The problem of estimating the drift parameter is considered for an Ornstein–Uhlenbeck-type process driven by a tempered fractional Brownian motion (tfBm) or tempered fractional Brownian motion of the second kind (tfBmII). Unlike most existing studies, which assume continuous-time observations, a more realistic setting of discrete-time data is in focus. The strong consistency of a discretized least squares estimator is established under an asymptotic regime where the observation interval tends to zero while the total time horizon increases. A key step in the analysis involves deriving almost sure upper bounds for the increments of both tfBm and tfBmII.
Estimation of hurst exponent for sequential monitoring of clinical trials with covariate adaptive randomization