equivalent probability 
measures that convert a compound mixed renewal process (CMRP for short) into a 
compound mixed Poisson process (CMPP for short) was proven. In Section 3, relying 
on the above result, we provide a characterization of all progressively EMMs 𝑄 for 
a canonical price process that convert a CMRP under 𝑃 into a CMPP under 𝑄, see 
Theorem 1. This theorem generalizes corresponding results of [19], Proposition 5.1(ii), 
and [22], Proposition 4.2. A first consequence of Theorem 1 is Theorem 2, where we 
find out a wide class of canonical price processes, inducing a corresponding class of 
EMMs, satisfying the condition of no free lunch with vanishing risk (written (NFLVR) 
for short), connecting in this way our results with this basic notion of Mathematical 
Finance.

Another implication of Theorem 1 concerning the ruin problem is discussed in 
Section 4, where for a given reserve process 𝑅𝑢(𝛩) induced by the initial reserve 
𝑢, the stochastic premium intensity 𝑐(𝛩) and the aggregate claims process 𝑆 (see 
Definition 2), we characterize all those progressively equivalent to 𝑃 ℓ-martingale 
measures 𝑄 that convert a CMRP under 𝑃 into a CMPP under 𝑄 in such a way that ruin 
for 𝑅𝑢 (𝛩) occurs 𝑄-a.s., see Theorem 3. In Section 5, we discuss some implications 
of our results to the pricing of actuarial risks (premium calculation principles) in 
an arbitrage-free insurance market. In Section 6 we present some concrete examples 
demonstrating how to construct mixed premium calculation principles (see Section 5
for the definition) in an insurance market possessing the property of (NFLVR) and 
how to obtain explicit formulas for their corresponding ruin probabilities. Finally, in 
the Appendix a list of symbols is presented.
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2 Preliminaries

N, Q and R stand for the natural, the rational and the real numbers, respectively, while 
N0 := N ∪ {0} and R+ := {𝑥 ∈ R : 𝑥 ≥ 0}. If 𝑑 ∈ N then R𝑑 denotes the Euclidean 
space of dimension 𝑑. For a map 𝑓 : 𝐴→ 𝐸 and for a nonempty set 𝐵 ⊆ 𝐴 write 𝑓 ↾𝐵
for the restriction of 𝑓 to 𝐵 and 1𝐵 for the indicator function of the set 𝐵. 

Throughout this paper, unless stated otherwise, (𝛺, 𝛴, 𝑃) is a fixed but arbitrary 
probability space and 𝛩 : 𝛺 → 𝐷 ⊆ R𝑑 (𝑑 ∈ N) is a 𝑑-dimensional random vector. 
By ℒℓ (𝑃) we denote the family of all 𝛴-measurable real-valued functions 𝑓 on 𝛺
such that 

∫
| 𝑓 |ℓ 𝑑𝑃 < ∞ (ℓ ∈ {1, 2}). For any Hausdorff topology 𝔗 over 𝛺, by 

𝔅(𝛺) is denoted the Borel 𝜎-algebra on 𝛺, i.e., the 𝜎-algebra generated by 𝔗, while 
𝔅 := 𝔅(R) and 𝔅𝑑 := 𝔅(R𝑑), where 𝑑 ∈ N, stand for the Borel 𝜎-algebras of 
subsets of R and R𝑑 , respectively, generated by the Euclidean topology 𝔈 over R
and by the product topology 𝔈𝑑 over R𝑑 , respectively. For any 𝐽 ⊆ R𝑑 denote by 
𝔅(𝐽) the 𝜎-algebra on 𝐽 generated by the topology 𝔈𝑑 ∩ 𝐽 := {𝐽 ∩ 𝐺 : 𝐺 ∈ 𝔈𝑑}. 
In particular, write 𝔅(0,∞) := 𝔅((0,∞)), for simplicity. Our measure-theoretic 
terminology is standard and generally follows [4]. For the definitions of real-valued 
random variables and random variables we refer to [4], page 308. We apply the 
notation 𝑃𝑋 := 𝑃𝑋 (𝜃) := K(𝜃) to mean that 𝑋 is distributed according to the law 
K(𝜃), where 𝜃 ∈ 𝐷 ⊆ R𝑑 is the parameter of the distribution. Notation Ga(𝑏, 𝑎), 
where 𝑎, 𝑏 ∈ (0,∞), stands for the law of gamma distribution (cf., e.g., [30], page 
180). In particular, Ga(𝑏, 1) = Exp(𝑏) stands for the law of exponential distribution. 
For the unexplained terminology of Probability and Risk Theory we refer to [30].

Given a random variable 𝑋 , a conditional distribution of 𝑋 over 𝛩 is a 𝜎(𝛩)-𝔅-
Markov kernel (see [3], Definition 36.1 for the definition) denoted by 𝑃𝑋 |𝛩 := 𝑃𝑋 |𝜎 (𝛩 )
and satisfying for each 𝐵 ∈ 𝔅 the equality 𝑃𝑋 |𝛩 (•, 𝐵) = 𝑃(𝑋−1(𝐵) | 𝜎(𝛩))(•)
𝑃↾𝜎(𝛩)-almost surely (written a.s. for short). Clearly, for every 𝔅(R𝑑)-𝔅-Markov 
kernel 𝑘 , the map 𝐾 (𝛩) from 𝛺 ×𝔅 into [0, 1] defined by

𝐾 (𝛩)(𝜔, 𝐵) :=
(︁
𝑘 (•, 𝐵) ◦𝛩)︁(𝜔) for any (𝜔, 𝐵) ∈ 𝛺 ×𝔅

is a 𝜎(𝛩)-𝔅-Markov kernel. Then for 𝜃 = 𝛩(𝜔) with 𝜔 ∈ 𝛺 the probability measures 
𝑘 (𝜃, •) are distributions on 𝔅 and so we may write K(𝜃)(•) instead of 𝑘 (𝜃, •). 
Consequently, in this case 𝐾 (𝛩) will be denoted by K(𝛩).

For any real-valued random variables 𝑋 , 𝑌 on 𝛺 we say that 𝑃𝑋 |𝛩 and 𝑃𝑌 |𝛩 are 
𝑃↾𝜎(𝛩)-equivalent and we write 𝑃𝑋 |𝛩 = 𝑃𝑌 |𝛩 𝑃↾𝜎(𝛩)-a.s., if there exists a 𝑃-null set 
𝑀 ∈ 𝜎(𝛩) such that for any 𝜔 ∉ 𝑀 and 𝐵 ∈ 𝔅 the equality 𝑃𝑋 |𝛩 (𝜔, 𝐵) = 𝑃𝑌 |𝛩 (𝜔, 𝐵)
holds true.

A sequence {𝑉𝑛}𝑛∈N of real-valued random variables on 𝛺 is said to be:

• 𝑃-conditionally (stochastically) independent over 𝜎(𝛩) if, for each 𝑛 ∈ N

with 𝑛 ≥ 2, we have

𝑃

(︄
𝑛⋂︂
𝑗=1 

{𝑉𝑖 𝑗 ≤ 𝑣𝑖 𝑗} | 𝜎(𝛩)
)︄

=
𝑛∏︂
𝑗=1 
𝑃
(︁{𝑉𝑖 𝑗 ≤ 𝑣𝑖 𝑗} | 𝜎(𝛩))︁ 𝑃↾𝜎(𝛩)-a.s.,

whenever 𝑖1, . . . , 𝑖𝑛 are distinct members of 𝐼 ⊆ N and (𝑣𝑖1 , . . . , 𝑣𝑖𝑛 ) ∈ R𝑛;
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• 𝑃-conditionally identically distributed over 𝜎(𝛩) if

𝑃
(︁
𝐹 ∩𝑉−1

𝑘 [𝐵])︁ = 𝑃(︁𝐹 ∩𝑉−1
𝑚 [𝐵])︁

whenever 𝑘, 𝑚 ∈ N, 𝐹 ∈ 𝜎(𝛩) and 𝐵 ∈ 𝔅.

We say that the process {𝑉𝑛}𝑛∈N is 𝑃-conditionally (stochastically) independent 
or identically distributed given 𝛩, if it is conditionally independent or identically 
distributed over the 𝜎-algebra 𝜎(𝛩).

Throughout what follows we write “conditionally” in the place of “conditionally 
given 𝛩” whenever conditioning refers to 𝛩.

For the definitions of a counting (or claim number) process 𝑁 := {𝑁𝑡}𝑡∈R+ , an 
arrival process 𝑇 := {𝑇𝑛}𝑛∈N0 induced by 𝑁 , an interarrival process 𝑊 := {𝑊}𝑛∈N
induced by 𝑇 , a claim size process 𝑋 := {𝑋𝑛}𝑛∈N and an aggregate claims process 
𝑆 := {𝑆𝑡}𝑡∈R+ induced by 𝑁 and 𝑋 , we refer to [30]. We assume that 𝑃({𝑋𝑛 > 0}) = 1
for all 𝑛 ∈ N. Recall that a pair (𝑁, 𝑋) is called a risk process, if 𝑁 is a counting 
process, 𝑋 is 𝑃-i.i.d. and the processes 𝑁 and 𝑋 are 𝑃-mutually independent (see [30], 
page 127).

Recall that a counting process 𝑁 is said to be a 𝑃-mixed renewal process with 
mixing parameter 𝛩 and interarrival time conditional distribution K(𝛩) (written 
𝑃-MRP(K(𝛩)) for short), if the interarrival process 𝑊 is 𝑃-conditionally independent 
and for all 𝑛 ∈ N the condition 𝑃𝑊𝑛 |𝛩 = K(𝛩) 𝑃↾𝜎(𝛩)-a.s. is valid (see [21], 
Definition 3.1). In particular, if the distribution of 𝛩 is degenerate at some point 
𝜃0 ∈ 𝐷, then the counting process 𝑁 becomes a 𝑃-renewal process with interarrival 
time distribution K(𝜃0) (written 𝑃-RP(K(𝜃0)) for short). If 𝑁 is a 𝑃-MRP(K(𝛩))
then according to [33], Corollary 3.5(ii), it has zero probability of explosion, i.e., 
𝑃({sup𝑛∈N0 𝑇𝑛 < ∞}) = 0.

Accordingly, an aggregate claims process 𝑆 induced by a 𝑃-risk process (𝑁, 𝑋)
such that 𝑁 is a 𝑃-MRP(K(𝛩)) is called a compound mixed renewal process with 
parameters K(𝛩) and 𝑃𝑋1 (𝑃-CMRP(K(𝛩), 𝑃𝑋1 ) for short). If 𝛩 is a real-valued 
random variable and K(𝛩) = Exp(𝛩), we say that 𝑆 is a compound mixed Poisson 
process with parameters 𝛩 and 𝑃𝑋1 and write 𝑃-CMPP(𝛩, 𝑃𝑋1 ). In particular, if 
the distribution of 𝛩 is degenerate at 𝜃0 ∈ 𝐷, then 𝑆 is called a compound renewal 
process with parameters K(𝜃0) and 𝑃𝑋1 (𝑃-CRP(K(𝜃0), 𝑃𝑋1 ) for short). In the 
special case 𝜃0 > 0 and K(𝜃0) = Exp(𝜃0) we say that 𝑆 is a compound Poisson 
process with parameters 𝜃0 and 𝑃𝑋1 and write 𝑃-CPP(𝜃0, 𝑃𝑋1). 

Throughout what follows we denote again by K(𝛩) and K(𝜃) the conditional dis-
tribution function and the distribution function induced by the conditional probability 
distribution K(𝛩) and the probability distribution K(𝜃), respectively.

Since conditioning is involved in the definition of (compound) mixed renewal 
processes, it is expected that regular conditional probabilities will play a fundamental 
role in their analysis. To this purpose, recall that if (𝑍, 𝐻, 𝑅) is a probability space, 
then a family {𝑃𝑧}𝑧∈𝑍 of probability measures on 𝛴 is called a regular conditional 
probability (rcp for short) of 𝑃 over 𝑅 if for any fixed 𝐸 ∈ 𝛴 the map 𝑍 ∋ 𝑧 ↦→ 𝑃𝑧 (𝐸)
is 𝐻-measurable, and 

∫
𝑃𝑧 (𝐸) 𝑅(𝑑𝑧) = 𝑃(𝐸) for every 𝐸 ∈ 𝛴 . If 𝑓 : 𝛺 → 𝑍 is an 

inverse-measure-preserving function (i.e., 𝑃( 𝑓 −1 (𝐵)) = 𝑅(𝐵) for each 𝐵 ∈ 𝐻), an 
rcp {𝑃𝑧}𝑧∈𝑍 of 𝑃 over 𝑅 is called consistent with 𝑓 if, for each 𝐵 ∈ 𝐻, the equality 
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𝑃𝑧 ( 𝑓 −1(𝐵)) = 1 holds for 𝑅-almost every 𝑧 ∈ 𝐵 (cf., e.g., [33], Definition 3.3). We 
say that an rcp {𝑃𝑧}𝑧∈𝑍 of 𝑃 over 𝑅 consistent with 𝑓 is essentially unique, if for 
any other rcp {˜︁𝑃𝑧}𝑧∈𝑍 of 𝑃 over 𝑅 consistent with 𝑓 there exists a 𝑅-null set 𝑀 ∈ 𝐻
such that for any 𝑧 ∉ 𝑀 the equality 𝑃𝑧 = ˜︁𝑃𝑧 holds true.

From now on (𝑍, 𝐻, 𝑅) := (𝐷,𝔅(𝐷), 𝑃𝛩) and the family {𝑃𝜃}𝜃∈𝐷 is an rcp of 
𝑃 over 𝑃𝛩 consistent with 𝛩.

Let T ⊆ R+. For a process 𝑌T := {𝑌𝑡}𝑡∈T denote by ℱ𝑌
T

:= {ℱ𝑌
𝑡 }𝑡∈T the canonical 

filtration of 𝑌T. For T = R+ or T = N we simply write ℱ𝑌 instead of ℱ𝑌
R+

or ℱ𝑌
N

, 
respectively. Also, we write ℱ := {ℱ𝑡}𝑡∈R+ , where ℱ𝑡 := 𝜎(ℱ𝑆

𝑡 ∪ 𝜎(𝛩)), for the 
canonical filtration of 𝑆 and 𝛩, ℱ𝑆

∞ := 𝜎(⋃︁𝑡∈R+ ℱ𝑆
𝑡 ) and ℱ∞ := 𝜎(ℱ𝑆

∞ ∪ 𝜎(𝛩)).
Let 𝑄 be a probability measures on (𝛺, 𝛴). We say that 𝑃 and 𝑄 are progressively 

equivalent, if 𝑃 and 𝑄 are equivalent (in the sense of absolute continuity) on ℱ𝑡 (in 
symbols 𝑄↾ℱ𝑡 ∼ 𝑃↾ℱ𝑡 ) for any 𝑡 ∈ R+, see [33], Definition 3.1. If 𝑃 and 𝑄 are 
equivalent on 𝛴 we write 𝑃 ∼ 𝑄.

The following conditions will be useful for our investigations:

(a1) The processes 𝑊 and 𝑋 are 𝑃-conditionally mutually independent.

(a2) The random vector 𝛩 and the process 𝑋 are 𝑃-(unconditionally) independent.

Next, whenever condition (a1) or (a2) holds true we shall write that the quadruplet 
(𝑃,𝑊, 𝑋,𝛩) or (if no confusion arises) the probability measure 𝑃 satisfies (a1) or 
(a2), respectively.
Notations 1. Denote by 𝔐𝑘 (𝐷), 𝑘 ∈ N, the class of all 𝔅(𝐷)-𝔅𝑘-measurable 
functions on 𝐷. In the special case 𝑘 = 1, write 𝔐(𝐷) := 𝔐1(𝐷) and 𝔐+(𝐷) for the 
class of all positive elements of 𝔐(𝐷). Fix an arbitrary ℓ ∈ {1, 2} and 𝜌 ∈ 𝔐𝑘 (𝐷).
(a) The class of all real-valued 𝔅((0,∞) ×𝐷)-measurable functions 𝛽 on (0,∞) ×𝐷, 
defined by 𝛽(𝑥, 𝜃) := 𝛾(𝑥) + 𝛼(𝜃) for any (𝑥, 𝜃) ∈ (0,∞) × 𝐷, where 𝛼 ∈ 𝔐(𝐷), and 
𝛾 is a real-valued 𝔅(0,∞)-measurable function satisfying conditions E𝑃 [𝑒𝛾 (𝑋1 ) ] = 1
and E𝑃 [𝑋ℓ

1 ·𝑒𝛾 (𝑋1 ) ] < ∞ (resp. E𝑃 [𝑒𝛾 (𝑋1 ) ] = 1), will be denoted by ℱℓ
𝑃,𝛩 := ℱℓ

𝑃,𝛩,𝑋1
(resp. ℱ𝑃,𝛩 := ℱ𝑃,𝛩,𝑋1 ).
(b) The class of all 𝜉 ∈ 𝔐(𝐷) such that 𝑃𝛩 ({𝜉 > 0}) = 1 and E𝑃 [𝜉 (𝛩)] = 1 is 
denoted by ℛ+(𝐷) := ℛ+(𝐷,𝔅(𝐷), 𝑃𝛩).
(c) The class of all probability measures 𝑄 on 𝛴 , which satisfy conditions (a1) and 
(a2), are progressively equivalent to 𝑃, and such that 𝑆 is a 𝑄-CMRP(𝚲(𝜌(𝛩)), 𝑄𝑋1), 
will be denoted by ℳ𝑆,𝚲(𝜌(𝛩 ) ) :=ℳ𝑆,𝚲(𝜌(𝛩 ) ) ,𝑃,𝑋1 . The class of all elements 𝑄 of 
ℳ𝑆,𝚲(𝜌(𝛩 ) ) with E𝑄 [𝑋ℓ

1 ] < ∞ will be denoted by ℳℓ
𝑆,𝚲(𝜌(𝛩 ) ) :=ℳℓ

𝑆,𝚲(𝜌(𝛩 ) ) ,𝑃,𝑋1
. 

In the special case 𝑑 = 𝑘 and 𝜌 := 𝑖𝑑𝐷 we write ℳ𝑆,𝚲(𝛩 ) := ℳ𝑆,𝚲(𝜌(𝛩 ) ) and 
ℳℓ

𝑆,𝚲(𝛩 ) := ℳℓ
𝑆,𝚲(𝜌(𝛩 ) ) for simplicity.

(d) Let 𝜃 ∈ 𝐷. Denote by ℳ𝑆,𝚲(𝜌(𝜃 ) ) the class of all probability measures 𝑄 𝜃 on 𝛴 , 
such that 𝑄 𝜃↾ℱ𝑡 ∼ 𝑃𝜃↾ℱ𝑡 for any 𝑡 ∈ R+ and 𝑆 is a 𝑄 𝜃 -CRP(𝚲(𝜌(𝜃)), (𝑄 𝜃 )𝑋1 ). The 
class of all 𝑄 𝜃 ∈ ℳ𝑆,𝚲(𝜌(𝜃 ) ) with E𝑄𝜃 [𝑋ℓ

1 ] < ∞ is denoted by ℳℓ
𝑆,𝚲(𝜌(𝜃 ) ) .

Remarks 1. (a) Clearly inclusions ℱ2
𝑃,𝛩 ⊆ ℱ1

𝑃,𝛩 ⊆ ℱ𝑃,𝛩 and ℳ2
𝑆,𝚲(𝜌(𝛩 ) ) ⊆

ℳ1
𝑆,𝚲(𝜌(𝛩 ) ) ⊆ ℳ𝑆,𝚲(𝜌(𝛩 ) ) hold true, but simple examples show that ℱ2

𝑃,𝛩 ≠

ℱ1
𝑃,𝛩 ≠ ℱ𝑃,𝛩 and ℳ2

𝑆,𝚲(𝜌(𝛩 ) ) ≠ ℳ1
𝑆,𝚲(𝜌(𝛩 ) ) ≠ ℳ𝑆,𝚲(𝜌(𝛩 ) ) in general.
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(b) For ℓ ∈ {1, 2} the following statements are equivalent:

(i) 𝑃 ∈ ℳℓ
𝑆,K(𝛩 ) with 𝑃({E𝑃 [𝑊1 | 𝛩] < ∞}) = 1;

(ii) there exists a 𝑃𝛩-null set 𝑊𝑃 ∈ 𝔅(𝐷) such that 𝑃𝜃 ∈ ℳℓ
𝑆,K(𝜃 ) with (𝑃𝜃 )𝑋1 =

𝑃𝑋1 and E𝑃𝜃 [𝑊1] < ∞ for any 𝜃 ∉ 𝑊𝑃 .

In fact, since 𝑋1 and 𝛩 are (unconditionally) independent by (a2), we have 𝑋1 ∈
ℒℓ (𝑃) if and only if 𝑋1 ∈ ℒℓ (𝑃𝜃 ) for all 𝜃 ∈ 𝐷, while by [33], Proposition 3.4, we 
have 𝑃 ∈ ℳ𝑆,K(𝛩 ) if and only if there exists a 𝑃𝛩-null set 𝐿𝑃 ∈ 𝔅(𝐷) such that 
𝑃𝜃 ∈ ℳ𝑆,K(𝜃 ) with (𝑃𝜃 )𝑋1 = 𝑃𝑋1 for all 𝜃 ∉ 𝐿𝑃 . Furthermore, by [18], Lemma 
3.5(i), we get that 𝑃({E𝑃 [𝑊1 | 𝛩] < ∞}) = 1 if and only if there exists a 𝑃𝛩-null set 
𝐷𝑃 ∈ 𝔅(𝐷) such that E𝑃𝜃 [𝑊1] < ∞ for all 𝜃 ∉ 𝐷𝑃 . Putting 𝑊𝑃 := 𝐿𝑃∪𝐷𝑃 ∈ 𝔅(𝐷)
we get the desired equivalence of (i) and (ii).

Recall that, for given T ⊆ R+ a martingale in ℒℓ (𝑃) adapted to the filtration 
𝒵T := {𝒵𝑡}𝑡∈T, or else a 𝒵T-martingale in ℒℓ (𝑃), is a family 𝑍T := {𝑍𝑡}𝑡∈T
of random variables in ℒℓ (𝑃) such that 𝑍𝑡 is 𝒵𝑡 -measurable for each 𝑡 ∈ T, and 
whenever 𝑢 ≤ 𝑡 in T and 𝐸 ∈ 𝒵𝑢 then 

∫
𝐸
𝑍𝑢𝑑𝑃 =

∫
𝐸
𝑍𝑡𝑑𝑃. For 𝒵R+ = ℱ we simply 

write that 𝑍 is a martingale in ℒℓ (𝑃). A 𝒵T-martingale {𝑍𝑡}𝑡∈T in ℒℓ (𝑃) is 𝑃-a.s. 
positive, if 𝑍𝑡 is 𝑃-a.s. positive for each 𝑡 ∈ T.

Given 𝛺 := (0,∞)N × (0,∞)N × 𝐷 and 𝛴 := 𝔅(𝛺) = 𝔅(0,∞)N ⊗ 𝔅(0,∞)N ⊗
𝔅(𝐷), let 𝜇 be a probability measure on 𝔅(𝐷), and let 𝑃𝑛(𝜃) := K(𝜃) and 𝑅𝑛 := 𝑅
be probability measures on 𝔅(0,∞) for any 𝑛 ∈ N and fixed 𝜃 ∈ 𝐷. Assume that 
for any fixed 𝐵 ∈ 𝔅(0,∞) the function 𝜃 ↦→ K(𝜃)(𝐵) is 𝔅(𝐷)-measurable. It then 
follows by [33], Proposition 4.1, that there exist:

• a family {𝑃𝜃}𝜃∈𝐷 of probability measures on 𝛴 and a probability measure 𝑃
on 𝛴 such that {𝑃𝜃}𝜃∈𝐷 is an rcp of 𝑃 over 𝜇 consistent with 𝛩 := 𝜋𝐷 , where 
𝜋𝐷 is the canonical projection from 𝛺 onto 𝐷, and 𝑃𝛩 = 𝜇;

• an interarrival process 𝑊 such that (𝑃𝜃 )𝑊𝑛 = K(𝜃) for all 𝑛 ∈ N;

• a claim size process 𝑋 such that 𝑃𝑋𝑛 = 𝑅 for all 𝑛 ∈ N, and

• a counting process 𝑁 and an aggregate process 𝑆 induced by the risk process 
(𝑁, 𝑋), such that 𝑃 is an element of ℳ𝑆,K(𝛩 ) .

Throughout what follows, unless stated otherwise, (𝛺, 𝛴, 𝑃), 𝑁 , 𝑊 , 𝑋 , 𝑆, 𝛩
and {𝑃𝜃}𝜃∈𝐷 are as above, 𝛴 = ℱ∞, ℓ ∈ {1, 2} and 𝑆 (𝛾)𝑡 :=

∑︁𝑁𝑡

𝑗=1 𝛾(𝑋 𝑗 ) for any 
𝑡 ∈ R+ and for any real-valued 𝔅(0,∞)-measurable function 𝛾 satisfying condition 
E𝑃 [𝑒𝛾 (𝑋1 ) ] = 1.

For the validity of the equality 𝛴 = ℱ∞ see [33], Remark 4.2.
The following result of [33], concerning a characterization of all progressively 

equivalent probability measures that convert a CMRP into a CMPP, serves as a useful 
basic tool for our results.

Proposition 1 (See [33], Corollary 4.8 and Remark 4.9(c)). For given 𝑃 ∈ ℳℓ
𝑆,K(𝛩 )

with 𝑃({E𝑃 [𝑊1 | 𝛩] < ∞}) = 1 the following hold true:
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(i) for every pair (𝜌,𝑄) ∈ 𝔐+(𝐷) × ℳℓ
𝑆,Exp(𝜌(𝛩 ) ) there exists an essentially 

unique pair (𝛽, 𝜉) ∈ ℱℓ
𝑃,𝛩 ×ℛ+(𝐷), where 𝑒𝛾 and 𝜉 are the Radon–Nikodým 

derivatives of 𝑄𝑋1 with respect to 𝑃𝑋1 and of 𝑄𝛩 with respect to 𝑃𝛩 , respectively, 
such that

𝛼(𝛩) = ln 𝜌(𝛩) + lnE𝑃 [𝑊1 | 𝛩] 𝑃↾𝜎(𝛩)-a.s., (∗)

and

𝑄(𝐴) =
∫
𝐴
𝑀

(𝛽)
𝑡 (𝛩) 𝑑𝑃 for all 0 ≤ 𝑠 ≤ 𝑡 and 𝐴 ∈ ℱ𝑠 , (𝑅𝑃𝑀𝜉 )

where

𝑀
(𝛽)
𝑡 (𝛩) := 𝜉 (𝛩) · 𝑒

𝑆
(𝛾)
𝑡 −𝜌(𝛩 ) ·𝐽𝑡

1 − K(𝛩)(𝐽𝑡 )
·

𝑁𝑡∏︂
𝑗=1 

𝑑Exp(𝜌(𝛩))
𝑑K(𝛩) (𝑊 𝑗 ),

with 𝐽𝑡 := 𝑡 − 𝑇𝑁𝑡 , and the family 𝑀 (𝛽) (𝛩) := {𝑀 (𝛽)
𝑡 (𝛩)}𝑡∈R+ is a 𝑃-a.s

positive martingale in ℒ1(𝑃);
(ii) conversely, for every pair (𝛽, 𝜉) ∈ ℱℓ

𝑃,𝛩 × ℛ+(𝐷) there exists a unique pair 
(𝜌, 𝑄) ∈ 𝔐+(𝐷) ×ℳℓ

𝑆,Exp(𝜌(𝛩 ) ) determined by conditions (∗) and (𝑅𝑃𝑀𝜉 ), 
such that 𝑒𝛾 and 𝜉 are the Radon–Nikodým derivatives of 𝑄𝑋1 with respect to 
𝑃𝑋1 and of 𝑄𝛩 with respect to 𝑃𝛩 , respectively;

(iii) in both cases (i) and (ii), there exists an essentially unique rcp {𝑄 𝜃}𝜃∈𝐷 of 
𝑄 over 𝑄𝛩 consistent with 𝛩 and a 𝑃𝛩-null set ˜︁𝐿∗∗ ∈ 𝔅(𝐷), containing the 
𝑃𝛩-null set 𝑊𝑃 ∈ 𝔅(𝐷) appearing in Remark 1(b), satisfying for any 𝜃 ∉ ˜︁𝐿∗∗
conditions 𝑄 𝜃 ∈ ℳℓ

𝑆,Exp(𝜌(𝜃 ) ) ,

𝜌(𝜃) = 𝑒𝛼(𝜃 )

E𝑃𝜃 [𝑊1]
, (˜︁∗)

and

𝑄 𝜃 (𝐴) =
∫
𝐴

˜︁𝑀 (𝛽)
𝑡 (𝜃) 𝑑𝑃𝜃 for all 0 ≤ 𝑠 ≤ 𝑡 and 𝐴 ∈ ℱ𝑠 , (𝑅𝑃𝑀𝜃 )

where

˜︁𝑀 (𝛽)
𝑡 (𝜃) :=

𝑒𝑆
(𝛾)
𝑡 −𝜌(𝜃 ) ·𝐽𝑡

1 − K(𝜃)(𝐽𝑡 )
·

𝑁𝑡∏︂
𝑗=1 

𝑑Exp(𝜌(𝜃))
𝑑K(𝜃) (𝑊 𝑗 ),

and the family ˜︁𝑀 (𝛽) (𝜃) := { ˜︁𝑀 (𝛽)
𝑡 (𝜃)}𝑡∈R+ is a 𝑃𝜃 -a.s. positive martingale in 

ℒ1(𝑃𝜃 ), where ˜︁𝐿∗∗ is the 𝑃𝛩-null sets appearing in [33], Corollary 4.8.

3 A characterization of progressively equivalent martingale measures for com-
pound mixed renewal processes

In this section we find out a wide class of canonical price processes inducing a 
corresponding class of progressively EMMs and satisfying the condition of no free 
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lunch with vanishing risk (written (NFLVR) for short) (see [9], Definition 8.1.2), 
connecting in this way our results with this basic notion in mathematical finance.

In order to present the results of this section we recall the following notions. For 
a given real-valued process 𝑌 := {𝑌𝑡}𝑡∈R+ on (𝛺, 𝛴) a probability measure 𝑄 on 𝛴 is 
called an ℓ-martingale measure for 𝑌 , if 𝑌 is a martingale in ℒℓ (𝑄). We will say that 
𝑌 satisfies condition (PEMM) if there exists a 2-martingale measure 𝑄 for 𝑌 , which 
is progressively equivalent to 𝑃. Moreover, let 𝑇 > 0, T := [0, 𝑇], ℱT := {ℱ𝑡}𝑡∈T, 
𝑄𝑇 := 𝑄↾ℱ𝑇 , 𝑃𝑇 := 𝑃↾ℱ𝑇 and 𝑌T := {𝑌𝑡}𝑡∈T. We will say that the process 𝑌T
satisfies condition (EMM) if there exists a 2-martingale measure 𝑄𝑇 for 𝑌T, which is 
equivalent to 𝑃𝑇 .
Notations 2. (a) For given 𝛽 ∈ ℱℓ

𝑃,𝛩 , denote by ℛ∗,ℓ
+ (𝐷) := ℛ∗,ℓ

+,𝛽 (𝐷) the class of all 
functions 𝜉 ∈ ℛ+(𝐷) such that

𝜉 (𝛩) ·
(︃

𝑒𝛼(𝛩 )

E𝑃 [𝑊1 | 𝛩]

)︃ℓ

∈ ℒ1(𝑃),

under the assumption 𝑃({E𝑃 [𝑊1 | 𝛩] < ∞}) = 1.
(b) Denote by ℳ∗,ℓ

𝑆,𝚲(𝜌(𝛩 ) ) the class of all measures 𝑄 ∈ ℳℓ
𝑆,𝚲(𝜌(𝛩 ) ) satisfying 

condition (︁
1/E𝑄 [𝑊1 | 𝛩])︁ℓ ∈ ℒ1(𝑄),

under the assumption 𝑄({E𝑄 [𝑊1 | 𝛩] < ∞}) = 1.
(c) For arbitrary 𝜃 ∈ 𝐷 denote by ℳ∗,ℓ

𝑆,𝚲(𝜌(𝜃 ) ) the class of all probability mea-
sures 𝑄 𝜃 ∈ ℳℓ

𝑆,𝚲(𝜌(𝜃 ) ) such that (1/E𝑄• [𝑊1])ℓ ∈ ℒ1(𝑄𝛩) under the assumption 
𝑄𝛩 ({E𝑄• [𝑊1] < ∞}) = 1.

Remark 2. (a) Inclusions ℛ∗,2
+ (𝐷) ⫋ ℛ∗,1

+ (𝐷) ⫋ ℛ+(𝐷) hold true.
Clearly ℛ∗,2

+ (𝐷) ⊆ ℛ∗,1
+ (𝐷) ⊆ ℛ+(𝐷). Let 𝐷 := (0,∞) and 𝑃 ∈ ℳℓ

𝑆,Exp(𝛩 ) and 
assume that 𝑃𝛩 is absolutely continuous with respect to the Lebesgue measure 𝜆 on 
𝔅 restricted to 𝔅(𝐷). Let 𝑓𝛩 be the corresponding probability density functions of 𝛩
with respect to 𝑃. Consider the real-valued functions 𝛽(𝑥, 𝜃) := 𝜃 for all (𝑥, 𝜃) ∈ 𝐷×𝐷
and 𝜉 (𝜃) := 𝑎·𝑒−𝑎·𝜃

𝑓𝛩 (𝜃 ) for each 𝜃 ∈ 𝐷, where 𝑎 > 0 is a real constant. A straightforward 

computation yields 𝛽 ∈ ℱℓ
𝑃,𝛩 and 𝜉 ∈ ℛ+(𝐷). However, for 𝑎 ∈ (0, 1] we have 

𝜉 ∉ ℛ∗,1
+ (𝐷), while for 𝑎 ∈ (1, 2] we have 𝜉 ∈ ℛ∗,1

+ (𝐷) \ℛ∗,2
+ (𝐷); hence the required 

inclusions follow.
(b) Inclusion ℳ∗,ℓ

𝑆,𝚲(𝜌(𝛩 ) ) ⫋ ℳℓ
𝑆,𝚲(𝜌(𝛩 ) ) holds true.

Clearly, inclusion ℳ∗,ℓ
𝑆,𝚲(𝜌(𝛩 ) ) ⊆ ℳℓ

𝑆,𝚲(𝜌(𝛩 ) ) holds. Take 𝐷 := (0,∞) and assume 

that 𝜌(𝛩) = 𝑒𝛩 and 𝑄 ∈ ℳℓ
𝑆,Exp(𝜌(𝛩 ) ) with 𝑄𝛩 = Exp(𝜂), where 𝜂 < ℓ is a positive 

constant. It then follows that E𝑄 [𝑒ℓ ·𝛩] = ∞, implying that 𝑄 ∉ ℳ∗,ℓ
𝑆,Exp(𝜌(𝛩 ) ) .

Remark 3. The following statements are equivalent:

(i) 𝑃 ∈ ℳ∗,ℓ
𝑆,K(𝛩 ) ;

(ii) 𝑃𝜃 ∈ ℳ∗,ℓ
𝑆,K(𝜃 ) with (𝑃𝜃 )𝑋1 = 𝑃𝑋1 for all 𝜃 ∉ 𝑊𝑃 , where 𝑊𝑃 ∈ 𝔅(𝐷) is the 

𝑃𝛩-null set appearing in Remark 1(b).
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In fact, by Remark 1(b) there exists a 𝑃𝛩-null set 𝑊𝑃 ∈ 𝔅(𝐷) such that 𝑃𝜃 ∈
ℳℓ

𝑆,K(𝜃 ) with (𝑃𝜃 )𝑋1 = 𝑃𝑋1 and E𝑃𝜃 [𝑊1] < ∞ for all 𝜃 ∉ 𝑊𝑃 . Taking now into 
account the fact∫ (︃

1 
E𝑃 [𝑊1 | 𝛩]

)︃ℓ

𝑑𝑃 =
∫ (︃

1 
E𝑃𝜃 [𝑊1]

)︃ℓ

𝑃𝛩 (𝑑𝜃),

which is a consequence of [18], Lemma 3.5, we get the claimed equivalence.
In the next theorems we provide a characterization of all progressively equivalent 

martingale measures 𝑄 on 𝛴 converting a CMRP under 𝑃 into a CMPP under 𝑄, 
in such a way that they are associated to stochastic processes satisfying condition 
(NFLVR).
Theorem 1. If 𝑃 ∈ ℳ∗,ℓ

𝑆,K(𝛩 ) the following statements hold true:

(i) for every pair (𝜌,𝑄) ∈ 𝔐+(𝐷) × ℳ∗,ℓ
𝑆,Exp(𝜌(𝛩 ) ) there exists an essentially 

unique pair (𝛽, 𝜉) ∈ ℱℓ
𝑃,𝛩 ×ℛ∗,ℓ

+ (𝐷), where 𝑒𝛾 and 𝜉 are the Radon–Nikodým 
derivatives of 𝑄𝑋1 with respect to 𝑃𝑋1 and of 𝑄𝛩 with respect to 𝑃𝛩 , respectively, 
satisfying conditions (∗) and (𝑅𝑃𝑀𝜉 );

(ii) conversely, for every pair (𝛽, 𝜉) ∈ ℱℓ
𝑃,𝛩 ×ℛ∗,ℓ

+ (𝐷) there exists a unique pair 
(𝜌, 𝑄) ∈ 𝔐+(𝐷) ×ℳ∗,ℓ

𝑆,Exp(𝜌(𝛩 ) ) determined by conditions (∗) and (𝑅𝑃𝑀𝜉 ), 
such that 𝑒𝛾 and 𝜉 are the Radon–Nikodým derivatives of 𝑄𝑋1 with respect to 
𝑃𝑋1 and of 𝑄𝛩 with respect to 𝑃𝛩 , respectively;

(iii) in both cases (i) and (ii), there exists an essentially unique rcp {𝑄 𝜃}𝜃∈𝐷 of 
𝑄 over 𝑄𝛩 consistent with 𝛩 satisfying for any 𝜃 ∉ ˜︁𝐿∗∗ conditions 𝑄 𝜃 ∈
ℳ∗,ℓ

𝑆,Exp(𝜌(𝜃 ) ) , (˜︁∗) and (𝑅𝑃𝑀𝜃 ), such that 𝑄 𝜃 is an ℓ-martingale measure for 
the process 𝑉 (𝜃) := 𝑉 (𝜃, 𝛽) := {𝑉𝑡 (𝜃, 𝛽)}𝑡∈R+ =: {𝑉𝑡 (𝜃)}𝑡∈R+ with 𝑉𝑡 (𝜃) :=
𝑆𝑡 − 𝑡 · E𝑃𝜃

[𝑋1 ·𝑒𝛽 (𝑋1 , 𝜃 ) ]
E𝑃𝜃

[𝑊1 ] for any 𝑡 ∈ R+, where ˜︁𝐿∗∗ is the 𝑃𝛩-null set appearing 
in Proposition 1.

(iv) The pair (𝜌, 𝑄) is an element of 𝔐+(𝐷) ×ℳ∗,ℓ
𝑆,Exp(𝜌(𝛩 ) ) if and only if (𝜌,𝑄) ∈

𝔐+(𝐷) × ℳℓ
𝑆,Exp(𝜌(𝛩 ) ) and 𝑄 is an ℓ-martingale measure for the process 

𝑉 (𝛩) := 𝑉 (𝛩, 𝛽) := {𝑉𝑡 (𝛩, 𝛽)}𝑡∈R+ =: {𝑉𝑡 (𝛩)}𝑡∈R+ with 𝑉𝑡 (𝛩) := 𝑆𝑡 − 𝑡 ·
E𝑃 [𝑋1 ·𝑒𝛽 (𝑋1 ,𝛩) |𝛩 ]

E𝑃 [𝑊1 |𝛩 ] for every 𝑡 ∈ R+, where 𝛽 ∈ ℱℓ
𝑃,𝛩 is the function appearing 

in Proposition 1(i);

(v) the measure 𝑄 appearing in both statements (i) and (ii) is an ℓ-martingale 
measure for 𝑉 (𝛩, 𝛽).

Proof. Ad (i): Since ℳ∗,ℓ
𝑆,Exp(𝜌(𝛩 ) ) ⊆ ℳℓ

𝑆,Exp(𝜌(𝛩 ) ) , according to Proposition 1(i) 
there exists an essentially unique pair (𝛽, 𝜉) ∈ ℱℓ

𝑃,𝛩 × ℛ+(𝐷), where 𝑒𝛾 and 𝜉 are 
the Radon–Nikodým derivatives of 𝑄𝑋1 with respect to 𝑃𝑋1 and of 𝑄𝛩 with respect 
to 𝑃𝛩 , respectively, satisfying conditions (∗) and (𝑅𝑃𝑀𝜉 ). Our assumption 𝑄 ∈
ℳ∗,ℓ

𝑆,Exp(𝜌(𝛩 ) ) , along with condition (∗), yields 𝜌(𝛩) ∈ ℒℓ (𝑄), implying E𝑃 [𝜉 (𝛩) ·
(𝑒𝛼(𝛩 ) /E𝑃 [𝑊1 | 𝛩])ℓ ] = E𝑄 [(𝜌(𝛩))ℓ ] < ∞; hence (𝛽, 𝜉) ∈ ℱℓ

𝑃,𝛩 ×ℛ∗,ℓ
+ (𝐷).
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Ad (ii): Since ℱℓ
𝑃,𝛩 ⊆ ℱ𝑃,𝛩 and ℛ∗,ℓ

+ (𝐷) ⊆ ℛ+(𝐷), it follows by Proposition 1(ii) 
that there exists a unique pair (𝜌,𝑄) ∈ 𝔐+(𝐷) ×ℳℓ

𝑆,Exp(𝜌(𝛩 ) ) determined by con-
ditions (∗) and (𝑅𝑃𝑀𝜉 ), such that 𝑒𝛾 and 𝜉 are the Radon–Nikodým derivatives 
of 𝑄𝑋1 with respect to 𝑃𝑋1 and of 𝑄𝛩 with respect to 𝑃𝛩 , respectively, implying, 
along with the assumptions of (ii), that 𝜉 (𝛩) · (𝑒𝛼(𝛩 ) /E𝑃 [𝑊1 | 𝛩])ℓ ∈ ℒ1(𝑃); hence 
1/E𝑄 [𝑊1 | 𝛩] = 𝜌(𝛩) ∈ ℒℓ (𝑄). Thus, (𝜌, 𝑄) ∈ 𝔐+(𝐷) ×ℳ∗,ℓ

𝑆,Exp(𝜌(𝛩 ) ) .

Ad (iii): In both cases (i) and (ii), by Proposition 1(iii), there exists an essentially 
unique rcp {𝑄 𝜃}𝜃∈𝐷 of 𝑄 over 𝑄𝛩 consistent with 𝛩 and a 𝑃𝛩-null set ˜︁𝐿∗∗, such that 
for any 𝜃 ∉ ˜︁𝐿∗∗ conditions 𝑄 𝜃 ∈ ℳℓ

𝑆,Exp(𝜌(𝜃 ) ) , (˜︁∗) and (𝑅𝑃𝑀𝜃 ) hold true. But since 

𝑄 ∈ ℳ∗,ℓ
𝑆,Exp(𝜌(𝛩 ) ) , it follows by Remark 3 that 𝑄 𝜃 ∈ ℳ∗,ℓ

𝑆,Exp(𝜌(𝜃 ) ) for any 𝜃 ∉ ˜︁𝐿∗∗; 
hence, we can apply [22], Proposition 4.2, to complete the proof of statement (iii).
Ad (iv): Let (𝜌,𝑄) ∈ 𝔐+(𝐷) ×ℳ∗,ℓ

𝑆,Exp(𝜌(𝛩 ) ) . It follows by statement (i) that there 

exists an essentially unique function 𝛽 ∈ ℱℓ
𝑃,𝛩 with 𝑒𝛾 being a Radon–Nikodým 

derivative of 𝑄𝑋1 with respect to 𝑃𝑋1 , such that condition (∗) is valid. The latter yields 
𝑒𝛼(𝛩 ) = 𝜌(𝛩) · E𝑃 [𝑊1 | 𝛩] 𝑃↾𝜎(𝛩)-a.s., implying

𝑉𝑡 (𝛩) = 𝑉𝑡 (𝛩, 𝛽) = 𝑆𝑡 − 𝑡 · 𝜌(𝛩) · E𝑃

[︁
𝑋1 · 𝑒𝛾 (𝑋1 )]︁ for all 𝑡 ∈ R+. (1)

The rest of the proof of the direct implication runs by the arguments appearing in the 
proof of [19], Proposition 5.1(ii) with “𝜌 ” in the place of “𝑔 ”.

Conversely, if (𝜌, 𝑄) ∈ 𝔐+(𝐷) ×ℳℓ
𝑆,Exp(𝜌(𝛩 ) ) and 𝑄 is an ℓ-martingale measure 

for the process 𝑉 (𝛩) := 𝑉 (𝛩, 𝛽), where 𝛽 ∈ ℱℓ
𝑃,𝛩 is the function appearing in 

Proposition 1(i) such that 𝑒𝛾 is a Radon–Nikodým derivative of 𝑄𝑋1 with respect to 
𝑃𝑋1 and condition (∗) is valid, then condition (1) holds true. As 𝑄 is an ℓ-martingale 
measure for the process 𝑉 (𝛩), we get 𝑉𝑡 (𝛩) ∈ ℒℓ (𝑄) for each 𝑡 ∈ R+, implying along 
with condition (1) that 𝑋1, 𝜌(𝛩) ∈ ℒℓ (𝑄), i.e., 𝑄 ∈ ℳ∗,ℓ

𝑆,Exp(𝜌(𝛩 ) ) .

Ad (v): Since in both statements (i) and (ii) the pair (𝜌,𝑄) is an element of 𝔐+(𝐷) ×
ℳ∗,ℓ

𝑆,Exp(𝜌(𝛩 ) ) , the conclusion of (v) follows by (iv). □

Theorem 2. Let 𝑃 ∈ ℳ∗,2
𝑆,K(𝛩 ) . For every pair (𝛽, 𝜉) ∈ ℱ2

𝑃,𝛩 × ℛ∗,2
+ (𝐷) there 

exist a unique pair (𝜌,𝑄) ∈ 𝔐+(𝐷) × ℳ∗,2
𝑆,Exp(𝜌(𝛩 ) ) determined by conditions (∗)

and (𝑅𝑃𝑀𝜉 ), such that 𝑒𝛾 and 𝜉 are the Radon–Nikodým derivatives of 𝑄𝑋1 with 
respect to 𝑃𝑋1 and of 𝑄𝛩 with respect to 𝑃𝛩 , respectively, and an essentially unique 
rcp {𝑄 𝜃}𝜃∈𝐷 of 𝑄 over 𝑄𝛩 consistent with 𝛩 satisfying for any 𝜃 ∉ ˜︁𝐿∗∗ conditions 
𝑄 𝜃 ∈ ℳ∗,2

𝑆,Exp(𝜌(𝜃 ) ) , (˜︁∗) and (𝑅𝑃𝑀𝜃 ), such that:

(i) the process 𝑉T(𝛩) := 𝑉T (𝛩, 𝛽) := {𝑉𝑡 (𝛩, 𝛽)}𝑡∈T =: {𝑉𝑡 (𝛩)}𝑡∈T satisfies 
condition (NFLVR);

(ii) for any 𝜃 ∉ ˜︁𝐿∗∗ the process 𝑉T(𝜃) := 𝑉T (𝜃, 𝛽) := {𝑉𝑡 (𝜃, 𝛽)}𝑡∈T =: {𝑉𝑡 (𝜃)}𝑡∈T
satisfies condition (NFLVR),

where ˜︁𝐿∗∗ ∈ 𝔅(𝐷) is the 𝑃𝛩-null set appearing in Theorem 1 and T := [0, 𝑇] with 
𝑇 > 0.
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Proof. Ad (i): By Theorem 1(ii), conditions (∗) and (𝑅𝑃𝑀𝜉 ) determine a unique 
pair (𝜌, 𝑄) ∈ 𝔐+(𝐷) × ℳ∗,2

𝑆,Exp(𝜌(𝛩 ) ) , such that 𝑒𝛾 and 𝜉 are the Radon–Nikodým 
derivatives of 𝑄𝑋1 with respect to 𝑃𝑋1 and of 𝑄𝛩 with respect to 𝑃𝛩 , respectively, 
implying by Theorem 1(v) that the process 𝑉 (𝛩) is a martingale in ℒ2(𝑄); hence 
for any 𝑇 > 0 the process 𝑉T(𝛩) is an ℱT-martingale in ℒ2(𝑄𝑇 ), implying that it is 
a ℱT-semi-martingale in ℒ2(𝑄𝑇 ) (cf., e.g., [34], Chapter 1, Section 1.3, Definition 
on page 23). The latter implies that 𝑉T(𝛩) is also an ℱT-semi-martingale in ℒ2(𝑃𝑇 )
since 𝑄𝑇 ∼ 𝑃𝑇 (cf., e.g., [34], Theorem 10.1.8). Because the process 𝑉 (𝛩) satisfies 
condition (PEMM), we get that the process 𝑉T(𝛩) must satisfy condition (EMM). 
Thus, we can apply the Fundamental Theorem of Asset Pricing of Delbaen and 
Schachermayer for unbounded stochastic processes, see [9], Theorem 14.1.1, in order 
to conclude that the process 𝑉T(𝛩) satisfies condition (NFLVR).

Assertion (ii) follows easily by Theorem 1(iii) and [22], Theorem 4.1. □

4 An application to the ruin problem

The fact that {𝑃𝜃}𝜃∈𝐷 is an rcp of 𝑃 over 𝑃𝛩 consistent with 𝛩, allows for the 
extension of some well-known results from the Poisson or renewal risk models, to 
their mixed counterpart. In fact, whenever in the 𝑃𝜃 -Cramér–Lundberg or the 𝑃𝜃 -
Sparre Andersen risk model an explicit formula for the (infinite time) ruin probability 
exists, then one can just mix over the involved parameter in order to obtain explicit 
formulas for the corresponding mixed risk models (compare Albrecher et al. [1], 
Sections 3 and 5). However, such explicit formulas, which are also computationally 
feasible, can be obtained only in certain special cases, e.g., when the claim sizes 
follow a gamma distribution (see Constantinescu et al. [5]), a Coxian distribution (see 
Landriault and Willmot [17]), or a general phase type distribution (cf., e.g., Asmussen 
and Albrecher [2], Chapter IX, Theorem 4.4). If we are interested in an exact value 
for the ruin probability in a general mixed renewal risk model, then the only method 
available seems to be simulation. In the setting of a finite horizon ruin probability, 
it is straightforward to use the Crude Monte Carlo method to simulate it, see [2], 
page 462. The situation is more complicated for an infinite horizon ruin probability. 
The difficulty is that the indicator function of the ruin event in such a case cannot be 
simulated in finite time: no finite segment of 𝑆 can tell whether ruin will ultimately 
occur or not. In order to overcome this obstacle, some methods have been developed 
(cf., e.g., [2], Chapter XV, Sections 2–5). Among them, the most celebrated one is 
the change of measures technique, which gives us the opportunity to express the ruin 
event as a quantity under the new measure such that ruin occurs almost surely.

The most common change of measures techniques applied to the Sparre Andersen 
risk model arise from the martingales constructed via the so-called Backward or For-
ward Markovization Techniques for the reserve process (see Dassios and Embrechts 
[7], Section 2.3, and Dassios [6], Section 3.5, respectively, in connection with, e.g., 
Schmidli [28], Sections 8.1–8.3), where the martingales (and thus the new measures) 
are obtained as solutions of partial differential equations (see also [33], Proposition 
4.15, for a simplified construction of the martingales/measures arising from the Back-
ward Markovization Technique). These techniques have been widely used to solve 
various ruin related problems (cf., e.g., Embrechts et al. [12], Ng and Yang [23], 
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Schmidli [26, 27] and Tzaninis [32]), as they allow for the construction of a suitable 
probability measure 𝑄 (𝑟 ) , where 𝑟 > 0, so that ruin occurs 𝑄 (𝑟 ) -a.s. However, as 
the main assumption for their construction is the existence of the moment generating 
function 𝑀𝑃𝑋1

of the claim size distribution (for the definition of the moment gener-
ating function of a distribution we refer to [30], page 174), heavy-tailed distributions 
(cf., e.g., [25], Section 2.5, for the definition and their basic properties) are naturally 
excluded. When 𝑃 is clear from the context we write 𝑀𝑋1 instead of 𝑀𝑃𝑋1

. The pre-
vious discussion raises the question of constructing a probability measure 𝑄 being 
progressively equivalent to 𝑃 and so the ruin occurs 𝑄-a.s., but without necessarily 
needing the assumption that 𝑀𝑋1 exists.

In this section, we characterize all progressively equivalent martingale measures 
𝑄 on 𝛴 that convert a 𝑃-CMRP into a 𝑄-CMPP, in such a way that ruin occurs 𝑄-a.s., 
see Theorem 3. Such a characterization allows us to find an explicit formula for the 
ruin probability under 𝑃. To this purpose, we first need to prove the following auxiliary 
results.

In order to justify the definition of a conditional premium density we need the next 
lemma, which extends a well-known result in the case of a kind of compound mixed 
Poisson processes (cf., e.g., [13], Proposition 9.1).
Lemma 1. If 𝑃 ∈ ℳ1

𝑆,K(𝛩 ) and 𝑃({E𝑃 [𝑊1 | 𝛩] < ∞}) = 1 then

lim 
𝑡→∞

𝑆𝑡
𝑡

=
E𝑃 [𝑋1] 

E𝑃 [𝑊1 | 𝛩] 𝑃↾𝜎(𝛩)-a.s.

Proof. Since 𝑃 ∈ ℳ1
𝑆,K(𝛩 ) and 𝑃({E𝑃 [𝑊1 | 𝛩] < ∞}) = 1, it follows by Re-

mark 1(b) that there exists a 𝑃𝛩-null set 𝑊𝑃 ∈ 𝔅(𝐷) such that 𝑃𝜃 ∈ ℳ1
𝑆,K(𝜃 ) with 

(𝑃𝜃 )𝑋1 = 𝑃𝑋1 and E𝑃𝜃 [𝑊1] < ∞ for any 𝜃 ∉ 𝑊𝑃 . Fix an arbitrary 𝜃 ∉ 𝑊𝑃 . We first 
show the validity of condition

lim 
𝑡→∞

𝑁𝑡

𝑡
=

1 
E𝑃 [𝑊1 | 𝛩] 𝑃↾𝜎(𝛩)-a.s. (2)

In fact, consider the function 𝑣 := 1{lim𝑡→∞
𝑁𝑡 (•)

𝑡 = 1 
E𝑃• [𝑊1 ] }

: 𝛺 × 𝐷 → [0, 1]
and put 𝑔 := 𝑣 ◦ (𝑖𝑑𝛺 × 𝛩) = 1{lim𝑡→∞

𝑁𝑡
𝑡 = 1 

E𝑃 [𝑊1 |𝛩 ] }
. Since 𝑣 ∈ ℒ1 (𝑀), where 𝑀 :=

𝑃◦(𝑖𝑑𝛺×𝛩)−1, we may apply [18], Proposition 3.8(i), to get E𝑃 [𝑔 | 𝛩] = E𝑃• [𝑣•] ◦𝛩
𝑃↾𝜎(𝛩)-a.s., implying

𝑃

(︃{︃
lim 
𝑡→∞

𝑁𝑡

𝑡
=

1 
E𝑃 [𝑊1 | 𝛩]

}︃)︃
=
∫

E𝑃 [𝑔 | 𝛩] 𝑑𝑃 =
∫

E𝑃•
[︁
𝑣•
]︁ ◦𝛩 𝑑𝑃

=
∫
𝑃𝜃

(︃{︃
lim 
𝑡→∞

𝑁𝑡

𝑡
=

1 
E𝑃𝜃 [𝑊1]

}︃)︃
𝑃𝛩 (𝑑𝜃).

But since 𝑁 is a 𝑃𝜃 -RP(K(𝜃)), we may apply [14], Section 2.5, Theorem 5.1, to get

lim 
𝑡→∞

𝑁𝑡

𝑡
=

1 
E𝑃𝜃 [𝑊1]

𝑃𝜃 -a.s. (3)

The latter, along with [18], Lemma 3.5(i), yields condition (2).
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Since the process 𝑆 is a 𝑃𝜃 -CRP(K(𝜃), (𝑃𝜃 )𝑋1 ) with (𝑃𝜃 )𝑋1 = 𝑃𝑋1 , we may apply 
[14], Section 1.2, Theorem 2.3(iii), in order to get

lim 
𝑡→∞

𝑆𝑡
𝑁𝑡

= E𝑃𝜃 [𝑋1] 𝑃𝜃 -a.s.; (4)

implying along with condition (a2) and [18], Lemma 3.5(i), that lim𝑡→∞
𝑆𝑡
𝑁𝑡

= E𝑃 [𝑋1]
𝑃-a.s. The latter, along with condition (2), completes the proof. □

Let 𝑃 ∈ ℳ1
𝑆,K(𝛩 ) such that 𝑃({E𝑃 [𝑊1 | 𝛩] < ∞}) = 1. For any 𝜃 ∉ 𝑊𝑃 , where 

𝑊𝑃 ∈ 𝔅(𝐷) is the 𝑃𝛩-null set appearing in Remark 1(b), conditions (3) and (4) imply

lim 
𝑡→∞

𝑆𝑡
𝑡

=
E𝑃𝜃 [𝑋1] 
E𝑃𝜃 [𝑊1]

𝑃𝜃 -a.s.,

that is, the limit lim𝑡→∞
𝑆𝑡
𝑡 coincides with the premium density 𝑝(𝑃𝜃 ), i.e., the 

monetary payout per unit time, in a 𝑃𝜃 -Sparre Andersen model (see [22], page 54, for 
more details). This motivates the following definitions.
Definitions 1. For any 𝑃 ∈ ℳ1

𝑆,K(𝛩 ) such that 𝑃({E𝑃 [𝑊1 | 𝛩] < ∞}) = 1, we say 
that the random vector

𝑝(𝑃,𝛩) :=
E𝑃 [𝑋1] 

E𝑃 [𝑊1 | 𝛩] 𝑃↾𝜎(𝛩)-a.s.

is a conditional premium density for 𝑃. In particular, for any 𝑃 ∈ ℳ∗,1
𝑆,K(𝛩 ) define 

the corresponding mixed premium density by means of 𝑝(𝑃) := E𝑃 [𝑝(𝑃,𝛩)].
Remark 4. If 𝑃 ∈ ℳ∗,ℓ

𝑆,K(𝛩 ) then the following statements are equivalent:

(i) 𝑝(𝑃,𝛩) is a conditional premium density for 𝑃;

(ii) there exists a 𝑃𝛩-null set 𝑊𝑃,1 ∈ 𝔅(𝐷), containing the 𝑃𝛩-null set 𝑊𝑃 ∈ 𝔅(𝐷)
appearing in Remark 3, such that 𝑝(𝑃, 𝜃) is the premium density for 𝑃𝜃 , i.e., 
𝑝(𝑃, 𝜃) = 𝑝(𝑃𝜃 ) := E𝑃𝜃

[𝑋1 ] 
E𝑃𝜃

[𝑊1 ] for any 𝜃 ∉ 𝑊𝑃,1.

In fact, first note that according to Remark 3, there exists a 𝑃𝛩-null set 𝑊𝑃 ∈ 𝔅(𝐷), 
such that 𝑃𝜃 ∈ ℳ∗,ℓ

𝑆,K(𝜃 ) with (𝑃𝜃 )𝑋1 = 𝑃𝑋1 and E𝑃𝜃 [𝑊1] < ∞ for any 𝜃 ∉ 𝑊𝑃; 

hence 𝑝(𝑃𝜃 ) = E𝑃𝜃
[𝑋1 ] 

E𝑃𝜃
[𝑊1 ] for any 𝜃 ∉ 𝑊𝑃 . Furthermore, as statement (i) is equivalent 

to ∫
𝛩−1 [𝐹 ]

𝑝(𝑃,𝛩) 𝑑𝑃 =
∫
𝛩−1 [𝐹 ]

E𝑃 [𝑋1] 
E𝑃 [𝑊1 | 𝛩] 𝑑𝑃 for every 𝐹 ∈ 𝔅(𝐷),

we can apply [18], Lemma 3.5(i), to get∫
𝐹
𝑝(𝑃, 𝜃) 𝑃𝛩 (𝑑𝜃) =

∫
𝐹

E𝑃 [𝑋1] 
E𝑃𝜃 [𝑊1]

𝑃𝛩 (𝑑𝜃) =
∫
𝐹

E𝑃𝜃 [𝑋1] 
E𝑃𝜃 [𝑊1]

𝑃𝛩 (𝑑𝜃)

for every 𝐹 ∈ 𝔅(𝐷), where the second equality follows by condition (a2), implying 

that there exists a 𝑃𝛩-null set 𝑊 ′
𝑃 ∈ 𝔅(𝐷), such that 𝑝(𝑃, 𝜃) =

E𝑃𝜃
[𝑋1 ] 

E𝑃𝜃
[𝑊1 ] for any 

𝜃 ∉ 𝑊 ′
𝑃 . Putting now 𝑊𝑃,1 := 𝑊 ′

𝑃 ∪𝑊𝑃 ∈ 𝔅(𝐷), we get the desired equivalence of 
(i) and (ii).
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Definitions 2. Let 𝑆 be an aggregate claims process induced by a counting process 
𝑁 and a claims size process 𝑋 . Fix arbitrary 𝑢, 𝑡 ∈ R+ and define the function 
𝑟𝑢𝑡 : 𝛺 × 𝐷 → R by means of 𝑟𝑢𝑡 (𝜔, 𝜃) := 𝑢 + 𝑐(𝜃) · 𝑡 − 𝑆𝑡 (𝜔) for any (𝜔, 𝜃) ∈
𝛺 × 𝐷, where 𝑐 is a positive 𝔅(𝐷)-measurable function. For arbitrary but fixed 
𝜃 ∈ 𝐷 the process 𝑟𝑢 (𝜃) := {𝑟𝑢𝑡 (𝜃)}𝑡∈R+ , defined by 𝑟𝑢𝑡 (𝜃)(𝜔) := 𝑟𝑢𝑡 (𝜔, 𝜃) for any 
𝜔 ∈ 𝛺, is called the reserve process induced by the initial reserve 𝑢, the premium 
intensity 𝑐(𝜃) and the aggregate claims process 𝑆 (cf., e.g., [30], pages 155–156). 
The function 𝜓𝜃 : [0,∞) → [0, 1] defined by 𝜓𝜃 (𝑢) := 𝑃𝜃 ({inf𝑡∈R+ 𝑟

𝑢
𝑡 (𝜃) < 0})

is called the probability of ruin for the reserve process 𝑟𝑢(𝜃) with respect to 𝑃𝜃

(cf., e.g., [30], page 158). The ruin time of the reserve process 𝑟𝑢(𝜃) is defined 
as 𝜏𝑢 (𝜃) := inf{𝑡 ∈ R+ : 𝑟𝑢𝑡 (𝜃) < 0} (compare, e.g., [28], page 84). Recall that 
𝜓𝜃 (𝑢) = 𝑃𝜃 ({𝜏𝑢 (𝜃) < ∞}), see, e.g., [25], page 148.

Define the real-valued function 𝑅𝑢𝑡 (𝛩) on 𝛺 by means of 𝑅𝑢𝑡 (𝛩) := 𝑟𝑢𝑡 ◦ (𝑖𝑑𝛺 ×𝛩). 
The process 𝑅𝑢 (𝛩) := {𝑅𝑢𝑡 (𝛩)}𝑡∈R+ is called the reserve process induced by the 
initial reserve 𝑢, the stochastic premium intensity 𝑐(𝛩) and the aggregate claims 
process 𝑆, where 𝑐(𝛩) is a real-valued random variable on 𝛺. The function 𝜓 defined 
by 𝜓(𝑢) := 𝑃({inf𝑡∈R+ 𝑅

𝑢
𝑡 (𝛩) < 0}) is called the probability of ruin for the reserve 

process 𝑅𝑢 (𝛩) with respect to 𝑃. We define the ruin time of the reserve process 
𝑅𝑢 (𝛩) by means of 𝑇𝑢 (𝛩) := 𝜏𝑢 ◦ (𝑖𝑑𝛺 ×𝛩). Clearly, 𝜓(𝑢) = 𝑃({𝑇𝑢 (𝛩) < ∞}).
Throughout what follows in this section, unless stated otherwise, 𝑃 ∈ ℳ∗,ℓ

𝑆,K(𝛩 ) .

Lemma 2. The following statements are equivalent:

(i) 𝑐(𝛩) ≤ 𝑝(𝑃,𝛩) 𝑃↾𝜎(𝛩)-a.s.;

(ii) 𝜓(𝑢) = 1 for any 𝑢 ∈ R+.

Proof. Fix arbitrary 𝑢 ∈ R+.
Ad (i)⇒(ii): If (i) holds, we get by [18], Lemma 3.5(i), the existence of a 𝑃𝛩-null set ˜︁𝑀𝑃 ∈ 𝔅(𝐷) such that 𝑐(𝜃) ≤ 𝑝(𝑃, 𝜃) for all 𝜃 ∉ ˜︁𝑀𝑃 . But, due to Remark 4, there 
exists a 𝑃𝛩-null set 𝑊𝑃,1 ∈ 𝔅(𝐷) such that 𝑝(𝑃, 𝜃) = 𝑝(𝑃𝜃 ) and 𝑃𝜃 ∈ ℳ∗,ℓ

𝑆,K(𝜃 )
for all 𝜃 ∉ 𝑊𝑃,1. Putting 𝑀𝑃 := ˜︁𝑀𝑃 ∪ 𝑊𝑃,1 ∈ 𝔅(𝐷), we get 𝑃𝛩 (𝑀𝑃) = 0 and 
𝑐(𝜃) ≤ 𝑝(𝑃𝜃 ) for all 𝜃 ∉ 𝑀𝑃; hence for any 𝜃 ∉ 𝑀𝑃 we may apply [30], Corollary 
7.1.4, which remains true also for 𝑢 = 0, to obtain 𝜓𝜃 (𝑢) = 1. The latter along with 
[33], Remark 3.6, yields 𝜓(𝑢) =

∫
𝐷
𝜓𝜃 (𝑢) 𝑃𝛩 (𝑑𝜃) = 1.

Ad (ii)⇒(i): Since 𝑁 has zero probability of explosion we may apply [30], Lemma 
7.1.2, which remains true also for 𝑢 = 0, along with [33], Remark 3.6, to get that 
𝜓(𝑢) = 𝑃({inf𝑛∈N0 𝑈

𝑢
𝑛 (𝛩) < 0}), where 𝑈𝑢

𝑛 (𝛩) := 𝑢 +∑︁𝑛
𝑗=1(𝑐(𝛩) ·𝑊 𝑗 − 𝑋 𝑗 ) for any 

𝑛 ∈ N0. But since 𝜓(𝑢) = 1, there exists a positive integer 𝑛0 such that 𝑈𝑢
𝑛0 (𝛩) < 0

𝑃-a.s., and so there exists a natural number 𝑛1 ≤ 𝑛0 such that 𝑐(𝛩) ·𝑊𝑛1 − 𝑋𝑛1 < 0
𝑃-a.s., implying along with condition (a2)

0 ≥ 𝑐(𝛩) · E𝑃 [𝑊𝑛1 | 𝛩] − E𝑃 [𝑋𝑛1 | 𝛩] 𝑃↾𝜎(𝛩)-a.s.
= 𝑐(𝛩) · E𝑃 [𝑊𝑛1 | 𝛩] − E𝑃 [𝑋𝑛1 ] 𝑃↾𝜎(𝛩)-a.s.;

hence 𝑐(𝛩) ≤ E𝑃 [𝑋𝑛1 ] 
E𝑃 [𝑊𝑛1 |𝛩 ] 𝑃↾𝜎(𝛩)-a.s. But since 𝑊 is 𝑃-identically distributed by 

[33], Remark 2.1, and 𝑋 is 𝑃-i.i.d., it follows that statement (i) holds. □
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Remark 5. The following statements are equivalent:

(i) the pair (𝑃,𝛩) fulfils condition

𝑐(𝛩) > 𝑝(𝑃,𝛩) 𝑃↾𝜎(𝛩)-a.s.; (5)

(ii) there exists a 𝑃𝛩-null set 𝑂𝑃 ∈ 𝔅(𝐷), containing the 𝑃𝛩-null set 𝑊𝑃,1 appear-
ing in Remark 4, such that for any 𝜃 ∉ 𝑂𝑃 the measure 𝑃𝜃 is an element of 
ℳ∗,ℓ

𝑆,K(𝜃 ) satisfying condition 𝑐(𝜃) > 𝑝(𝑃𝜃 ).

In fact, (i) holds if and only if there exist a 𝑃𝛩-null set ˜︁𝑂𝑃 ∈ 𝔅(𝐷) such that 
𝑐(𝜃) > 𝑝(𝑃, 𝜃) for any 𝜃 ∉ ˜︁𝑂𝑃 by [18], Lemma 3.5(i), and a 𝑃𝛩-null set 𝑊𝑃,1 in 
𝔅(𝐷) such that 𝑃𝜃 ∈ ℳ∗,ℓ

𝑆,K(𝜃 ) and 𝑝(𝑃, 𝜃) = 𝑝(𝑃𝜃 ) for any 𝜃 ∉ ˜︁𝑊𝑃,1 by Remark 4. 
Putting 𝑂𝑃 := ˜︁𝑂𝑃 ∪𝑊𝑃,1, we get (i)⇔(ii).

The next result has been proven in a more general setting for multivariate counting 
processes in [16], Proposition 3.39(a). However, as it is essential for the proof of the 
main result of the present section (see Theorem 3), we write it exactly in the form 
needed for our purposes. Recall that a filtration {𝒢𝑡}𝑡∈R+ for (𝛺, 𝛴) is called right-
continuous if 𝒢𝑡+ :=

⋂︁
𝑠>𝑡 𝒢𝑠 = 𝒢𝑡 for any 𝑡 ∈ R+ (cf., e.g., [25], Subsection 10.2.1, 

page 404).
Proposition 2. Let (𝛺, 𝛴, 𝑃) be an arbitrary probability space, and let 𝑆 be an 
arbitrary aggregate claims process induced by a claim number process 𝑁 and a claim 
size process 𝑋 . The canonical filtration ℱ generated by 𝑆 and 𝛩 is right-continuous.

The proof follows by a slight modification of the arguments appearing in Jacod 
[16], Proposition 3.39(a).
Remark 6. The canonical filtration ℱ𝑆 of an arbitrary aggregate claims process 𝑆
is right-continuous. The proof runs with arguments similar to those of the proof of 
[16], Proposition 3.39(a). An alternative proof for the right-continuity of ℱ𝑆 works 
by arguments similar to those of Protter [24], Theorem 25.
Lemma 3. Let (𝛺, 𝛴, 𝑃) be an arbitrary probability space. The following hold true:

(i) the ruin time 𝑇𝑢 (𝛩) of the reserve process 𝑅𝑢 (𝛩) is an ℱ-stopping time;

(ii) for any 𝜃 ∈ 𝐷 the ruin time 𝜏𝑢 (𝜃) of the reserve process 𝑟𝑢 (𝜃) is an ℱ-stopping 
time.

Proof. Ad (i): Let 𝑡 ∈ R+. Since 𝑅𝑢 (𝛩) has right-continuous paths it follows that{︁
𝑇𝑢 (𝛩) < 𝑡

}︁
=

⋃︂
𝑞∈Q𝑡

{︁
𝑅𝑢𝑞 (𝛩) < 0

}︁ ∈ ℱ𝑡 ,

where Q𝑡 := Q ∩ [0, 𝑡) (compare [25], Theorem 10.1.1), implying along with [25], 
Lemma 10.1.1, that 𝑇𝑢 (𝛩) is a {ℱ𝑡+}𝑡∈R+ -stopping time. But by Proposition 2, ℱ is 
right-continuous, and thus we may apply again [25], Lemma 10.1.1, in order to get 
that 𝑇𝑢 (𝛩) is an ℱ-stopping time.
Ad (ii): Fix an arbitrary 𝜃 ∈ 𝐷. Using the arguments of the proof of statement (i), we get 
that 𝜏𝑢 (𝜃) is a {ℱ𝑆

𝑡+}𝑡∈R+ -stopping time. Consequently, since ℱ𝑆 is right-continuous 
by Remark 6, applying [25], Lemma 10.1.1, we get that 𝜏𝑢 (𝜃) is an ℱ𝑆-stopping time; 
hence it is an ℱ-stopping time since ℱ𝑆

𝑡 ⊆ ℱ𝑡 for all 𝑡 ∈ R+. □
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According to Theorem 1(ii), for every pair (𝛽, 𝜉) ∈ ℱℓ
𝑃,𝛩 × ℛ∗,ℓ

+ (𝐷) there ex-
ists a unique pair (𝜌,𝑄) ∈ 𝔐+(𝐷) × ℳ∗,ℓ

𝑆,Exp(𝜌(𝛩 ) ) determined by conditions (∗)
and (𝑅𝑃𝑀𝜉 ) such that the process 𝑀 (𝛽) (𝛩), involved in condition (𝑅𝑃𝑀𝜉 ), is a 
𝑃-a.s. positive martingale in ℒ1(𝑃), implying 

𝑃(𝐴) = E𝑄

[︁
1/𝑀 (𝛽)

𝑡 (𝛩) 1𝐴

]︁
for all 𝑡 ∈ R+ and 𝐴 ∈ ℱ𝑡 .

But since the ruin time 𝑇𝑢 (𝛩) of the reserve process 𝑅𝑢 (𝛩) is an ℱ-stopping time by 
Lemma 3(i), we may apply the Optional Stopping Theorem (cf., e.g., [28], Proposition 
B.2) in order to get 

𝜓(𝑢) = E𝑄

[︁
1/𝑀 (𝛽)

𝑇𝑢 (𝛩 ) (𝛩) 1{𝑇𝑢 (𝛩 )<∞}
]︁

for any 𝑢 ∈ R+. (6)

However, the latter formula is quite complicated mainly due to the (possible) depen-
dence between 1/𝑀 (𝛽)

𝑇𝑢 (𝛩 ) (𝛩) and 1{𝑇𝑢 (𝛩 )<∞}. Thus, we have to carefully choose an 

appropriate pair (𝜌,𝑄) ∈ 𝔐+(𝐷) ×ℳ∗,ℓ
𝑆,Exp(𝜌(𝛩 ) ) , or equivalently an appropriate pair 

(𝛽, 𝜉) ∈ ℱℓ
𝑃,𝛩 ×ℛ∗,ℓ

+ (𝐷), in order to eliminate such a dependence. This motivates us 
to formulate and prove the following result.
Theorem 3. Assume that the pair (𝑃,𝛩) satisfies condition (5). The following hold 
true:

(i) for each pair (𝜌,𝑄) ∈ 𝔐+(𝐷) × ℳ∗,ℓ
𝑆,Exp(𝜌(𝛩 ) ) satisfying 𝑐(𝛩) ≤ 𝑝(𝑄,𝛩)

𝑃↾𝜎(𝛩)-a.s., there exists an essentially unique pair (𝛽, 𝜉) ∈ ℱℓ
𝑃,𝛩 ×ℛ∗,ℓ

+ (𝐷), 
where 𝑒𝛾 and 𝜉 are the Radon–Nikodým derivatives of 𝑄𝑋1 with respect to 𝑃𝑋1

and of 𝑄𝛩 with respect to 𝑃𝛩 , respectively, satisfying conditions (∗), (𝑅𝑃𝑀𝜉 )
and

𝜓(𝑢) =
∫

1 
𝜉 (𝛩) · 𝑒

−𝑆 (𝛾)
𝑇𝑢 (𝛩) ·

𝑁𝑇𝑢 (𝛩)∏︂
𝑗=1 

𝑑K(𝛩) 
𝑑Exp(𝜌(𝛩)) (𝑊 𝑗 ) 𝑑𝑄 < 1 (ruin(𝑃))

for all 𝑢 ∈ R+;

(ii) conversely, for every pair (𝛽, 𝜉) ∈ ℱℓ
𝑃,𝛩 ×ℛ∗,ℓ

+ (𝐷) with 

𝑐(𝛩) ≤ E𝑃 [𝑋1 · 𝑒𝛽 (𝑋1 ,𝛩 ) | 𝛩]
E𝑃 [𝑊1 | 𝛩] 𝑃↾𝜎(𝛩)-a.s.,

there exists a unique pair (𝜌,𝑄) ∈ 𝔐+(𝐷) ×ℳ∗,ℓ
𝑆,Exp(𝜌(𝛩 ) ) determined by con-

ditions (∗) and (𝑅𝑃𝑀𝜉 ), such that 𝑒𝛾 and 𝜉 are the Radon–Nikodým derivatives 
of 𝑄𝑋1 with respect to 𝑃𝑋1 and of 𝑄𝛩 with respect to 𝑃𝛩 , respectively, satisfying 
conditions 𝑄({𝑇𝑢 (𝛩) < ∞}) = 1 and (ruin(𝑃));

(iii) in both cases (i) and (ii), there exist an essentially unique rcp {𝑄 𝜃}𝜃∈𝐷 of 𝑄
over 𝑄𝛩 consistent with 𝛩 and a 𝑃𝛩-null set 𝑀∗,𝑄 ∈ 𝔅(𝐷), containing the 
𝑃𝛩-null set ˜︁𝐿∗∗ appearing in Theorem 1, satisfying for any 𝜃 ∉ 𝑀∗,𝑄 conditions 
𝑄 𝜃 ∈ ℳ∗,ℓ

𝑆,Exp(𝜌(𝜃 ) ) , (˜︁∗), (𝑅𝑃𝑀𝜃 ), 𝑄 𝜃 ({𝜏𝑢 (𝜃) < ∞}) = 1 and 

𝜓𝜃 (𝑢) =
∫
𝑒
−𝑆 (𝛾)

𝜏𝑢 (𝜃 ) ·
𝑁𝜏𝑢 (𝜃 )∏︂
𝑗=1 

𝑑K(𝜃) 
𝑑Exp(𝜌(𝜃)) (𝑊 𝑗 ) 𝑑𝑄 𝜃 < 1 (ruin(𝑃𝜃 ))

for all 𝑢 ∈ R+.
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Proof. Fix an arbitrary 𝑢 ∈ R+.
Ad (i): Since (𝜌,𝑄) ∈ 𝔐+(𝐷) ×ℳ∗,ℓ

𝑆,Exp(𝜌(𝛩 ) ) , it follows by Theorem 1(i) that there 

exists an essentially unique pair (𝛽, 𝜉) ∈ ℱℓ
𝑃,𝛩 × ℛ∗,ℓ

+ (𝐷), where 𝑒𝛾 and 𝜉 are the 
Radon–Nikodým derivatives of 𝑄𝑋1 with respect to 𝑃𝑋1 and of 𝑄𝛩 with respect to 𝑃𝛩 , 
respectively, satisfying conditions (∗) and (𝑅𝑃𝑀𝜉 ) such that the family 𝑀 (𝛽) (𝛩) is a 
𝑃-a.s. positive martingale in ℒ1(𝑃). But since 𝑐(𝛩) ≤ 𝑝(𝑄,𝛩) 𝑃↾𝜎(𝛩)-a.s., we get 
by Lemma 2 that 𝑄({𝑇𝑢 (𝛩) < ∞}) = 1, implying, together with equality (6) and the 
fact that 𝐽𝑇𝑢 (𝛩 ) = 0, the equality in condition (ruin(𝑃)). The inequality in (ruin(𝑃))
follows by (5) and Lemma 2.
Ad (ii): Since (𝛽, 𝜉) ∈ ℱℓ

𝑃,𝛩×ℛ∗,ℓ
+ (𝐷), we can apply Theorem 1(ii) to obtain a unique 

pair (𝜌, 𝑄) ∈ 𝔐+(𝐷) × ℳ∗,ℓ
𝑆,Exp(𝜌(𝛩 ) ) determined by conditions (∗), (𝑅𝑃𝑀𝜉 ) and 

such that 𝑒𝛾 and 𝜉 are the Radon–Nikodým derivatives of 𝑄𝑋1 with respect to 𝑃𝑋1 and 
of 𝑄𝛩 with respect to 𝑃𝛩 , respectively. But since

𝑐(𝛩) ≤ E𝑃 [𝑋1 · 𝑒𝛽 (𝑋1 ,𝛩 ) | 𝛩]
E𝑃 [𝑊1 | 𝛩] 𝑃↾𝜎(𝛩)-a.s. ⇔ 𝑐(𝛩) ≤ 𝑝(𝑄,𝛩) 𝑃↾𝜎(𝛩)-a.s.,

we get by Lemma 2 that 𝑄({𝑇𝑢 (𝛩) < ∞}) = 1. Condition (ruin(𝑃)) follows as in (i).
Ad (iii): In both cases (i) and (ii), according to Theorem 1(iii), there exist an essentially 
unique rcp {𝑄 𝜃}𝜃∈𝐷 of 𝑄 over 𝑄𝛩 consistent with 𝛩 and a 𝑃𝛩-null set ˜︁𝐿∗∗ ∈ 𝔅(𝐷)
satisfying for each 𝜃 ∉ ˜︁𝐿∗∗ conditions 𝑄 𝜃 ∈ ℳ∗,ℓ

𝑆,Exp(𝜌(𝜃 ) ) , (˜︁∗) and (𝑅𝑃𝑀𝜃 ). But 
since 𝑐(𝛩) ≤ 𝑝(𝑄,𝛩) 𝑃↾𝜎(𝛩)-a.s., it follows as in Remark 4 that there exists a 
𝑃𝛩-null set 𝑊𝑄,1 ∈ 𝔅(𝐷) such that 𝑐(𝜃) ≤ 𝑝(𝑄 𝜃 ) for each 𝜃 ∉ 𝑊𝑄,1. Fix an 
arbitrary 𝜃 ∉ 𝑀∗,𝑄 := ˜︁𝐿∗∗ ∪𝑊𝑄,1 ∈ 𝔅(𝐷). The inequality 𝑐(𝜃) ≤ 𝑝(𝑄 𝜃 ), along with 
[30], Corollary 7.1.4, implies that 𝑄 𝜃 ({𝜏𝑢 (𝜃) < ∞}) = 1. Taking now into account 
condition (𝑅𝑃𝑀𝜃 ), Lemma 3(ii) and the fact that ruin occurs 𝑄 𝜃-a.s., and using the 
arguments appearing in the proof of assertion (i), we get condition (ruin(𝑃𝜃 )). □

Remark 7. Assume that the pair (𝑃,𝛩) satisfies condition (5).
(a) The class of all functions 𝛽 ∈ ℱℓ

𝑃,𝛩 satisfying condition E𝑃 [𝑊1 | 𝛩] · 𝑐(𝛩) ≤
E𝑃 [𝑋1 · 𝑒𝛽 (𝑋1 ,𝛩 ) | 𝛩] 𝑃↾𝜎(𝛩)-a.s. is a strict subclass of ℱℓ

𝑃,𝛩 .

In fact, let 𝐷 := (0,∞) and consider a function 𝛽 ∈ ℱℓ
𝑃,𝛩 with 𝛽 ≤ 0. We then get

E𝑃 [𝑋1 · 𝑒𝛽 (𝑋1 ,𝛩 ) | 𝛩]
E𝑃 [𝑊1 | 𝛩] ≤ E𝑃 [𝑋1 | 𝛩] 

E𝑃 [𝑊1 | 𝛩] =
E𝑃 [𝑋1] 

E𝑃 [𝑊1 | 𝛩] < 𝑐(𝛩) 𝑃↾𝜎(𝛩)-a.s.,

where the equality follows by condition (a2), and the second inequality is due to 
condition (5).
(b) The class of all probability measures 𝑄 ∈ ℳ∗,ℓ

𝑆,Exp(𝜌(𝛩 ) ) satisfying condition 

𝑐(𝛩) ≤ 𝑝(𝑄,𝛩) 𝑃↾𝜎(𝛩)-a.s. is a strict subclass of ℳ∗,ℓ
𝑆,Exp(𝜌(𝛩 ) ) .

In fact, consider the pair (𝛽, 𝜉) ∈ ℱℓ
𝑃,𝛩×ℛ∗,ℓ

+ (𝐷), where 𝛽 is the function defined 
in (a). It then follows by Theorem 1(ii) that conditions (∗) and (𝑅𝑃𝑀𝜉 ) determine 
a unique pair (𝜌,𝑄) ∈ 𝔐+(𝐷) ×ℳ∗,ℓ

𝑆,Exp(𝜌(𝛩 ) ) , such that 𝑒𝛾 and 𝜉 are the Radon–
Nikodým derivatives of 𝑄𝑋1 with respect to 𝑃𝑋1 and of 𝑄𝛩 with respect to 𝑃𝛩 , 
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respectively. However, for this particular 𝑄 we have that

𝑝(𝑄,𝛩) = 𝜌(𝛩) · E𝑄 [𝑋1] = E𝑃 [𝑋1 · 𝑒𝛽 (𝑋1 ,𝛩 ) | 𝛩]
E𝑃 [𝑊1 | 𝛩] 𝑃↾𝜎(𝛩)-a.s.

≤ E𝑃 [𝑋1 | 𝛩] 
E𝑃 [𝑊1 | 𝛩] =

E𝑃 [𝑋1] 
E𝑃 [𝑊1 | 𝛩] < 𝑐(𝛩) 𝑃↾𝜎(𝛩)-a.s.

where the second equality follows from condition (∗) and the fact that 𝑒𝛾 is a 𝑃𝑋1 -a.s. 
positive Radon–Nikodým derivative of 𝑄𝑋1 with respect to 𝑃𝑋1 , the third equality 
follows by condition (a2), while the second inequality follows by condition (5).
Remark 8. Let 𝑃 ∈ ℳ∗,2

𝑆,K(𝛩 ) . Theorems 2 and 3 reveal an interesting connection 
between the pricing of insurance in an arbitrage-free market and the ruin probability 
of the corresponding reserve process. 

In fact, for a given pair (𝛽, 𝜉) ∈ ℱ2
𝑃,𝛩 × ℛ∗,2

+ (𝐷), consider the reserve process 
𝑅𝑢 (𝛩) := {𝑅𝑢𝑡 (𝛩)}𝑡∈R+ defined by

𝑅𝑢𝑡 (𝛩) := 𝑅𝑢𝑡
(︁
𝛩,𝑉𝑡 (𝛩)

)︁
:= 𝑢 −𝑉𝑡 (𝛩) = 𝑢 + 𝑡 · E𝑃 [𝑋1 · 𝑒𝛽 (𝑋1 ,𝛩 ) | 𝛩]

E𝑃 [𝑊1 | 𝛩] − 𝑆𝑡

for any 𝑡, 𝑢 ∈ R+. It then follows by Theorem 2 that conditions (∗) and (𝑅𝑃𝑀𝜉 )
determine a unique pair (𝜌,𝑄) ∈ 𝔐+(𝐷) × ℳ∗,2

𝑆,Exp(𝜌(𝛩 ) ) , such that the process 
𝑉T (𝛩), where T := [0, 𝑇] with 𝑇 > 0, satisfies condition (NFLVR), and so the process 
𝑅𝑢
T
(𝛩) does as well. On the other hand, if the pair (𝑃,𝛩) satisfies condition (5), we 

get

𝑝(𝑃,𝛩) < 𝑐(𝛩) = E𝑃 [𝑋1 · 𝑒𝛽 (𝑋1 ,𝛩 ) | 𝛩]
E𝑃 [𝑊1 | 𝛩] = 𝑝(𝑄,𝛩) 𝑃↾𝜎(𝛩)-a.s.;

hence, we can apply Theorem 3, to deduce that the corresponding ruin probability 
𝜓(𝑢) can be computed by using the representation appearing in condition (ruin(𝑃)).

The following example shows that the classical approach to the ruin problem via a 
change of measures technique in the case of CPPs (cf., e.g., [28], Section 8.2) appears 
as a special instance of Theorem 3.
Example 1. Let 𝐷 = (0,∞), 𝜉 ∈ ℛ∗,ℓ

+ (𝐷) and 𝑃 ∈ ℳ∗,ℓ
𝑆,Exp(𝛩 ) . It follows by 

Remark 3 that there exists a 𝑃𝛩-null set 𝑊𝑃 ∈ 𝔅(𝐷), such that 𝑃𝜃 ∈ ℳ∗,ℓ
𝑆,Exp(𝜃 )

and (𝑃𝜃 )𝑋1 = 𝑃𝑋1 for all 𝜃 ∉ 𝑊𝑃; hence we may write 𝑀𝑋1 = 𝑀𝑃𝑋1
= 𝑀(𝑃𝜃 )𝑋1

for 
any 𝜃 ∉ 𝑊𝑃 . Assume that 𝑀𝑋1 (𝑟) < ∞ for some 𝑟 ∈ [0, 𝑟𝑋1 ), where 𝑟𝑋1 := sup{𝑟 ≥
0 : 𝑀𝑋1 (𝑟) < ∞}, and that the pair (𝑃,𝛩) satisfies condition (5). It then follows by 
Remark 5, that there exists a 𝑃𝛩-null set 𝑂𝑃 ∈ 𝔅(𝐷), containing the 𝑃𝛩-null set 
𝑊𝑃 ∈ 𝔅(𝐷), such that 𝑃𝜃 ∈ ℳ∗,ℓ

𝑆,Exp(𝜃 ) and

𝑐(𝜃) > 𝑝(𝑃𝜃 ) (7)

for every 𝜃 ∉ 𝑂𝑃 .
For arbitrary but fixed 𝜃 ∉ 𝑂𝑃 define the function 𝜅𝜃 : [0, 𝑟𝑋1 ) → R by means of 

𝜅𝜃 (𝑟) := 𝜃 · (𝑀𝑋1 (𝑟) − 1) − 𝑐(𝜃) · 𝑟 for every 𝑟 ∈ [0, 𝑟𝑋1 ) (compare [28], page 89). 
Define the function 𝜅 : (𝐷 \𝑂𝑃) × [0, 𝑟𝑋1 ) → R by means of 𝜅(𝜃, 𝑟) := 𝜅𝜃 (𝑟) for all 
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(𝜃, 𝑟) ∈ (𝐷 \ 𝑂𝑃) × [0, 𝑟𝑋1 ), and for fixed 𝑟 ∈ [0, 𝑟𝑋1 ) denote by 𝜅𝛩 (𝑟) the random 
variable defined by 𝜅𝛩 (𝑟)(𝜔) := 𝜅𝛩 (𝜔) (𝑟) for any 𝜔 ∈ 𝛺.

It can be easily seen that for any fixed 𝜃 ∉ 𝑂𝑃 the function 𝜅𝜃 is strictly convex 
on [0, 𝑟𝑋1 ), or equivalently the function 𝜅′𝜃 is strictly increasing on [0, 𝑟𝑋1 ). By 
condition (7), we get 𝜅′𝜃 (0) < 0; hence there exists a number 𝑟𝑚(𝜃) ∈ (0, 𝑟𝑋1 ) such 
that 𝜅𝜃 (𝑟𝑚 (𝜃)) = min𝑟∈ (0,𝑟𝑋1 ) 𝜅𝜃 (𝑟) < 0. Put 𝑟∗ := sup𝜃∈𝐷\𝑂𝑃

𝑟𝑚 (𝜃) and assume 
that 𝑟∗ < 𝑟𝑋1 .

Fix an arbitrary 𝑟 ∈ [𝑟∗, 𝑟𝑋1 ), and define the function 𝛽𝑟 : 𝐷 × 𝐷 → R by means 
of 𝛽𝑟 (𝑥, 𝜃) := 𝑟 · 𝑥 if (𝑥, 𝜃) ∈ 𝐷 × (𝐷 \ 𝑂𝑃) and 𝛽𝑟 (𝑥, 𝜃) := 0 if (𝑥, 𝜃) ∈ 𝐷 × 𝑂𝑃 . 
A standard computation justifies that 𝛽𝑟 ∈ ℱℓ

𝑃,𝛩 , with 𝛾𝑟 (𝑥) = 𝑟 · 𝑥 − ln𝑀𝑋1 (𝑟) and 
𝛼𝑟 (𝜃) = 𝑀𝑋1 (𝑟) if (𝑥, 𝜃) ∈ 𝐷 × (𝐷 \𝑂𝑃) and 𝛾𝑟 (𝑥) = 𝛼𝑟 (𝜃) = 0 if (𝑥, 𝜃) ∈ 𝐷 ×𝑂𝑃 .

Fix an arbitrary 𝜃 ∉ 𝑂𝑃 . As the function 𝜅𝜃 is strictly convex on [0, 𝑟𝑋1) and 
𝜅′𝜃 (𝑟𝑚 (𝜃)) = 0, we infer that 𝜅′𝜃 (𝑟) ≥ 0, implying 𝜃 ·𝑀 ′

𝑋1
(𝑟)−𝑐(𝜃) ≥ 0, or equivalently 

𝜃 · E𝑃𝜃 [𝑋1 · 𝑒𝛽𝑟 (𝑋1 , 𝜃 ) ] ≥ 𝑐(𝜃), and so by [18], Lemma 3.5, 

𝛩 · E𝑃

[︁
𝑋1 · 𝑒𝛽𝑟 (𝑋1 ,𝛩 ) | 𝛩]︁ ≥ 𝑐(𝛩) 𝑃↾𝜎(𝛩)-a.s..

Thus, we may apply Theorem 3(ii), in order to obtain a unique pair (𝜌𝑟 , 𝑄 (𝑟 ) ) ∈
𝔐+(𝐷) ×ℳ∗,ℓ

𝑆,Exp(𝜌(𝛩 ) ) determined by conditions (∗) and (𝑅𝑃𝑀𝜉 ) and satisfying the 
conclusions of the statement (ii) of this theorem. Since 𝛼𝑟 (𝛩) = ln𝑀𝑋1 (𝑟) 𝑃↾𝜎(𝛩)-
a.s, conditions (∗) and (𝑅𝑃𝑀𝜉 ) become 

𝜌𝑟 (𝛩) = 𝛩 · 𝑀𝑋1 (𝑟) 𝑃↾𝜎(𝛩)-a.s.,

and 

𝑄 (𝑟 ) (𝐴) =
∫
𝐴
𝜉 (𝛩) · 𝑒𝑟 ·𝑆𝑡−𝑡 ·𝛩 · (𝑀𝑋1 (𝑟 )−1) 𝑑𝑃 =

∫
𝐴
𝜉 (𝛩) · 𝑒−𝑟 · (𝑅𝑢

𝑡 (𝛩 )−𝑢)−𝑡 ·𝜅𝛩 (𝑟 ) 𝑑𝑃

for every 𝑢 ∈ R+, 0 ≤ 𝑠 ≤ 𝑡, and 𝐴 ∈ ℱ𝑠 , respectively. Conditions (𝑅𝑃𝑀𝜉 )
and (ruin(𝑃)) yield

𝜓(𝑢) = E𝑄 (𝑟 )

[︃
𝑒
𝑟 ·𝑅𝑢

𝑇𝑢 (𝛩) (𝛩 )+𝜅𝛩 (𝑟 ) ·𝑇𝑢 (𝛩 )

𝜉 (𝛩) 

]︃
· 𝑒−𝑟 ·𝑢 for all 𝑢 ∈ R+. (8)

In particular, if the distribution of 𝛩 is degenerate, i.e., if 𝑃𝛩 = 𝛿𝜃0 for some 
𝜃0 ∈ 𝐷, where 𝛿𝜃0 is the Dirac measure on 𝔅(𝐷) concentrated on 𝜃0, then 𝑆 is 
reduced to a 𝑃-CPP(𝜃0, 𝑃𝑋1 ). Since 𝜉 is a 𝑃𝛩-a.s. positive Radon–Nikodým derivative 
of 𝑄 (𝑟 )

𝛩 := (𝑄 (𝑟 ) )𝛩 with respect to 𝑃𝛩 , we deduce that 𝜉 (𝜃0) = 1 and 𝑄 (𝑟 )
𝛩 = 𝛿𝜃0 ; 

hence 𝑄 (𝑟 ) ∈ ℳ∗,ℓ
𝑆,Exp(𝜌𝑟 (𝜃0 ) ) . Thus, condition (8) reduces to

𝜓(𝑢) = E𝑄 (𝑟 )
[︁
𝑒
𝑟 ·𝑅𝑢

𝑇𝑢 (𝜃0 )
(𝜃0 )+𝜅𝜃0 (𝑟 ) ·𝑇𝑢 (𝜃0 )]︁ · 𝑒−𝑟 ·𝑢 for all 𝑢 ∈ R+. (9)

If in addition an adjustment coefficient 𝜂 := 𝜂(𝜃0) for the reserve process 𝑅𝑢𝑡 (𝜃0)
exists (cf., e.g., [28], page 90, for the definition), then by choosing 𝑟 = 𝜂, condition (9)
becomes

𝜓(𝑢) = E𝑄 (𝜂)
[︁
𝑒
𝜂 ·𝑅𝑢

𝑇𝑢 (𝜃0 )
(𝜃0 )]︁ · 𝑒−𝜂 ·𝑢 for all 𝑢 ∈ R+,

compare [28], page 173.
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Note that the assumption 𝑟∗ < 𝑟𝑋1 is fulfilled, e.g., in the case 𝑃𝑋1 = Exp(𝑧), where 
𝑧 > 0 is a real constant, 𝑃𝛩 = Ga(𝑎, 𝑏) with 𝑎, 𝑏 ∈ (0,∞) and 𝑐(𝜃) = (1+𝑒−𝜃 ) ·𝜃 ·𝑧−1, 
since by standard computations we have 𝑟𝑚(𝜃) = 𝑧 − 𝑧 · (1 + 𝑒−𝜃 )−1/2 ∈ (0, 𝑧) and 
𝑟∗ = 𝑧 − 𝑧√

2
∈ (0, 𝑧).

One of the main drawbacks of the method used in Example 1 is the assumption 
that 𝑀𝑋1 (𝑟) exists for some 𝑟 > 0, since it excludes heavy-tailed distributions. In 
the following example we consider again 𝑃 ∈ ℳ∗,ℓ

𝑆,Exp(𝛩 ) and we demonstrate how 
Theorem 3 can be used to handle such cases.
Example 2. Let 𝐷 := (0,∞), 𝜉 ∈ ℛ∗,ℓ

+ (𝐷) and 𝑃 ∈ ℳ∗,ℓ
𝑆,Exp(𝛩 ) with 𝑃𝑋1 = Par(𝑎, 𝑏)

for some real constants 𝑎 > 1 and 𝑏 > 0 (cf., e.g., [30], page 180 for the definition of the 
Pareto distribution). Assume that the pair (𝑃,𝛩) satisfies condition (5). It then follows 
by Remark 5, that there exists a 𝑃𝛩-null set 𝑂𝑃 ∈ 𝔅(𝐷), containing the 𝑃𝛩-null set 
𝑊𝑃 ∈ 𝔅(𝐷) appearing in Remark 3, such that for any 𝜃 ∉ 𝑂𝑃 condition (7) is valid and 
𝑃𝜃 ∈ ℳ∗,ℓ

𝑆,Exp(𝜃 ) with (𝑃𝜃 )𝑋1 = 𝑃𝑋1 . For any function 𝑧 ∈ 𝔐+(𝐷) with 𝑧(𝛩) > 𝑐(𝛩)
𝑃↾𝜎(𝛩)-a.s., define the function 𝛽𝑧 : 𝐷×𝐷 → R by means of 𝛽𝑧 (𝑥, 𝜃) := ln 𝑧 (𝜃 ) 

𝜃 ·E𝑃 [𝑋1 ]
if (𝑥, 𝜃) ∈ 𝐷 × (𝐷 \ 𝑂𝑃) and 𝛽𝑧 (𝑥, 𝜃) := 0 if (𝑥, 𝜃) ∈ 𝐷 × 𝑂𝑃 . It then follows that 
𝛽𝑧 ∈ ℱℓ

𝑃,𝛩 , with 𝛾𝑧 (𝑥) = 0 and 𝛼𝑧 (𝜃) = ln 𝑧 (𝜃 ) 
𝜃 ·E𝑃 [𝑋1 ] if (𝑥, 𝜃) ∈ 𝐷 × (𝐷 \ 𝑂𝑃) and 

𝛾𝑧 (𝑥) = 𝛼𝑧 (𝜃) = 0 if (𝑥, 𝜃) ∈ 𝐷 ×𝑂𝑃 . Since

E𝑃 [𝑋1 · 𝑒𝛽 (𝑋1 ,𝛩 ) | 𝛩]
E𝑃 [𝑊1 | 𝛩] = 𝑧(𝛩) · E𝑃 [𝑋1 | 𝛩]

E𝑃 [𝑋1] 
= 𝑧(𝛩) > 𝑐(𝛩) 𝑃↾𝜎(𝛩)-a.s.,

where the second equality follows by condition (a2), we may apply Theorem 3(ii) 
to construct a unique pair (𝜌𝑧, 𝑄 (𝑧) ) ∈ 𝔐+(𝐷) ×ℳ∗,ℓ

𝑆,Exp(𝜌(𝛩 ) ) determined by con-
ditions (∗) and (𝑅𝑃𝑀𝜉 ) and satisfying the conclusions of the statement (ii) of this 
theorem. Since 𝛼𝑧 (𝛩) = ln 𝑧 (𝛩 ) 

𝛩 ·E𝑃 [𝑋1 ] 𝑃↾𝜎(𝛩)-a.s, conditions (∗) and (𝑅𝑃𝑀𝜉 ) become

𝜌𝑧 (𝛩) = 𝑧(𝛩) 
E𝑃 [𝑋1]

𝑃↾𝜎(𝛩)-a.s.,

and

𝑄 (𝑧) (𝐴) =
∫
𝐴
𝜉 (𝛩) ·

(︃
𝜌𝑧 (𝛩)
𝛩

)︃𝑁𝑡

· 𝑒−𝑡 · (𝜌𝑧 (𝛩 )−𝛩 ) 𝑑𝑃

=
∫
𝐴
𝜉 (𝛩) ·

(︃
𝑧(𝛩) 

𝛩 · E𝑃 [𝑋1]

)︃𝑁𝑡

· 𝑒−
𝑡

E𝑃 [𝑋1 ] · (𝑧 (𝛩 )−𝛩 ·E𝑃 [𝑋1 ] ) 𝑑𝑃

for every 0 ≤ 𝑠 ≤ 𝑡 and 𝐴 ∈ ℱ𝑠 , respectively. Conditions (𝑅𝑃𝑀𝜉 ) and (ruin(𝑃))
imply

𝜓(𝑢) =
∫

1 
𝜉 (𝛩) ·

(︃
𝛩 · E𝑃 [𝑋1]
𝑧(𝛩) 

)︃𝑁𝑇𝑢 (𝛩)
· 𝑒−

𝑇𝑢 (𝛩) 
E𝑃 [𝑋1 ] · (𝛩 ·E𝑃 [𝑋1 ]−𝑧 (𝛩 ) )

𝑑𝑄 (𝑧)

=
∫

1 
𝜉 (𝛩) ·

(︃
𝛩 · 𝑏 

(𝑎 − 1) · 𝑧(𝛩)

)︃𝑁𝑇𝑢 (𝛩)
· 𝑒− (𝑎−1) ·𝑇𝑢 (𝛩)

𝑏 · (𝛩 · 𝑏
𝑎−1 −𝑧 (𝛩 ) ) 𝑑𝑄 (𝑧)

for any 𝑢 ∈ R+.
Note that the arguments appearing in the above example, remain true for any claim 

size distribution 𝑃𝑋1 with finite expectations.
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5 Mixed premium calculation principles and change of measures

In this section, we discuss implications of our results for the computation of premium 
calculation principles in a model of an insurance market possessing the property 
(NFLVR). In this context, the financial pricing of insurance (FPI for short) approach 
proposed by Delbaen and Haezendonck [8] plays a key role.

Let 𝑇 > 0. According to the FPI approach, the liabilities of an insurance company 
over a fixed period of time T := [0, 𝑇] can be represented as a price process 𝑈T :=
{𝑈𝑡}𝑡∈T defined by 𝑈𝑡 := 𝑝𝑡 + 𝑆𝑡 for any 𝑡 ∈ T, where 𝑆𝑡 represents the total amount 
of claims paid up to time 𝑡 and 𝑝𝑡 represents the total premium for the remaining risk 
𝑆𝑇 − 𝑆𝑡 . Under the assumption that the random behavior of the price process 𝑈T is 
described by the given probability measure 𝑃 on 𝛴 , and that the insurance market is 
liquid enough (see [8], Section 1, for more details) by applying the Harrison–Kreps 
theory (see Harrison and Kreps [15]) it follows that the existence of a 2-martingale 
measure 𝑄 on 𝛴 for 𝑈T which is equivalent to 𝑃 implies the elimination of arbitrage 
opportunities in the insurance market and vice versa (see [8], Section 1). However, 
as the insurance market is not, in general, complete (see, e.g., [11], page 20, or [31], 
Section 4) the measure 𝑄 is not unique; hence the next step should be the selection of 
such a measure 𝑄.

Under the assumption that the aggregate process 𝑆 is a 𝑃-CPP, Delbaen and 
Haezendonck [8] were interested in all those measures 𝑄 with linear premiums of the 
form 

𝑝𝑡 = (𝑇 − 𝑡) · 𝑝(𝑄) for any 𝑡 ∈ T,
where 𝑝(𝑄) is the premium density under 𝑄. But as 𝑈T is a martingale under 𝑄 if 
and only if 𝑈T − 𝑝0 = {𝑆𝑡 − 𝑝(𝑄) · 𝑡}𝑡∈T is such, Delbaen and Haezendonck faced 
the problem of characterizing all those risk-neutral measures 𝑄 on 𝛴 under which the 
compensator of 𝑆T is a linear deterministic function of 𝑡 ∈ T. As the linearity of the 
premiums implies that 𝑆T is a CPP under 𝑄 and vice versa (see [8], Section 1), the 
above problem is equivalent to the following one:

If 𝑆 is a CPP under 𝑃, then characterize all progressively equivalent to 𝑃 proba-
bility measures 𝑄 on 𝛴 such that 𝑆 remains a CPP under 𝑄.

Recall that under the FPI framework, a premium calculation principle (written 
PCP for short) is a probability measure 𝑄 on 𝛴 which is progressively equivalent to 𝑃, 
the process 𝑆 is a 𝑄-CPP and 𝑋1 ∈ ℒ1(𝑄), see [8], Definition 3.1. If the distribution 
𝑄𝛩 is not degenerate, then the probability measure 𝑄 ∈ ℳ∗,1

𝑆,Exp(𝜌(𝛩 ) ) constructed in 
Theorem 1(ii) fails to be a PCP. Nevertheless, by virtue of Theorem 1(iii) there exists 
an essentially unique rcp {𝑄 𝜃}𝜃∈𝐷 of 𝑄 over 𝑄𝛩 consistent with 𝛩 such that for 
𝑃𝛩-a.a. 𝜃 ∈ 𝐷 the probability measures 𝑄 𝜃 are PCPs. Thus, it seems natural to call 
every probability measure 𝑄 ∈ ℳ∗,1

𝑆,Exp(𝜌(𝛩 ) ) a mixed PCP.
In order for a mixed PCP to provide a realistic and viable pricing framework 

it should give more weight to unfavorable events in a risk-averse environment, i.e., 
conditions

𝑝(𝑃,𝛩) < 𝑝(𝑄,𝛩) < ∞ 𝑃↾𝜎(𝛩)-a.s.. (10)
and

𝑝(𝑃) < 𝑝(𝑄) < ∞ (11)
must hold true.



22 S. M. Tzaninis, N. D. Macheras

Remark 9. Let (𝜌, 𝑄) ∈ 𝔐+(𝐷) ×ℳ∗,ℓ
𝑆,Exp(𝜌(𝛩 ) ) and let {𝑄 𝜃}𝜃∈𝐷 be the rcp of 𝑄

over 𝑄𝛩 consistent with 𝛩 appearing in Theorem 1(iii). The following statements are 
equivalent:

(i) 𝑝(𝑃,𝛩) < 𝑝(𝑄,𝛩) < ∞ 𝑃↾𝜎(𝛩)-a.s.;

(ii) there exists a 𝑃𝛩-null set ˜︁𝑀𝑃,𝑄 ∈ 𝔅(𝐷) containing the 𝑃𝛩-null sets ˜︁𝐿∗∗ and 
𝑊𝑃,1 ∪𝑊𝑄,1 appearing in Theorem 1(iii) and Remark 4, respectively, such that 
𝑄 𝜃 ∈ ℳ∗,ℓ

𝑆,Exp(𝜌(𝜃 ) ) and 𝑝(𝑃𝜃 ) < 𝑝(𝑄 𝜃 ) < ∞ for any 𝜃 ∉ ˜︁𝑀𝑃,𝑄.

In fact, first note that by [18], Lemma 3.5(i), there exists a 𝑃𝛩-null set 𝑀𝑃,𝑄 ∈
𝔅(𝐷) such that statement (i) holds if and only if 𝑝(𝑃, 𝜃) < 𝑝(𝑄, 𝜃) < ∞ for all 
𝜃 ∉ 𝑀𝑃,𝑄. Putting ˜︁𝑀𝑃,𝑄 := ˜︁𝐿∗∗ ∪ 𝑀𝑃,𝑄 ∪ 𝑊𝑃,1 ∪ 𝑊𝑄,1 ∈ 𝔅(𝐷) and applying 
Theorem 1(iii) and Remark 4 we infer that 𝑝(𝑃𝜃 ) < 𝑝(𝑄 𝜃 ) < ∞ for all 𝜃 ∉ ˜︁𝑀𝑃,𝑄, 
i.e., (i)⇔(ii).

However, the existence of a mixed PCP does not, in general, guarantee the validity 
of conditions (10) and (11) as the next two examples demonstrate. In the first example, 
we construct a mixed PCP that does not satisfy condition (10) and leads to a 𝑃-a.s. 
ruin.

Example 3. Let 𝑃 ∈ ℳ∗,ℓ
𝑆,K(𝛩 ) and 𝐷 := (0,∞). Consider the pair (𝛽, 𝜉) ∈ ℱℓ

𝑃,𝛩 ×
ℛ∗,ℓ

+ (𝐷) with 𝛽 ≤ 0. Applying Theorem 1(ii) and (v) we obtain a unique pair (𝜌,𝑄) ∈
𝔐+(𝐷) × ℳ∗,ℓ

𝑆,Exp(𝜌(𝛩 ) ) determined by conditions (∗) and (𝑅𝑃𝑀𝜉 ), satisfying the 
conclusions of the statement (ii) of this theorem, and such that 𝑄 is an ℓ-martingale 
measure for the process 𝑉 (𝛩); hence for the reserve process 𝑅𝑢(𝛩) (see Definition 2) 
with 𝑐(𝛩) = 𝑝(𝑄,𝛩) = E𝑃 [𝑋1 ·𝑒𝛽 (𝑋1 ,𝛩) |𝛩 ]

E𝑃 [𝑊1 |𝛩 ] 𝑃↾𝜎(𝛩)-a.s. However, for this particular 
choice of mixed PCP one has that 𝑝(𝑄,𝛩) < 𝑝(𝑃,𝛩) 𝑃↾𝜎(𝛩)-a.s. which according 
to Lemma 2 leads to a 𝑃-a.s. ruin.

In the next example, we construct a mixed PCP for which condition (10) holds but 
condition (11) fails.

Example 4. Let 𝐷 := (0,∞) and 𝑃 ∈ ℳ∗,ℓ
𝑆,Exp(𝛩 ) with 𝑃𝛩 = Exp(1). Consider 

the pair (𝛽, 𝜉) ∈ ℱℓ
𝑃,𝛩 × ℛ∗,ℓ

+ (𝐷) with 𝛽(𝑥, 𝜃) := ln 2 for all (𝑥, 𝜃) ∈ 𝐷 × 𝐷 and 
𝜉 (𝜃) := 4 · 𝑒−3·𝜃 for any 𝜃 ∈ 𝐷. By Theorem 1(ii) and (v) we have that conditions (∗)
and (𝑅𝑃𝑀𝜉 ) determine a unique pair (𝜌,𝑄) ∈ 𝔐+(𝐷) × ℳ∗,ℓ

𝑆,Exp(𝜌(𝛩 ) ) , satisfying 
the conclusions of the statement (ii) of this theorem, and such that the reserve process 
𝑅𝑢 (𝛩), with 𝑐(𝛩) = 𝑝(𝑄,𝛩) = 2 · 𝛩 · E𝑃 [𝑋1] 𝑃↾𝜎(𝛩)-a.s., is a martingale in 
ℒℓ (𝑄). Even though the conditional premium densities satisfy condition (10), the 
corresponding mixed premium densities satisfy the reverse inequality since 𝑝(𝑄) =
E𝑃 [𝑋1 ]

2 and 𝑝(𝑃) = E𝑃 [𝑋1].
Examples 3 and 4 raise the question when a mixed PCP satisfies conditions (10)

and (11) or the implication (10)⇒(11). In the next proposition we find sufficient 
conditions for the validity of the implication (10)⇒(11). To prove it, we need the 
following lemma, which is a consequence of Schmidt [29], Theorem 2.2, but we write 
it exactly in the form needed for our purposes.
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Lemma 4. Let (𝛺, 𝛴, 𝑃) be an arbitrary probability space. If 𝑍 : 𝛺 → R is a random 
variable, 𝐽 ∈ 𝔅 is a Borel set satisfying 𝑃({𝑍 ∈ 𝐽}) = 1, and 𝑓 , 𝑔 : 𝐽 → R are 
monotonic functions of the same monotonicity which are either positive or for which 
𝑓 (𝑍), 𝑔(𝑍), 𝑓 (𝑍) · 𝑔(𝑍) ∈ ℒ1(𝑃), then

E𝑃

[︁
𝑓 (𝑍) · 𝑔(𝑍)]︁ ≥ E𝑃

[︁
𝑓 (𝑍)]︁ · E𝑃

[︁
𝑔(𝑍)]︁.

If the functions 𝑓 , 𝑔 have different monotonicity, then the opposite inequality is valid.

Proposition 3. Let 𝐷 := (0,∞), 𝑃 ∈ ℳ∗,ℓ
𝑆,K(𝛩 ) , (𝜌, 𝑄) ∈ 𝔐+(𝐷) ×ℳ∗,ℓ

𝑆,𝚲(𝜌(𝛩 ) ) and 

let 𝜉 ∈ ℛ∗,ℓ
+ (𝐷), ˜︁𝐿∗∗, {𝑄 𝜃}𝜃∈𝐷 be as in Theorem 1. If for all 𝜃 ∉ ˜︁𝐿∗∗ the functions 

𝜃 ↦→ 𝜉 (𝜃) and 𝜃 ↦→ 𝑝(𝑄 𝜃 ) are monotonic of the same monotonicity, then

(i) 𝑝(𝑃𝜃 ) ≤ 𝑝(𝑄 𝜃 ) for 𝑃𝛩-a.a. 𝜃 ∈ 𝐷 implies 𝑝(𝑃) ≤ 𝑝(𝑄) < ∞.

(ii) 𝑝(𝑃𝜃 ) < 𝑝(𝑄 𝜃 ) for 𝑃𝛩-a.a. 𝜃 ∈ 𝐷 implies 𝑝(𝑃) < 𝑝(𝑄) < ∞.

Proof. First note that given 𝑃 ∈ ℳ∗,ℓ
𝑆,K(𝛩 ) and (𝜌, 𝑄) ∈ 𝔐+(𝐷) × ℳ∗,ℓ

𝑆,𝚲(𝜌(𝛩 ) ) the 

existence of a function 𝜉 ∈ ℛ∗,ℓ
+ (𝐷) follows by Theorem 1(i), according to which 

there exists an essentially unique pair (𝛽, 𝜉) ∈ ℱℓ
𝑃,𝛩 × ℛ∗,ℓ

+ (𝐷) satisfying among 
others condition (∗).
Ad (i): Since for all 𝜃 ∉ ˜︁𝐿∗∗ the functions 𝜃 ↦→ 𝜉 (𝜃) and 𝜃 ↦→ 𝑝(𝑄 𝜃 ) are monotonic 
of the same monotonicity, if 𝑝(𝑃𝜃 ) ≤ 𝑝(𝑄 𝜃 ) for 𝑃𝛩-a.a. 𝜃 ∈ 𝐷 we get

𝑝(𝑃) = E𝑃𝛩

[︁
𝑝(𝑃𝜃 )

]︁ ≤ E𝑃𝛩

[︁
𝑝(𝑄 𝜃 )

]︁
= E𝑄𝛩

[︁
𝑝(𝑄 𝜃 ) ·

(︁
𝜉 (𝜃))︁−1]︁

≤ E𝑄𝛩

[︁
𝑝(𝑄 𝜃 )

]︁ · E𝑄𝛩

[︁(︁
𝜉 (𝜃))︁−1]︁

= E𝑄𝛩

[︁
𝑝(𝑄 𝜃 )

]︁
< ∞,

where the second inequality follows by Lemma 4, the last equality is a consequence 
of the fact that 𝜉 is a Radon–Nikodym derivative of 𝑄𝛩 with respect to 𝑃𝛩 , and the 
last inequality follows by 𝑝(𝑄•) ∈ ℒ1(𝑄𝛩); hence 𝑝(𝑃) ≤ 𝑝(𝑄) < ∞.
Ad (ii): If 𝑝(𝑃𝜃 ) < 𝑝(𝑄 𝜃 ) for 𝑃𝛩-a.a. 𝜃 ∈ 𝐷, then E𝑃𝛩 [𝑝(𝑃𝜃 )] < E𝑃𝛩 [𝑝(𝑄 𝜃 )]. 
The latter along with the arguments of the proof of (i) yields condition 𝑝(𝑃) =
E𝑃𝛩 [𝑝(𝑃𝜃 )] < E𝑃𝛩 [𝑝(𝑄 𝜃 )] = 𝑝(𝑄) < ∞. This completes the proof. □

6 Examples

In this section, applying our results, we provide some examples to show how to 
construct mixed PCPs 𝑄 satisfying conditions (10) and (11) and such that for any 
𝑇 > 0 the processes 𝑉T(𝛩) and 𝑅𝑢

T
(𝛩), for 𝑢 ∈ R+, appearing in Theorem 2 and 

Remark 8, respectively, have the property (NFLVR). Moreover, we provide explicit 
formulas for the ruin probability for the reserve process 𝑅𝑢 (𝛩) with respect to the 
original measure 𝑃.
Example 5. Take 𝐷 := (1,∞)2, and let 𝛩 = (𝛩1, 𝛩2) be a 𝐷-valued random vector on 
𝛺 with 𝛩1, 𝛩2 ∈ ℒ1(𝑃). Moreover, assume that 𝑃 ∈ ℳ∗,2

𝑆,K(𝛩 ) with 𝑃𝑋1 = Ga(𝜁, 2)
for a real constant 𝜁 > 0, and

K(𝛩) :=
1
2
· Exp(1/𝛩1) + 1

2
· Exp(1/𝛩2),
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Consider the real-valued function 𝛽 on (0,∞) × 𝐷 with 𝛽(𝑥, 𝜃) := 𝛾(𝑥) + 𝛼(𝜃)
for all (𝑥, 𝜃) ∈ (0,∞) × 𝐷, where 𝛾(𝑥) := ln E𝑃 [𝑋1 ]

2𝑐 − ln 𝑥 + 2(𝑐−1) 
𝑐·E𝑃 [𝑋1 ] · 𝑥, for a real 

constant 𝑐 > 2, and 𝛼(𝜃) := 0. Applying standard computations, we obtain that 
E𝑃 [𝑒𝛾 (𝑋1 ) ] = 1, E𝑃 [𝑋1 · 𝑒𝛾 (𝑋1 ) ] = 𝑐

𝜁 < ∞ and E𝑃 [𝑋2
1 · 𝑒𝛾 (𝑋1 ) ] = 2𝑐2

𝜁 2 < ∞, implying 

𝛽 ∈ ℱ2
𝑃,𝛩 . Let 𝜉 ∈ 𝔐+(𝐷) be defined by 𝜉 (𝜃) := 𝜉 (𝜃1, 𝜃2) := 1 for any 𝜃 ∈ 𝐷. 

Clearly E𝑃 [𝜉 (𝛩)] = 1, implying 𝜉 ∈ ℛ+(𝐷), while 𝑃 ∈ ℳ∗,2
𝑆,K(𝛩 ) yields

E𝑃

[︃(︃
1 

E𝑃 [𝑊1 | 𝛩]

)︃2]︃
= E𝑃

[︃(︃
2 

𝛩1 +𝛩2

)︃2]︃
< ∞,

implying, along with 𝜉 (𝛩) = 1, that 𝜉 ∈ ℛ∗,2
+ (𝐷).

(a) Since (𝛽, 𝜉) ∈ ℱ2
𝑃,𝛩 ×ℛ∗,2

+ (𝐷), it follows by Theorem 1 that there exist a unique 

pair (𝜌, 𝑄) ∈ 𝔐+(𝐷) × ℳ∗,2
𝑆,Exp(𝜌(𝛩 ) ) determined by conditions (∗) and (𝑅𝑃𝑀𝜉 ), 

satisfying the conclusions of the statement (ii) of this theorem, an essentially unique 
rcp {𝑄 𝜃}𝜃∈𝐷 of 𝑄 over 𝑄𝛩 consistent with 𝛩, and a 𝑃𝛩-null set ˜︁𝐿∗∗ ∈ 𝔅(𝐷) such 
that for any 𝜃 ∉ ˜︁𝐿∗∗ conditions 𝑄 𝜃 ∈ ℳ∗,2

𝑆,Exp(𝜌(𝜃 ) ) , (˜︁∗) and (𝑅𝑃𝑀𝜃 ) hold true. It then 
follows that

𝑄𝑋1 (𝐴) = E𝑃

[︁
1𝑋−1

1 [𝐴] · 𝑒𝛾 (𝑋1 )]︁ = ∫
𝐴

𝜁

𝑐
· 𝑒− 𝜁

𝑐 ·𝑥 𝜆(𝑑𝑥) for any 𝐴 ∈ 𝔅(0,∞),

and
𝑄𝛩 (𝐵) = E𝑃

[︁
1𝛩−1 [𝐵] · 𝜉 (𝛩)

]︁
= 𝑃𝛩 (𝐵) for any 𝐵 ∈ 𝔅(𝐷), (12)

while condition (∗) yields 𝜌(𝛩) = 2 
𝛩1+𝛩2

𝑃↾𝜎(𝛩)-a.s. Thus, for any 𝜃 ∉ ˜︁𝐿∗∗ the 
probability measure 𝑄 𝜃 is a PCP satisfying condition

𝑝(𝑃𝜃 ) = 4 
𝜁 · (𝜃1 + 𝜃2)

<
2 · 𝑐 

𝜁 · (𝜃1 + 𝜃2)
= 𝑝(𝑄 𝜃 ) < ∞; (13)

hence condition (10) holds by Remark 9. Conditions (12) and (13) imply condi-
tion (11).
(b) By Theorem 1(v) and (iii), the measure 𝑄 is a 2-martingale measure for the process 
𝑉 (𝛩) with

𝑉𝑡 (𝛩) = 𝑆𝑡 − 𝑡 · 𝜌(𝛩) · E𝑃

[︁
𝑋1 · 𝑒𝛾 (𝑋1 )]︁ = 𝑆𝑡 − 𝑡 · 2 · 𝑐 

𝜁 · (𝛩1 +𝛩2)
(14)

for every 𝑡 ∈ R+, while for all 𝜃 ∉ ˜︁𝐿∗∗ the probability measure 𝑄 𝜃 is a 2-martingale 
measure for the process 𝑉 (𝜃) with 𝑉𝑡 (𝜃) = 𝑆𝑡−𝑡 · 2·𝑐 

𝜁 · (𝜃1+𝜃2 ) for any 𝑡 ∈ R+, respectively. 
In particular, for any 𝑇 > 0, Theorem 2 asserts that both processes 𝑉T(𝛩) and 𝑉T(𝜃)
satisfy condition (NFLVR).
(c) Consider the reserve process 𝑅𝑢 (𝛩) := 𝑢 − 𝑉 (𝛩) (𝑢 ∈ R+). First note that the 
equality 𝑐(𝛩) = 𝑝(𝑄,𝛩) 𝑃↾𝜎(𝛩)-a.s., together with (a), implies that the pair (𝑃,𝛩)
satisfies condition (5); hence by Theorem 3(i) we get that condition (ruin(𝑃)) is valid, 
implying

𝜓(𝑢) = E𝑄

[︁
𝐶1 (𝑁𝑇𝑢 (𝛩 ) ,𝑊, 𝑋, 𝛩) · 𝑒

𝜁 (𝑐−1)
𝑐 ·𝑆𝑇𝑢 (𝛩) +𝜌(𝛩 ) ·𝑇𝑢 (𝛩 )]︁,
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where

𝐶1 (𝑁𝑇𝑢 (𝛩 ) ,𝑊, 𝑋, 𝛩) :=
𝑁𝑇𝑢 (𝛩)∏︂
𝑗=1 

𝑐 · 𝜁 
𝜌(𝛩) · 𝑋 𝑗 ·

(︃
1 

2𝛩1
· 𝑒−

𝑊𝑗
𝛩1 + 1 

2𝛩2
· 𝑒−

𝑊𝑗
𝛩2

)︃
.

In our next example we rediscover Shaun Wang’s risk-adjusted premium principle 
(see [35], for the definition and its properties).
Example 6. Let 𝐷 := (0,∞) and assume that 𝑃 ∈ ℳ∗,2

𝑆,Exp(𝛩 ) such that 𝑃𝑋1 is 
absolutely continuous with respect to the Lebesgue measure 𝜆 on 𝔅 restricted to 
𝔅(𝐷). Denote by 𝐹𝑋1 (𝑥) := 𝑃𝑋1 ((𝑥,∞)) for any 𝑥 ∈ 𝐷 the corresponding survival 
function of the random variable 𝑋1, and assume that 

∫ ∞
0 𝑥 · (𝐹𝑋1 (𝑥))

1 
𝑐 𝜆(𝑑𝑥) < ∞, 

where 𝑐 > 1 is a real constant. Recall that the risk adjusted premium for 𝑋1 is 
defined by

𝜋𝑐 (𝑋1) :=
∫ ∞

0

(︁
𝐹𝑋1 (𝑥)

)︁ 1 
𝑐 𝜆(𝑑𝑥) for any 𝑐 ≥ 1.

(see [35], Definition 2).
Consider the real-valued function 𝛽 with 𝛽(𝑥, 𝜃) := 𝛾(𝑥) + 𝛼(𝜃) for all (𝑥, 𝜃) ∈

𝐷 × 𝐷, where 𝛾(𝑥) := − ln 𝑐 + ( 1 
𝑐 − 1) · ln 𝐹𝑋1 (𝑥) and 𝛼(𝜃) := 0. By standard 

computations, we get E𝑃 [𝑒𝛾 (𝑋1 ) ] = 1, E𝑃 [𝑋1 ·𝑒𝛾 (𝑋1 ) ] = 𝜋𝑐 (𝑋1) and E𝑃 [𝑋2
1 ·𝑒𝛾 (𝑋1 ) ] =

2 ·
∫ ∞

0 𝑥 · (𝐹𝑋1 (𝑥))
1 
𝑐 𝜆(𝑑𝑥) < ∞, implying 𝜋𝑐 (𝑋1) < ∞ and 𝛽 ∈ ℱ2

𝑃,𝛩 . For any 
𝑟 ∈ [0, 𝑟𝛩), 𝑟𝛩 := sup{𝑟 ≥ 0 : 𝑀𝛩 (𝑟) < ∞} and 𝑀𝛩 := 𝑀𝑃𝛩 is the moment 
generating function of 𝛩, define the function 𝜉 ∈ 𝔐+(𝐷) by means of 𝜉 (𝜃) := 𝑒𝑟 ·𝜃

𝑀𝛩 (𝑟 )
for any 𝜃 ∈ 𝐷. Clearly E𝑃 [𝜉 (𝛩)] = 1, implying that 𝜉 ∈ ℛ+(𝐷). Since

E𝑃

[︃
𝜉 (𝛩) ·

(︃
𝑒𝛼(𝛩 )

E𝑃 [𝑊1 | 𝛩]

)︃2]︃
= E𝑃

[︁
𝜉 (𝛩) · 𝛩2]︁ = E𝑃 [𝛩2 · 𝑒𝑟 ·𝛩]

𝑀𝛩 (𝑟) =
𝑀 ′′

𝛩 (𝑟)
𝑀𝛩 (𝑟) < ∞

for all 𝑟 ∈ [0, 𝑟𝛩), we get 𝜉 ∈ ℛ∗,2
+ (𝐷).

(a) Since (𝛽, 𝜉) ∈ ℱ2
𝑃,𝛩 ×ℛ∗,2

+ (𝐷), we may apply Theorem 1 in order to get a unique 

pair (𝜌, 𝑄) ∈ 𝔐+(𝐷) × ℳ∗,2
𝑆,Exp(𝜌(𝛩 ) ) determined by conditions (∗) and (𝑅𝑃𝑀𝜉 ), 

satisfying the conclusions of the statement (ii) of this theorem, an essentially unique 
rcp {𝑄 𝜃}𝜃∈𝐷 of 𝑄 over 𝑄𝛩 consistent with 𝛩, and a 𝑃𝛩-null set ˜︁𝐿∗∗ ∈ 𝔅(𝐷)
satisfying for any 𝜃 ∉ ˜︁𝐿∗∗ conditions 𝑄 𝜃 ∈ ℳ∗,2

𝑆,Exp(𝜌(𝜃 ) ) , (˜︁∗) and (𝑅𝑃𝑀𝜃 ). We then 
get

𝑄𝑋1 (𝐴) = E𝑃

[︁
1𝑋−1

1 [𝐴] · 𝑒𝛾 (𝑋1 )]︁ = ∫
𝐴

1
𝑐
· (︁𝐹 (𝑥))︁ 1 

𝑐 −1
𝑃𝑋1 (𝑑𝑥)

for any 𝐴 ∈ 𝔅(𝐷), and

𝑄𝛩 (𝐵) = E𝑃

[︁
1𝛩−1 [𝐵] · 𝜉 (𝛩)

]︁
=
∫
𝐵

𝑒𝑟 ·𝜃

𝑀𝛩 (𝑟) 𝑃𝛩 (𝑑𝜃)

for any 𝐵 ∈ 𝔅(𝐷) and 𝑟 ∈ [0, 𝑟𝛩), whilst condition (∗) implies that 𝜌(𝛩) = 𝛩
𝑃↾𝜎(𝛩)-a.s.; hence for any 𝜃 ∉ ˜︁𝐿∗∗ the corresponding measure 𝑄 𝜃 is a PCP satisfying 
condition

𝑝(𝑃𝜃 ) = 𝜃 ·
∫ ∞

0
𝐹 (𝑥) 𝜆(𝑑𝑥) < 𝜃 ·

∫ ∞

0

(︁
𝐹 (𝑥))︁ 1 

𝑐 𝜆(𝑑𝑥) = 𝜃 · 𝜋𝑐 (𝑋1) = 𝑝(𝑄 𝜃 ) < ∞,
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implying condition (10) by Remark 9. Since for all 𝜃 ∉ ˜︁𝐿∗∗ the functions 𝜃 ↦→ 𝜉 (𝜃) and 
𝜃 ↦→ 𝑝(𝑄 𝜃 ) are monotonic of the same monotonicity, we may apply Proposition 3(ii) 
to conclude condition (11) with

𝑝(𝑄) = E𝑄𝛩

[︁
𝑝(𝑄 𝜃 )

]︁
= 𝜋𝑐 (𝑋1) ·E𝑄𝛩 [𝜃] = 𝜋𝑐 (𝑋1) ·E𝑃

[︁
𝛩 ·𝜉 (𝛩)]︁ = 𝜋𝑐 (𝑋1) ·

𝑀 ′
𝛩 (𝑟)
𝑀𝛩 (𝑟)

for all 𝑟 ∈ [0, 𝑟𝛩).
(b) By Theorem 1(v) and (iii), the probability measure 𝑄 is a 2-martingale measure for 
the process 𝑉 (𝛩) with 𝑉𝑡 (𝛩) = 𝑆𝑡 − 𝑡 · 𝜌(𝛩) ·E𝑃 [𝑋1 · 𝑒𝛾 (𝑋1 ) ] = 𝑆𝑡 − 𝑡 ·𝛩 · 𝜋𝑐 (𝑋1) for 
any 𝑡 ∈ R+, and for any 𝜃 ∉ ˜︁𝐿∗∗ the probability measure 𝑄 𝜃 is a 2-martingale measure 
for the process 𝑉 (𝜃) with 𝑉𝑡 (𝜃) = 𝑆𝑡 − 𝑡 · 𝜃 · 𝜋𝑐 (𝑋1) for any 𝑡 ∈ R+, respectively. In 
particular, for any 𝑇 > 0, Theorem 2 asserts that both processes 𝑉T(𝛩) and 𝑉T(𝜃)
satisfy condition (NFLVR).
(c) Consider the reserve process 𝑅𝑢 (𝛩) := 𝑢 − 𝑉 (𝛩) (𝑢 ∈ R+). The equality 𝑐(𝛩) =
𝑝(𝑄,𝛩) 𝑃↾𝜎(𝛩)-a.s., together with (a), implies that 𝑐(𝛩) > 𝑝(𝑃,𝛩) 𝑃↾𝜎(𝛩)-a.s., 
i.e., condition (5) is valid. Thus, we can apply Theorem 3(i) in order to get that 𝜓(𝑢)
admits the representation (ruin(𝑃)), implying

𝜓(𝑢) = 𝑀𝛩 (𝑟) · E𝑄

[︄
𝑒−𝑟 ·𝛩 · 𝑐𝑁𝑇𝑢 (𝛩) ·

𝑁𝑇𝑢 (𝛩)∏︂
𝑗=1 

(︁
𝐹𝑋1 (𝑋 𝑗 )

)︁ 𝑐−1
𝑐

]︄
for any 𝑟 ∈ [0, 𝑟𝛩).

Example 7. Let 𝐷 := (0,∞) and 𝑃 ∈ ℳ∗,2
𝑆,Exp(1/𝛩 ) . Define the real-valued function 

𝛽 on 𝐷 × 𝐷 with 𝛽(𝑥, 𝜃) := 𝛾(𝑥) + 𝛼(𝜃) for all (𝑥, 𝜃) ∈ 𝐷 × 𝐷, where 𝛾(𝑥) :=
𝑟 · 𝑥 − ln𝑀𝑋1 (𝑟), with 𝑟 ∈ [0, 𝑟𝑋1 ) and 𝑟𝑋1 being as in Example 1, and 𝛼(𝜃) := 0. By 
standard computations, we get E𝑃 [𝑒𝛾 (𝑋1 ) ] = 1,

E𝑃

[︁
𝑋1 · 𝑒𝛾 (𝑋1 )]︁ = E𝑃 [𝑋1 · 𝑒𝑟 ·𝑋1 ]

E𝑃 [𝑒𝑟 ·𝑋1 ] =
𝑀 ′

𝑋1
(𝑟)

𝑀𝑋1 (𝑟)
< ∞,

and

E𝑃

[︁
𝑋2

1 · 𝑒𝛾 (𝑋1 )]︁ = E𝑃 [𝑋2
1 · 𝑒𝑟 ·𝑋1]

E𝑃 [𝑒𝑟 ·𝑋1 ] =
𝑀 ′′

𝑋1
(𝑟)

𝑀𝑋1 (𝑟)
< ∞,

as 𝑀 ′
𝑋1
(𝑟), 𝑀 ′′

𝑋1
(𝑟) < ∞ for all 𝑟 ∈ [0, 𝑟𝑋1 ); hence 𝛽 ∈ ℱ2

𝑃,𝛩 . Define the function 

𝜉 ∈ 𝔐+(𝐷) by means of 𝜉 (𝜃) := 𝑒−𝑟 ·𝜃
E𝑃 [𝑒−𝑟 ·𝛩 ] for all 𝑟 ∈ [0, 𝑟𝑋1 ) and 𝜃 ∈ 𝐷. Clearly 

E𝑃 [𝜉 (𝛩)] = 1, implying ℛ+(𝐷), and

E𝑃

[︃
𝜉 (𝛩) ·

(︃
𝑒𝛼(𝛩 )

E𝑃 [𝑊1 | 𝛩]

)︃2]︃
= E𝑃

[︃
𝜉 (𝛩) ·

(︃
1 
𝛩

)︃2]︃
=
E𝑃 [ 1 

𝛩2 · 𝑒−𝑟 ·𝛩]
E𝑃 [𝑒−𝑟 ·𝛩] 

≤
E𝑃 [ 1 

𝛩2 ] 
E𝑃 [𝑒−𝑟 ·𝛩]

< ∞,

where the last inequality follows by 𝑃 ∈ ℳ∗,2
𝑆,Exp(1/𝛩 ) ; hence 𝜉 ∈ ℛ∗,2

+ (𝐷).
(a) Since (𝛽, 𝜉) ∈ ℱ2

𝑃,𝛩 × ℛ∗,2
+ (𝐷), applying Theorem 1 we obtain a unique pair 

(𝜌, 𝑄) ∈ 𝔐+(𝐷) ×ℳ∗,2
𝑆,Exp(𝜌(𝛩 ) ) determined by conditions (∗) and (𝑅𝑃𝑀𝜉 ), satis-

fying the conclusions of the statement (ii) of this theorem, an essentially unique rcp 
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{𝑄 𝜃}𝜃∈𝐷 of 𝑄 over 𝑄𝛩 consistent with 𝛩, and a 𝑃𝛩-null set ˜︁𝐿∗∗ ∈ 𝔅(𝐷) such that for 
any 𝜃 ∉ ˜︁𝐿∗∗ conditions 𝑄 𝜃 ∈ ℳ∗,2

𝑆,Exp(𝜌(𝜃 ) ) , (˜︁∗) and (𝑅𝑃𝑀𝜃 ) hold true. Consequently, 
we deduce that

𝑄𝑋1 (𝐴) = E𝑃

[︁
1𝑋−1

1 [𝐴] · 𝑒𝛾 (𝑋1 )]︁ = E𝑃 [1𝑋−1
1 [𝐴] · 𝑒𝑟 ·𝑋1 ]
𝑀𝑋1 (𝑟) 

for every 𝐴 ∈ 𝔅(𝐷) and 𝑟 ∈ [0, 𝑟𝑋1 ), and

𝑄𝛩 (𝐵) = E𝑃

[︁
1𝛩−1 [𝐵] · 𝜉 (𝛩)

]︁
=
E𝑃 [1𝛩−1 [𝐵] · 𝑒−𝑟 ·𝛩]

E𝑃 [𝑒−𝑟 ·𝛩] 
for each 𝐵 ∈ 𝔅(𝐷) and 𝑟 ∈ [0, 𝑟𝑋1 ), while condition (∗) yields 𝜌(𝛩) = 1 

𝛩 𝑃↾𝜎(𝛩)-a.s. 
Thus, for any 𝜃 ∉ ˜︁𝐿∗∗ the probability measure 𝑄 𝜃 is a PCP satisfying condition

𝑝(𝑃𝜃 ) = E𝑃 [𝑋1]
𝜃

<
𝑀 ′

𝑋1
(𝑟) 

𝜃 · 𝑀𝑋1 (𝑟)
= 𝑝(𝑄 𝜃 ) < ∞, (15)

for 𝑟 ∈ (0, 𝑟𝑋1 ). The inequalities hold true, since for the function 𝑓 : (0, 𝑟𝑋1 ) → R

defined by 𝑓 (𝑟) := ln𝑀𝑋1 (𝑟) for all 𝑟 ∈ (0, 𝑟𝑋1 ), we have 𝑓 ′′ (𝑟) > 0 for any 
𝑟 ∈ (0, 𝑟𝑋1 ), or equivalently that 𝑓 is strictly convex on 𝑟 ∈ (0, 𝑟𝑋1 ), which is 
equivalent to the fact that the function 𝑓 ′, with 𝑓 ′ (𝑟) = 𝑀 ′

𝑋1
(𝑟 )

𝑀𝑋1 (𝑟 )
< ∞ for 𝑟 ∈ (0, 𝑟𝑋1 ), 

is strictly increasing; hence E𝑃 [𝑋1] < 𝑓 ′ (𝑟) < ∞ for all 𝑟 ∈ (0, 𝑟𝑋1 ). As a result, 
condition (15), together with Remark 9, yields condition (10). Since for any 𝜃 ∉ ˜︁𝐿∗∗
the functions 𝜃 ↦→ 𝜉 (𝜃) and 𝜃 ↦→ 𝑝(𝑄 𝜃 ) are monotonic of the same monotonicity, we 
may apply Proposition 3(ii) in order to conclude condition (11) with

𝑝(𝑄) = E𝑄𝛩

[︁
𝑝(𝑄 𝜃 )

]︁
= E𝑄𝛩

[︃
1 
𝜃

]︃
·
𝑀 ′

𝑋1
(𝑟)

𝑀𝑋1 (𝑟)

= E𝑃

[︃
𝜉 (𝛩)
𝛩

]︃
·
𝑀 ′

𝑋1
(𝑟)

𝑀𝑋1 (𝑟)
=
E𝑃 [ 1 

𝛩 · 𝑒−𝑟 ·𝛩]
E𝑃 [𝑒−𝑟 ·𝛩] 

·
𝑀 ′

𝑋1
(𝑟)

𝑀𝑋1 (𝑟)
.

(b) Again by Theorem 1(v) and (iii), we get that the process 𝑉 (𝛩), with

𝑉𝑡 (𝛩) = 𝑆𝑡 − 𝑡 · 𝜌(𝛩) · E𝑃

[︁
𝑋1 · 𝑒𝛾 (𝑋1 )]︁ = 𝑆𝑡 − 𝑡 · 1 

𝛩
·
𝑀 ′

𝑋1
(𝑟)

𝑀𝑋1 (𝑟)
for any 𝑡 ∈ R+,

is a martingale in ℒ2(𝑄), and that for any 𝜃 ∉ ˜︁𝐿∗∗ the probability measure 𝑄 𝜃 is a 

2-martingale measure for the process 𝑉 (𝜃) with 𝑉𝑡 (𝜃) = 𝑆𝑡 − 𝑡 · 1 
𝜃 · 𝑀 ′

𝑋1
(𝑟 )

𝑀𝑋1 (𝑟 )
for any 

𝑡 ∈ R+, respectively. In particular, for any 𝑇 > 0, Theorem 2 asserts that both processes 
𝑉T (𝛩) and 𝑉T(𝜃) satisfy condition (NFLVR).
(c) Consider the reserve process 𝑅𝑢 (𝛩) := 𝑢 − 𝑉 (𝛩) (𝑢 ∈ R+). Since 𝑐(𝛩) =
𝑝(𝑄,𝛩) > 𝑝(𝑃,𝛩) 𝑃↾𝜎(𝛩)-a.s., where the inequality follows by (a), we deduce 
that condition (5) is valid; hence we get by Theorem 3(i) that 𝑄 is a 2-martingale 
measure for the reserve process 𝑅𝑢 (𝛩), ruin occurs 𝑄-a.s. and condition (ruin(𝑃))
holds true, implying

𝜓(𝑢) = E𝑃

[︁
𝑒−𝑟 ·𝛩

]︁ · E𝑄

[︁
𝑒−𝑟 ·𝑆𝑇𝑢 (𝛩) +𝑟 ·𝛩+𝑁𝑇𝑢 (𝛩) ·ln 𝑀𝑋1 (𝑟 )

]︁
for any 𝑟 ∈ (0, 𝑟𝑋1 ).
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Example 8. Assume that 𝐷 := (0,∞) and 𝑃 ∈ ℳ∗,2
𝑆,Ga(𝛩,𝑘 ) for a real constant 𝑘 > 0, 

such that 𝑃𝑋1 = Exp(𝜂), where 𝜂 > 0 is a real constant, and 𝑃𝛩 = Ga(𝑏1, 𝑎), 
where 𝑏1, 𝑎 > 0 are real constants. Consider the real-valued function 𝛽 on 𝐷 ×𝐷 with 
𝛽(𝑥, 𝜃) = 𝛾(𝑥)+𝛼(𝜃) for all (𝑥, 𝜃) ∈ 𝐷×𝐷, where 𝛾(𝑥) := ln(1−𝑐 ·E𝑃 [𝑋1])+𝑐 ·𝑥 with 
𝑐 < 𝜂 a positive real constant, and 𝛼(𝜃) := ln( 𝜃𝑏 ·E𝑃𝜃 [𝑊1]), where 𝑏 < 𝑘 is a positive 
constant. It can be easily seen that E𝑃 [𝑒𝛾 (𝑋1 ) ] = 1, E𝑃 [𝑋1 · 𝑒𝛾 (𝑋1 ) ] = 1 

𝜂−𝑐 < ∞ and 

E𝑃 [𝑋2
1 · 𝑒𝛾 (𝑋1 ) ] = 2 

(𝜂−𝑐)2 < ∞, implying 𝛽 ∈ ℱ2
𝑃,𝛩 . Let 𝜉 ∈ 𝔐+(𝐷) be defined 

by 𝜉 (𝜃) := ( 𝑏2
𝑏1
)𝑎 · 𝑒−(𝑏2−𝑏1 ) ·𝜃 for any 𝜃 ∈ 𝐷, where 𝑏2 is a positive constant such 

that 𝑏2 < 𝑏1. Clearly E𝑃 [𝜉 (𝛩)] = 1, implying that 𝜉 ∈ ℛ+(𝐷). Applying standard 
computations we get

E𝑃

[︃
𝜉 (𝛩) ·

(︃
𝑒𝛼(𝛩 )

E𝑃 [𝑊1 | 𝛩]

)︃2]︃
= E𝑃

[︃
𝜉 (𝛩) ·

(︃
𝑒ln( 𝛩𝑏 ·E𝑃 [𝑊1 |𝛩 ] )

E𝑃 [𝑊1 | 𝛩] 

)︃2]︃

=
E𝑃 [𝜉 (𝛩) · 𝛩2]

𝑏2 < ∞,

implying that 𝜉 ∈ ℛ∗,2
+ (𝐷).

(a) Since (𝛽, 𝜉) ∈ ℱ2
𝑃,𝛩 ×ℛ∗,2

+ (𝐷), it follows by Theorem 1 that there exist a unique 

pair (𝜌, 𝑄) ∈ 𝔐+(𝐷) × ℳ∗,2
𝑆,Exp(𝜌(𝛩 ) ) determined by conditions (∗) and (𝑅𝑃𝑀𝜉 ), 

satisfying the conclusions of the statement (ii) of this theorem, an essentially unique 
rcp {𝑄 𝜃}𝜃∈𝐷 of 𝑄 over 𝑄𝛩 consistent with 𝛩, and a 𝑃𝛩-null set ˜︁𝐿∗∗ ∈ 𝔅(𝐷) such 
that for any 𝜃 ∉ ˜︁𝐿∗∗ conditions 𝑄 𝜃 ∈ ℳ∗,2

𝑆,Exp(𝜌(𝜃 ) ) , (˜︁∗) and (𝑅𝑃𝑀𝜃 ) hold true. 
Therefore, we deduce that

𝑄𝑋1 (𝐴) = E𝑃

[︁
1𝑋−1

1 [𝐴] · 𝑒𝛾 (𝑋1 )]︁ = ∫
𝐴
(𝜂 − 𝑐) · 𝑒−(𝜂−𝑐) ·𝑥 𝜆(𝑑𝑥) for every 𝐴 ∈ 𝔅(𝐷)

and

𝑄𝛩 (𝐵) = E𝑃

[︁
1𝛩−1 [𝐵] ·𝜉 (𝛩)

]︁
=
∫
𝐵

𝑏𝑎2
Γ(𝑎) ·𝜃

𝑎−1 ·𝑒−𝑏2 ·𝜃 𝜆(𝑑𝜃) for every 𝐵 ∈ 𝔅(𝐷),

implying that 𝑄𝑋1 = Exp(𝜂 − 𝑐) and 𝑄𝛩 = Ga(𝑏2, 𝑎), respectively. Furthermore, 
condition (∗) yields 𝜌(𝛩) = 𝛩

𝑏 𝑃↾𝜎(𝛩)-a.s.; hence for any 𝜃 ∉ ˜︁𝐿∗∗ the probability 
measure 𝑄 𝜃 is a PCP satisfying condition

𝑝(𝑃𝜃 ) = 𝜃

𝑘 · 𝜂 <
𝜃

𝑏 · (𝜂 − 𝑐) = 𝑝(𝑄 𝜃 ) < ∞.

Thus, we may apply Remark 9 in order to conclude condition (10), and since for 
all 𝜃 ∉ ˜︁𝐿∗∗ the functions 𝜃 ↦→ 𝜉 (𝜃) and 𝜃 ↦→ 𝑝(𝑄 𝜃 ) are monotonic of the same 
monotonicity, we may apply Proposition 3(ii) in order to conclude condition (11) with

𝑝(𝑄) = E𝑄𝛩

[︁
𝑝(𝑄 𝜃 )

]︁
= E𝑄𝛩

[︃
𝜃

𝑏 · (𝜂 − 𝑐)

]︃
=

𝑎 
𝑏2 · 𝑏 · (𝜂 − 𝑐)

.

(b) Again by Theorem 1(v) and (iii), the probability measure 𝑄 is a 2-martingale 
measure for the process 𝑉 (𝛩) with

𝑉𝑡 (𝛩) = 𝑆𝑡 − 𝑡 · 𝜌(𝛩) · E𝑃

[︁
𝑋1 · 𝑒𝛾 (𝑋1 )]︁ = 𝑆𝑡 − 𝑡 · 𝛩

𝑏 · (𝜂 − 𝑐)
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for any 𝑡 ∈ R+, and for any 𝜃 ∉ ˜︁𝐿∗∗ the probability measure 𝑄 𝜃 is a 2-martingale 
measure for the process 𝑉 (𝜃) with 𝑉𝑡 (𝜃) = 𝑆𝑡 − 𝑡 · 𝜃

𝑏· (𝜂−𝑐) for any 𝑡 ∈ R+, respectively. 
In particular, for any 𝑇 > 0, Theorem 2 asserts that both processes 𝑉T(𝛩) and 𝑉T(𝜃)
satisfy condition (NFLVR).
(c) Consider the reserve process 𝑅𝑢 (𝛩) := 𝑢 − 𝑉 (𝛩) (𝑢 ∈ R+). The equality 
𝑐(𝛩) = 𝑝(𝑄,𝛩) 𝑃↾𝜎(𝛩)-a.s., together with (a), implies that condition (5) holds 
true. This allows us to apply Theorem 3(i) to conclude that 𝜓(𝑢) admits the represen-
tation (ruin(𝑃)), implying

𝜓(𝑢) = E𝑄

[︁
𝐶2(𝑁𝑇𝑢 (𝛩 ) ,𝑊,𝛩) · 𝑒−(𝑏1−𝑏2 ) ·𝛩−𝑐·𝑆𝑇𝑢 (𝛩) +𝑇𝑢 (𝛩 ) · (𝛩−𝜌(𝛩 ) )]︁,

where

𝐶2 (𝑁𝑇𝑢 (𝛩 ) ,𝑊,𝛩) :=
(︃
𝑏1
𝑏2

)︃𝑎

·
(︄𝑁𝑇𝑢 (𝛩)∏︂

𝑗=1 

𝜂 · Γ(𝑘) · 𝜌(𝛩) 
(𝜂 − 𝑐) · 𝛩𝑘 ·𝑊 𝑘−1

𝑗

)︄
.

The following counter-example shows that the assumption of the same monotonic-
ity of the functions 𝜃 ↦→ 𝑝(𝑄 𝜃 ) and 𝜃 ↦→ 𝜉 (𝜃) for all 𝜃 ∉ ˜︁𝐿∗∗ is essential for the 
validity of the conclusion 𝑝(𝑃) ≤ 𝑝(𝑄) in Proposition 3.
Counter-example 9. In the situation of Example 8, replace 𝜉 ∈ 𝔐+(𝐷) with the 

function ˜︁𝜉 ∈ 𝔐+(𝐷) defined by ˜︁𝜉 (𝜃) := ( ˜︁𝑏2
𝑏1
)𝑎 · 𝑒−(˜︁𝑏2−𝑏1 ) ·𝜃 for any 𝜃 ∈ 𝐷, where ˜︁𝑏2 is a real constant satisfying ˜︁𝑏2 >

𝑏1 ·𝑘 ·𝜂 
𝑏· (𝜂−𝑐) . Similarly to Example 8 we get (𝛽, ˜︁𝜉) ∈

ℱ2
𝑃,𝛩 × ℛ∗,2

+ (𝐷), and so we may apply Theorem 1 in order to obtain a unique 

pair (𝜌, ˜︁𝑄) ∈ 𝔐+(𝐷) × ℳ∗,2
𝑆,Exp(𝜌(𝛩 ) ) determined by conditions (∗) and (𝑅𝑃𝑀𝜉 ), 

satisfying the conclusions of the statement (ii) of this theorem, an essentially unique 
rcp {˜︁𝑄 𝜃}𝜃∈𝐷 of ˜︁𝑄 over ˜︁𝑄𝛩 consistent with 𝛩, and a 𝑃𝛩-null set ˜︁𝐿∗∗ ∈ 𝔅(𝐷) such that 
for any 𝜃 ∉ ˜︁𝐿∗∗ conditions ˜︁𝑄 𝜃 ∈ ℳ∗,2

𝑆,Exp(𝜌(𝜃 ) ) , (˜︁∗) and (𝑅𝑃𝑀𝜃 ) hold true. Similarly 

to Example 8, get 𝜌(𝛩) = 𝛩
𝑏 𝑃↾𝜎(𝛩)-a.s., ˜︁𝑄𝑋1 = Exp(𝜂 − 𝑐) and ˜︁𝑄𝛩 = Ga(˜︁𝑏2, 𝑎); 

hence for any 𝜃 ∉ ˜︁𝐿∗∗ the probability measure ˜︁𝑄 𝜃 is a PCP satisfying condition 
𝑝(𝑃𝜃 ) = 𝜃

𝑘 ·𝜂 <
𝜃

𝑏· (𝜂−𝑐) = 𝑝(˜︁𝑄 𝜃 ) < ∞; hence condition (10) holds by Remark 9. 
Easy computations show that

𝑝(𝑃) =
∫
𝐷
𝑝(𝑃𝜃 ) 𝑃𝛩 (𝑑𝜃) = 𝑎 

𝑏1 · 𝑘 · 𝜂
and

𝑝(˜︁𝑄) = ∫
𝐷
𝑝(˜︁𝑄 𝜃 ) 𝑄𝛩 (𝑑𝜃) = 𝑎 ˜︁𝑏2 · 𝑏 · (𝜂 − 𝑐)

,

implying 𝑝(𝑃) > 𝑝(˜︁𝑄); hence the conclusions (i) and (ii) of Proposition 3 fail. Note 
that all assumptions of this proposition except for that of the same monotonicity of 
the functions 𝜃 ↦→ 𝜉 (𝜃) and 𝜃 ↦→ 𝑝(˜︁𝑄 𝜃 ) for all 𝜃 ∉ ˜︁𝐿∗∗ are satisfied, since the 
function 𝜃 ↦→ 𝜉 (𝜃) is strictly decreasing, while 𝜃 ↦→ 𝑝(˜︁𝑄 𝜃 ) is strictly increasing. 
As a consequence, we infer that the assumption of the same monotonicity of the 
functions 𝜃 ↦→ 𝜉 (𝜃) and 𝜃 ↦→ 𝑝(𝑄 𝜃 ) is essential for the validity of the conclusion of 
Proposition 3.

Note that even if 𝑝(𝑃𝜃 ) = 𝑝(˜︁𝑄 𝜃 ) for any 𝜃 ∉ ˜︁𝐿∗∗, i.e., whenever 𝑐 = 0 and 𝑏 = 𝑘 , 
the equality 𝑝(𝑃) = 𝑝(˜︁𝑄) fails.
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A Appendix: A list of symbols

Notations:

𝑃-CMRP(K(𝛩), 𝑃𝑋1) 𝑃-compound mixed renewal process with parameters K(𝛩)
and 𝑃𝑋1 , see Section 2, page 4;

𝑃-CMPP(𝛩, 𝑃𝑋1 ) 𝑃-compound mixed Poisson process with parameters 𝛩 and 𝑃𝑋1 , 
see Section 2, page 4;

𝑃-CRP(K(𝜃0), 𝑃𝑋1 ) 𝑃-compound renewal process with parameters K(𝜃0) and 𝑃𝑋1 , 
see Section 2, page 4;

𝑃-CPP(𝜃0, 𝑃𝑋1) 𝑃-compound Poisson process with parameters 𝜃0 and 𝑃𝑋1 , see Sec-
tion 2, page 5;

rcp regular conditional probability, see Section 2, page 5;

ℱ𝑆 := {ℱ𝑆
𝑡 }𝑡∈R+ the canonical filtration of the aggregate claims process 𝑆, see Sec-

tion 2, page 5;

ℱ := {ℱ𝑡}𝑡∈R+ the canonical filtration of 𝑆 and 𝛩, see Section 2, page 5;

(NFLVR) no free lunch with vanishing risk, see Section 3, page 8;

(PEMM) progressively equivalent martingale measure, see Section 3, page 8;

PCP premium calculation principle, see Section 5, page 23.

Assumptions (see Section 2, page 5):

Assumption (a1) The processes 𝑊 and 𝑋 are 𝑃-conditionally mutually independent.

Assumption (a2) The random vector 𝛩 and the process 𝑋 are 𝑃-(unconditionally) 
independent.

Classes of functions:

𝔐𝑘 (𝐷): The class of all 𝔅(𝐷)-𝔅𝑘-measurable functions on 𝐷 (𝑘 ∈ N), see Nota-
tions 1;

𝔐(𝐷): The class of all 𝔅(𝐷)-𝔅-measurable functions on 𝐷, see Notations 1;

𝔐+(𝐷): The class of all 𝔅(𝐷)-𝔅(0,∞)-measurable functions on 𝐷, see Nota-
tions 1;

ℱ𝑃,𝛩: The class of all real-valued 𝔅((0,∞) × 𝐷)-measurable functions 𝛽 on 
(0,∞) × 𝐷, defined by 𝛽(𝑥, 𝜃) := 𝛾(𝑥) + 𝛼(𝜃) for any (𝑥, 𝜃) ∈ (0,∞) × 𝐷, 
where 𝛼 ∈ 𝔐(𝐷) and 𝛾 is a real-valued 𝔅(0,∞)-measurable function 
satisfying condition E𝑃 [𝑒𝛾 (𝑋1 ) ] = 1, see Notations 1(a);

ℱℓ
𝑃,𝛩: The class of all 𝛽 ∈ ℱ𝑃,𝛩 such that E𝑃 [𝑋ℓ

1 · 𝑒𝛾 (𝑋1 ) ] < ∞ (ℓ ∈ {1, 2}), see 
Notations 1(a);
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ℛ+(𝐷): The class of all 𝜉 ∈ 𝔐(𝐷) such that 𝑃𝛩 ({𝜉 > 0}) = 1 and E𝑃 [𝜉 (𝛩)] = 1, 
see Notations 1(b);

ℛ∗,ℓ
+ (𝐷): The class of all 𝜉 ∈ ℛ+(𝐷) such that 𝜉 (𝛩) · ( 𝑒𝛼(𝛩)

E𝑃 [𝑊1 |𝛩 ] )ℓ ∈ ℒ1(𝑃) (ℓ ∈
{1, 2}), see Notations 2(a).

Classes of measures:

ℳ𝑆,𝚲(𝜌(𝛩 ) ) : The class of all probability measures 𝑄 on 𝛴 such that:

(i) conditions (a1) and (a2) holds true,
(ii) are progressively equivalent to 𝑃,

(iii) 𝑆 is a 𝑄-CMRP(𝚲(𝜌(𝛩)), 𝑄𝑋1),
see Notations 1(c);

ℳℓ
𝑆,𝚲(𝜌(𝛩 ) ) : The class of all 𝑄 ∈ ℳ𝑆,𝚲(𝜌(𝛩 ) ) with E𝑄 [𝑋ℓ

1 ] < ∞ (ℓ ∈ {1, 2}), see 
Notations 1(c);

ℳ∗,ℓ
𝑆,𝚲(𝜌(𝛩 ) ) : The class of all 𝑄 ∈ ℳℓ

𝑆,𝚲(𝜌(𝛩 ) ) with (1/E𝑄 [𝑊1 | 𝛩])ℓ ∈ ℒ1(𝑄)
(ℓ ∈ {1, 2}), see Notations 2(b);

ℳ𝑆,𝚲(𝜌(𝜃 ) ) : The class of all probability measures 𝑄 𝜃 on 𝛴 , such that 𝑄 𝜃↾ℱ𝑡 ∼
𝑃𝜃↾ℱ𝑡 for any 𝑡 ∈ R+ and 𝑆 is a 𝑄 𝜃 -CRP(𝚲(𝜌(𝜃)), (𝑄 𝜃 )𝑋1 ) (𝜃 ∈ 𝐷), 
see Notations 1(d);

ℳℓ
𝑆,𝚲(𝜌(𝜃 ) ) : The class of all 𝑄 𝜃 ∈ ℳ𝑆,𝚲(𝜌(𝜃 ) ) with E𝑄𝜃 [𝑋ℓ

1 ] < ∞ (ℓ ∈ {1, 2} and 
𝜃 ∈ 𝐷), see Notations 1(d);

ℳ∗,ℓ
𝑆,𝚲(𝜌(𝜃 ) ) : The class of all 𝑄 𝜃 ∈ ℳℓ

𝑆,𝚲(𝜌(𝜃 ) ) such that (1/E𝑄• [𝑊1])ℓ ∈ ℒ1(𝑄𝛩)
(ℓ ∈ {1, 2} and 𝜃 ∈ 𝐷), see Notations 2(c).

Conditions:

(∗): 𝛼(𝛩) = ln 𝜌(𝛩) + lnE𝑃 [𝑊1 | 𝛩] 𝑃↾𝜎(𝛩)-a.s., see Proposition 1(i);

(˜︁∗): 𝜌(𝜃) = 𝑒𝛼(𝜃 ) /E𝑃𝜃 [𝑊1], see Proposition 1(iii);

(𝑅𝑃𝑀𝜉 ): The formula

𝑄(𝐴) =
∫
𝐴
𝑀

(𝛽)
𝑡 (𝛩) 𝑑𝑃 for all 0 ≤ 𝑠 ≤ 𝑡 and 𝐴 ∈ ℱ𝑠 ,

with

𝑀
(𝛽)
𝑡 (𝛩) := 𝜉 (𝛩) · 𝑒

𝑆
(𝛾)
𝑡 −𝜌(𝛩 ) ·𝐽𝑡

1 − K(𝛩)(𝐽𝑡 )
·

𝑁𝑡∏︂
𝑗=1 

𝑑Exp(𝜌(𝛩))
𝑑K(𝛩) (𝑊 𝑗 ),

where 𝑆 (𝛾)𝑡 :=
∑︁𝑁𝑡

𝑘=1 𝛾(𝑋 𝑗 ) and 𝐽𝑡 := 𝑡 − 𝑇𝑁𝑡 , see Proposition 1(i);
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(𝑅𝑃𝑀𝜃 ): The formula

𝑄 𝜃 (𝐴) =
∫
𝐴

˜︁𝑀 (𝛽)
𝑡 (𝜃) 𝑑𝑃𝜃 for all 0 ≤ 𝑠 ≤ 𝑡 and 𝐴 ∈ ℱ𝑠,

where

˜︁𝑀 (𝛽)
𝑡 (𝜃) :=

𝑒𝑆
(𝛾)
𝑡 −𝜌(𝜃 ) ·𝐽𝑡

1 − K(𝜃)(𝐽𝑡 )
·

𝑁𝑡∏︂
𝑗=1 

𝑑Exp(𝜌(𝜃))
𝑑K(𝜃) (𝑊 𝑗 ),

see Proposition 1(iii);

(ruin(𝑃)): The formula for the ruin probability 𝜓(𝑢) of the reserve process 𝑅𝑢 (𝛩), 
i.e.,

𝜓(𝑢) =
∫

1 
𝜉 (𝛩) · 𝑒

−𝑆 (𝛾)
𝑇𝑢 (𝛩) ·

𝑁𝑇𝑢 (𝛩)∏︂
𝑗=1 

𝑑K(𝛩) 
𝑑Exp(𝜌(𝛩)) (𝑊 𝑗 ) 𝑑𝑄 < 1

for any 𝑢 ∈ R+,

see Theorem 3(i);

(ruin(𝑃𝜃 )): The formula for the ruin probability 𝜓𝜃 (𝑢) of the reserve process 𝑟𝑢 (𝜃), 
i.e.,

𝜓𝜃 (𝑢) =
∫
𝑒
−𝑆 (𝛾)

𝜏𝑢 (𝜃 ) ·
𝑁𝜏𝑢 (𝜃 )∏︂
𝑗=1 

𝑑K(𝜃) 
𝑑Exp(𝜌(𝜃)) (𝑊 𝑗 ) 𝑑𝑄 𝜃 < 1 for any 𝑢 ∈ R+,

see Theorem 3(iii).
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