Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 3, Issue 3 (2016)
  4. A limit theorem for singular stochastic ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • Cited by
  • More
    Article info Full article Related articles Cited by

A limit theorem for singular stochastic differential equations
Volume 3, Issue 3 (2016), pp. 223–235
Andrey Pilipenko   Yuriy Prykhodko  

Authors

 
Placeholder
https://doi.org/10.15559/16-VMSTA63
Pub. online: 8 November 2016      Type: Research Article      Open accessOpen Access

Received
19 September 2016
Revised
23 October 2016
Accepted
23 October 2016
Published
8 November 2016

Abstract

We study the weak limits of solutions to SDEs
\[ dX_{n}(t)=a_{n}\big(X_{n}(t)\big)\hspace{0.1667em}dt+dW(t),\]
where the sequence $\{a_{n}\}$ converges in some sense to $(c_{-}\mathbb{1}_{x<0}+c_{+}\mathbb{1}_{x>0})/x+\gamma \delta _{0}$. Here $\delta _{0}$ is the Dirac delta function concentrated at zero. A limit of $\{X_{n}\}$ may be a Bessel process, a skew Bessel process, or a mixture of Bessel processes.

1 Introduction

Consider the stochastic differential equation
(1)
\[ \hspace{0.1667em}dX_{}(t)=a\big(X_{}(t)\big)\hspace{0.1667em}dt+\hspace{0.1667em}dW(t),\hspace{1em}t\geqslant 0,\]
where a is a locally integrable function.
The aim of this paper is to study convergence in distribution of the sequence of processes $\{X_{}(nt)/\sqrt{n},\hspace{2.5pt}t\geqslant 0\}$ as $n\to \infty $.
Observe that
\[ \hspace{0.1667em}dX_{n}(t)=\sqrt{n}a\big(\sqrt{n}X_{n}(t)\big)\hspace{0.1667em}dt+\hspace{0.1667em}dW_{n}(t),\hspace{1em}t\geqslant 0,\]
where $W_{n}(t)=W(nt)/\sqrt{n}$, $t\geqslant 0$ is a Wiener process, and $X_{n}(t)=X_{}(nt)/\sqrt{n}$, $t\geqslant 0$.
Hence, to study the sequence $\{X_{}(nt)/\sqrt{n}\}$, it suffices to investigate the SDEs
\[ \hspace{0.1667em}dX_{n}(t)=a_{n}\big(X_{n}(t)\big)\hspace{0.1667em}dt+\hspace{0.1667em}dW(t),\hspace{1em}t\geqslant 0,\]
where $a_{n}(x)=na(nx)$.
If $a\in L_{1}(\mathbb{R})$, then $a_{n}$ converges in generalized sense to $\alpha \delta _{0}$, where $\delta _{0}$ is the Dirac delta function at zero, where $\alpha =\int _{\mathbb{R}}a(x)\hspace{0.1667em}dx$. It is well known that in this case the sequence $\{X_{n}\}$ converges weakly to a skew Brownian motion with parameter $\gamma =(\alpha )=\frac{{e}^{\alpha }-{e}^{-\alpha }}{{e}^{\alpha }+{e}^{-\alpha }}$; see, for example, [14, 10]. Recall that [5, 10] the skew Brownian motion $W_{\gamma }(t)$ with parameter γ, $|\gamma |\leqslant 1$, is a unique (strong) solution to the SDE
\[ \hspace{0.1667em}dW_{\gamma }(t)=\hspace{0.1667em}dW(t)+\gamma \hspace{0.1667em}d{L_{W_{\gamma }}^{0}}(t),\]
where ${L_{W_{\gamma }}^{0}}(t)=\lim _{\varepsilon \to 0+}{(2\varepsilon )}^{-1}{\int _{0}^{t}}\mathbb{1}_{|W_{\gamma }(s)|\leqslant \varepsilon }\hspace{0.1667em}ds$ is the local time of the process $W_{\gamma }$ at 0. The process $W_{\gamma }$ is a continuous Markov process with transition probability density function $p_{t}(x,y)=\varphi _{t}(x-y)+\gamma (y)\hspace{0.1667em}\varphi _{t}(|x|+|y|)$, $x,y\in \mathbb{R}$, where $\varphi _{t}(x)=\frac{1}{\sqrt{2\pi t}}{e}^{-{x}^{2}/2t}$ is the density of the normal distribution $N(0,t)$. Note also that $W_{\gamma }$ can be obtained from excursions of a Wiener process pointing them (independently of each other) up and down with probabilities $p=(1+\gamma )/2$ and $q=(1-\gamma )/2$, respectively.
Kulinich et al. [8, 7] considered limit theorems in the case where a is nonintegrable function such that
(2)
\[ \underset{x\to \pm \infty }{\lim }\frac{1}{x}{\int _{0}^{x}}\big|va(v)-c_{\pm }\big|\hspace{0.1667em}dv=0,\hspace{1em}\big|xa(x)\big|\leqslant C,\]
where $c_{\pm }>-1/2$ are constants. In this case, $a_{n}(x)$ converges in some sense to $c_{-}\mathbb{1}_{x<0}+c_{+}\mathbb{1}_{x\geqslant 0}$ as $n\to \infty $.
For instance, if $a(x)=c_{\pm }/x\hspace{2.5pt}\text{for}\hspace{2.5pt}\pm x>x_{0}$, then, for $c_{-}<1/2<c_{+}$, the sequence $X_{n}$ converges weakly to a Bessel process. If $c_{-}=c_{+}>-1/2$, then $|X_{n}|$ also converges weakly to a Bessel process. The problem of weak convergence of $X_{n}$ for (e.g.) $c_{-}=c_{+}>-1/2$ or $c_{-}<c_{+}\leqslant 1/2$ was not considered.
In this paper, we generalize the results of [14, 8] to the case
\[ a(x)=\widetilde{a}(x)+\frac{\bar{c}(x)}{x},\hspace{1em}x\in \mathbb{R},\]
where $\widetilde{a}$ is integrable on $(-\infty ;\infty )$, and
\[ \bar{c}(x)=c_{+}\cdot \mathbb{1}_{x>1}+c_{-}\cdot \mathbb{1}_{x<-1},\hspace{1em}x\in \mathbb{R}.\]
We consider all possible limit processes (depending on $c_{+}$ and $c_{-}$). In particular, we show that, for $c_{+}=c_{-}<1/2$, the limit process is a skew Bessel process (see Section 2).

2 Bessel process. Skew Bessel process. Definition, properties

We recall the definition and some properties of Bessel processes.
Let $\delta \geqslant 0$ and $x_{0}\in \mathbb{R}$. Consider the SDE
(3)
\[ Z\big({x_{0}^{2}},t\big)={x_{0}^{2}}+2{\int _{0}^{t}}\sqrt{\big|Z\big({x_{0}^{2}},s\big)\big|}\hspace{0.1667em}dW(s)+\delta t,\hspace{1em}t\geqslant 0,\]
where W is a Wiener process.
It is known (see [15], XI.1, (1.1)), that there exists a unique strong solution $Z({x_{0}^{2}},\cdot )$ of (3). This solution is called the squared δ-dimensional Bessel process. The process $Z({x_{0}^{2}},\cdot )$ is nonnegative a.s.
Definition 1.
The process $B_{c}(x_{0},t)=\sqrt{Z({x_{0}^{2}},t)}$ with $x_{0}\geqslant 0$ is called the (nonnegative) Bessel process with parameter $c=(\delta -1)/2$.
We will call the process ${B_{c}^{-}}(x_{0},t)=-B_{c}(x_{0},t)=-\sqrt{Z({x_{0}^{2}},t)}$ with $x_{0}\leqslant 0$ the nonpositive Bessel process.
Recall the following properties of the Bessel process (see [15, Chap. XI]).
The Bessel process $\xi (t)=B_{c}(x_{0},t)$ satisfies the SDE
\[ \hspace{0.1667em}d\xi _{t}=\hspace{0.1667em}dW_{t}+\frac{c}{\xi _{t}}\hspace{0.1667em}dt,\hspace{1em}t<T_{0},\]
where $T_{0}$ is the first hitting time of 0. If $\delta \geqslant 2$ (i.e., $c\geqslant 1/2$), then the Bessel process with probability 1 does not hit 0.
If $0<\delta <2$ (i.e., $-1/2<c<1/2$), then with probability 1 the Bessel process hits 0 but spends zero time at 0. In particular, if $\delta =1$ (i.e., $c=0$), then the Bessel process is a reflecting Brownian motion.
If $\delta =0$ (i.e., $c=-1/2$), then with probability 1 the process attains 0 and remains there forever.
The scale function of the Bessel process $B_{c}$ equals
(4)
\[ \psi _{c}(x)=\left\{\begin{array}{l@{\hskip10.0pt}l}-{x}^{-2c+1}\hspace{1em}& \text{if}\hspace{2.5pt}\hspace{2.5pt}c>1/2,\\{} \ln x\hspace{1em}& \text{if}\hspace{2.5pt}\hspace{2.5pt}c=1/2,\\{} {x}^{-2c+1}\hspace{1em}& \text{if}\hspace{2.5pt}\hspace{2.5pt}c<1/2,\end{array}\right.\]
that is,
\[ P_{x}(T_{a}<T_{b})=\frac{\psi _{c}(b)-\psi _{c}(x)}{\psi _{c}(b)-\psi _{c}(a)}\hspace{1em}\hspace{2.5pt}\text{for any}\hspace{2.5pt}\hspace{2.5pt}0<a<x<b,\]
where $T_{y}=\inf \{t\geqslant 0:\hspace{2.5pt}B_{c}(t)=y\}$.
The transition density for $c>-1/2$, $x,y>0$, and $t>0$ equals
\[ {p_{t}^{c}}(x,y)={t}^{-1}{(y/x)}^{\nu }y\exp \big(-\big({x}^{2}+{y}^{2}\big)/2t\big)I_{\nu }(xy/t),\]
where $I_{\nu }$ is a Bessel function of index $\nu =c-1/2$.
Let $c\in (-1/2,1/2)$, and let ${p_{t}^{0,c}}(x,y)$ be the transition density of the Bessel process $B_{c}$ killed at 0.
Set
\[\begin{array}{r@{\hskip0pt}l}\displaystyle {p_{t}^{\mathit{skew}}}(x,y)& \displaystyle ={p_{t}^{0,c}}\big(|x|,|y|\big)\cdot \mathbb{1}_{xy>0}\\{} & \displaystyle \hspace{1em}+\frac{1+\gamma y}{2}\big({p_{t}^{c}}\big(|x|,|y|\big)-{p_{t}^{0,c}}\big(|x|,|y|\big)\big),\hspace{1em}x,y\in \mathbb{R}.\end{array}\]
It is easy to verify that this function satisfies the Chapman–Kolmogorov equation, is nonnegative, and $\int _{\mathbb{R}}{p_{t}^{\mathit{skew}}}(x,y)\hspace{0.1667em}dy=1,\hspace{2.5pt}x\in \mathbb{R}$.
Definition 2.
A time-homogeneous Markov process with the transition density ${p_{t}^{\mathit{skew}}}$ is called the skew Bessel process ${B_{c,\gamma }^{\mathit{skew}}}$ with parameters c and $\gamma \in [-1,1]$.
Remark 1.
We do not consider the skew Bessel process for $c\geqslant 1/2$ because $B_{c}(x_{0},\cdot )$ does not hit 0 if $x_{0}\ne 0$.
Remark 2.
The skew Bessel process ${B}^{\mathit{skew}}$ can be obtained from a nonnegative Bessel process by pointing its excursions up with probability $p=\frac{1+\gamma }{2}$ and down with probability $q=\frac{1-\gamma }{2}$, similarly to the case of a skew Brownian motion; see arguments in [1], Section 2.
Thus, the scale function of the skew Bessel process equals
(5)
\[ \psi _{\mathit{skew}}(x)=(q\mathbb{1}_{x\geqslant 0}-p\mathbb{1}_{x<0})|x{|}^{-2c+1},\hspace{1em}x\in \mathbb{R}.\]
For other properties of the skew Bessel process, we refer to [2].
Remark 3.
If $x_{0}>0$ and $p=1$ (i.e., $\gamma =1$), then ${B_{c,\gamma }^{\mathit{skew}}}(x_{0},\cdot )$ is a (nonnegative) Bessel process $B_{c}(x_{0},\cdot )$ with parameter c: ${B_{c,1}^{\mathit{skew}}}(x_{0},\cdot )\stackrel{d}{=}B_{c}(x_{0},\cdot )$.
Also, the absolute value of the skew Bessel process $|{B_{c,\gamma }^{\mathit{skew}}}|$ is a (nonnegative) Bessel process $B_{c}(x_{0},\cdot )$ with parameter c: $|{B_{c,\gamma }^{\mathit{skew}}}(x_{0},\cdot )|\stackrel{d}{=}B_{c}(x_{0},\cdot )$.
If $c=0$, then ${B_{c,\gamma }^{\mathit{skew}}}$ is a skew Brownian motion: ${B_{0,\gamma }^{\mathit{skew}}}(\cdot )\stackrel{d}{=}W_{\gamma }(\cdot )$.

3 Main results

Let
\[ a(x)=\widetilde{a}(x)+\frac{\bar{c}(x)}{x},\hspace{1em}x\in \mathbb{R},\]
where $\widetilde{a}\in L_{1}(\mathbb{R})$ and
\[ \bar{c}(x)=c_{+}\cdot \mathbb{1}_{x>1}+c_{-}\cdot \mathbb{1}_{x<-1},\hspace{1em}x\in \mathbb{R}.\]
Let $X_{n}(t),t\geqslant 0$, be the solution of the SDE
\[ \left\{\begin{array}{l}\hspace{0.1667em}dX_{n}(t)=na\big(nX_{n}(t)\big)\hspace{0.1667em}dt+\hspace{0.1667em}dW(t)\\{} \hspace{2em}\hspace{2em}\hspace{2.5pt}=\bigg(n\widetilde{a}\big(nX_{n}(t)\big)+\displaystyle \frac{\bar{c}\big(nX_{n}(t)\big)}{X_{n}(t)}\bigg)\hspace{0.1667em}dt+\hspace{0.1667em}dW(t),\hspace{1em}t\geqslant 0,\\{} X_{n}(0)=x_{0}.\end{array}\right.\]
The existence and uniqueness of a strong solution of this SDE follows from [3, Thm. 4.53].
Theorem 1.
If $c_{+}\textit{and}\hspace{2.5pt}c_{-}>-1/2$, then the sequence of processes $\{X_{n}\}$ converges weakly to a limit process $X_{\infty }$. In particular:
  • A1. If
    • (a) $x_{0}>0$ and $c_{+}\geqslant 1/2$, or
    • (b) $x_{0}\geqslant 0$ and $c_{-}<c_{+}<1/2$, or
    • (c) $x_{0}=0$ and $c_{-}<1/2\leqslant c_{+}$,
    then
    \[ X_{\infty }(t)={B_{c_{+}}^{+}}(x_{0},t),\hspace{1em}t\geqslant 0.\]
  • A2. Similarly, if
    • (a) $x_{0}<0$ and $c_{-}\geqslant 1/2$, or
    • (b) $x_{0}\leqslant 0$ and $c_{+}<c_{-}<1/2$, or
    • (c) $x_{0}=0$ and $c_{+}<1/2\leqslant c_{-}$,
    then
    \[ X_{\infty }(t)={B_{c_{-}}^{-}}(x_{0},t),\hspace{1em}t\geqslant 0.\]
  • A3. If $x_{0}<0$, $c_{-}<1/2$, and $c_{-}<c_{+}$, then the limiting process evolves as ${B_{c_{-}}^{-}}$ until hitting 0 and then proceeds as ${B_{c_{+}}^{+}}$ indefinitely, that is,
    \[ X_{\infty }(t)={B_{c_{-}}^{-}}(x_{0},t)\cdot \mathbb{1}_{t\leqslant \tau }+{B_{c_{+}}^{+}}(0,t-\tau )\cdot \mathbb{1}_{t>\tau },\hspace{1em}t\geqslant 0,\]
    where $\tau =\inf \{t:X_{\infty }(t)\geqslant 0\}$ and ${B_{c_{\pm }}^{\pm }}$ are independent (positive and negative) Bessel processes.
  • A4. Similarly, if $x_{0}>0$, $c_{+}<1/2$, and $c_{+}<c_{-}$, then
    \[ X_{\infty }(t)={B_{c_{+}}^{+}}(x_{0},t)\cdot \mathbb{1}_{t\leqslant \tau }+{B_{c_{-}}^{-}}(0,t-\tau )\cdot \mathbb{1}_{t>\tau },\hspace{1em}t\geqslant 0,\]
    where $\tau =\inf \{t:X_{\infty }(t)\leqslant 0\}$.
  • A5. If $c_{+}=c_{-}=:c<1/2$, then, for any $x_{0}$,
    \[ X_{\infty }(t)={B_{c,\gamma }^{\mathit{skew}}}(x_{0},t),\hspace{1em}t\geqslant 0,\]
    where $\gamma =({\int _{-\infty }^{+\infty }}\widetilde{a}(z)\hspace{0.1667em}dz)=\frac{1-\exp \{-2{\int _{-\infty }^{+\infty }}\widetilde{a}(z)\hspace{0.1667em}dz\}}{1+\exp \{-2{\int _{-\infty }^{+\infty }}\widetilde{a}(z)\hspace{0.1667em}dz\}}$.
  • A6. Finally, if $x_{0}=0$, $c_{+}\geqslant 1/2$, and $c_{-}\geqslant 1/2$, then the distribution of the limit process $X_{\infty }$ equals
    \[ p\cdot \mathbb{P}_{{B_{c_{+}}^{+}}}+(1-p)\cdot \mathbb{P}_{{B_{c_{-}}^{-}}},\]
    where
    (6)
    \[ p=\frac{{\textstyle\int _{0}^{\infty }}A(-y){(y\vee 1)}^{-2c_{-}}\hspace{0.1667em}dy}{{\textstyle\int _{0}^{\infty }}(A(-y){(y\vee 1)}^{-2c_{-}}+A(y){(y\vee 1)}^{-2c_{+}})\hspace{0.1667em}dy},\]
    $A(y)=\exp \{-2{\int _{0}^{y}}\widetilde{a}(z)\hspace{0.1667em}dz\}$, and $\mathbb{P}_{{B_{c_{\pm }}^{\pm }}}$ are the distributions of positive and negative Bessel processes ${B_{c_{\pm }}^{\pm }}(0,\cdot )$ starting from 0.
Remark 4.
Some results of the theorem follow from [8]. However, we apply here the general approach applicable to all cases simultaneously. Condition (2) is somewhat weaker than $\tilde{a}\in L_{1}(\mathbb{R})$. However, we do not assume that $\sup _{x}|x\tilde{a}(x)|<\infty $, contrary to the paper [8].

4 Proof

It follows from [9, Section 3] or [11, Section 3.7] that if A1 is satisfied, then, for any $\alpha >0$, we have the convergence
\[ X_{n}\big(\cdot \wedge {\tau }^{n,\alpha }\big)\hspace{1em}\Rightarrow \hspace{1em}{B_{c_{+}}^{+}}\big(x_{0},\cdot \wedge {\tau }^{0,\alpha }\big),\hspace{1em}n\to \infty ,\]
where ${\tau }^{n,\alpha }=\inf \{t\geqslant 0:X_{n}(t)\leqslant \alpha \}$ and ${\tau }^{0,\alpha }=\inf \{t\geqslant 0:{B_{c_{+}}^{+}}(x_{0},t)\leqslant \alpha \}$. Since the process ${B_{c_{+}}^{+}}(x_{0},\cdot )$ does not hit 0, this yields the proof. Case A2 is considered similarly.
To prove all other items of Theorem 1, we use the method proposed in [13].
Let $\{{\xi }^{(n)},n\geqslant 0\}$ be a sequence of continuous homogeneous strong Markov processes. For $\alpha >0$, set
\[ {\tau }^{n,\alpha }:=\inf \big\{t\geqslant 0:\big|{\xi }^{(n)}(t)\big|\leqslant \alpha \big\},\hspace{2em}{\sigma }^{n,\alpha }:=\inf \big\{t\geqslant 0:\big|{\xi }^{(n)}(t)\big|\geqslant \alpha \big\}.\]
We denote by ${\xi _{x_{0}}^{(n)}}$ a process that has the distribution of ${\xi }^{(n)}$ conditioned by ${\xi }^{(n)}(0)=x_{0}$.
The next statement is a particular case of Theorem 2 of [13].
Lemma 1.
Assume that the sequence $\{{\xi }^{(n)},n\geqslant 0\}$ satisfies the following conditions:
(7)
\[\begin{array}{r@{\hskip0pt}l}& \displaystyle {\xi }^{(n)}(0)\hspace{1em}\Rightarrow \hspace{1em}{\xi }^{(0)}(0);\end{array}\]
(8)
\[\begin{array}{r@{\hskip0pt}l}& \displaystyle \forall T>0\hspace{2.5pt}\forall \varepsilon >0\hspace{2.5pt}\exists \delta >0\hspace{2.5pt}\exists n_{0}\hspace{2.5pt}\forall n\geqslant n_{0}\\{} & \displaystyle \hspace{1em}\mathrm{P}\Big(\underset{\begin{array}{c} |s-t|<\delta ,\\{}s,t\in [0,T]\end{array}}{\sup }\big|{\xi }^{(n)}(t)-{\xi }^{(n)}(s)\big|\geqslant \varepsilon \Big)\leqslant \varepsilon ;\end{array}\]
(9)
\[\begin{array}{r@{\hskip0pt}l}& \displaystyle \forall T>0\hspace{2em}\underset{\varepsilon \to 0+}{\lim }\underset{n}{\sup }\mathrm{E}{\int _{0}^{T}}\mathbb{1}_{|{\xi }^{(n)}(t)|\leqslant \varepsilon }\hspace{0.1667em}dt=0;\end{array}\]
(10)
\[\begin{array}{r@{\hskip0pt}l}& \displaystyle {\int _{0}^{\infty }}\mathbb{1}_{{\xi }^{(0)}(t)=0}\hspace{0.1667em}dt=0\hspace{1em}\hspace{2.5pt}\textit{a.s.}\end{array}\]
Assume that, for any $\alpha >0$, $x_{0}\in \mathbb{R}$, and any sequence $\{x_{n}\}$ such that $\lim _{n\to \infty }x_{n}=x_{0}$, we have
(11)
\[\begin{array}{r@{\hskip0pt}l}\displaystyle \big({\xi _{x_{n}}^{(n)}}\big(\cdot \wedge {\tau }^{n,\alpha }\big),{\tau }^{n,\alpha }\big)& \displaystyle \hspace{1em}\Rightarrow \hspace{1em}\big({\xi _{x_{0}}^{(0)}}\big(\cdot \wedge {\tau }^{0,\alpha }\big),{\tau }^{0,\alpha }\big),\hspace{1em}n\to \infty ;\end{array}\]
(12)
\[\begin{array}{r@{\hskip0pt}l}\displaystyle {\xi _{x_{n}}^{(n)}}\big({\sigma }^{n,\alpha }\big)& \displaystyle \hspace{1em}\Rightarrow \hspace{1em}{\xi _{x_{0}}^{(0)}}\big({\sigma }^{0,\alpha }\big),\hspace{1em}n\to \infty .\end{array}\]
Then ${\xi }^{(n)}\Rightarrow {\xi }^{(0)}$ in $C([0,\infty ))$ as $n\to \infty $.
We apply this lemma for ${\xi }^{(n)}=X_{n},n\geqslant 1$, and ${\xi }^{(0)}=X_{\infty }$ in cases A1–A5 of the theorem. Case A6 will be considered separately.
Remark 5.
Condition (12) is the only condition that is not true in case A6. It fails if $x_{0}=0$. Indeed, for any $x>0$, the process ${B_{c_{+}}^{+}}(x,\cdot )$ does not hit 0. So, we may select a sequence $\{x_{n}\}\subset (0,\infty )$ that converges to 0 sufficiently slowly and such that, given $X_{n}(0)=x_{n}$, we have $X_{n}(\cdot )\Rightarrow B_{+}(0,\cdot )$ and $\lim _{n\to \infty }P(\exists t\ge 0:\hspace{2.5pt}X_{n}(t)=0)=0$. The concrete selection of $\{x_{k}\}$ can be done using formulas (15) and (16). Since $B_{+}(0,{\sigma }^{0,\alpha })=\alpha $ a.s., we get $X_{n}({\sigma }^{n,\alpha })\Rightarrow \alpha $. However, if all $x_{n}$ were negative, then the limit might be $-\alpha $.
Conditions (7) and (10) are obvious.
The convergence
(13)
\[ \forall \alpha >0\hspace{2.5pt}\hspace{2.5pt}\hspace{2.5pt}{\xi _{x_{n}}^{(n)}}\big(\cdot \wedge {\tau }^{n,\alpha }\big)\hspace{1em}\Rightarrow \hspace{1em}{\xi _{x_{0}}^{(0)}}\big(\cdot \wedge {\tau }^{0,\alpha }\big),\hspace{1em}n\to \infty ,\]
follows from [9, Section 3] or [11, Section 3.7]. Since
\[ P\big(\forall \varepsilon >0\hspace{2.5pt}\exists t\in \big({\tau }^{0,\alpha },{\tau }^{0,\alpha }+\varepsilon \big):\hspace{2.5pt}\big|{\xi _{x_{0}}^{(0)}}(t)\big|<\alpha \hspace{2.5pt}|\hspace{2.5pt}{\tau }^{0,\alpha }<\infty \big)=1,\]
convergence (13) yields the convergence of pairs (11).
Let us check condition (8). Set
\[\begin{array}{r@{\hskip0pt}l}\displaystyle A(y)& \displaystyle =\exp \Bigg\{-2{\int _{0}^{y}}\widetilde{a}(z)\hspace{0.1667em}dz\Bigg\},\\{} \displaystyle A_{n}(y)& \displaystyle =\exp \Bigg\{-2{\int _{0}^{y}}n\widetilde{a}(nz)\hspace{0.1667em}dz\Bigg\}=A(ny),\hspace{1em}y\in \mathbb{R},\\{} \displaystyle \varPhi _{n}(x)& \displaystyle ={\int _{0}^{x}}A_{n}(y)\hspace{0.1667em}dy,\hspace{1em}x\in \mathbb{R}.\end{array}\]
Observe that $\varPhi _{n}:\mathbb{R}\to \mathbb{R}$ is a bijection, $\varPhi _{n}(0)=0$, and
\[ \exists L>0\hspace{2.5pt}\hspace{2.5pt}\forall n\hspace{2.5pt}\hspace{2.5pt}\forall x,y\in \mathbb{R}\hspace{2em}{L}^{-1}|x-y|\leqslant \big|\varPhi _{n}(x)-\varPhi _{n}(y)\big|\leqslant L|x-y|.\]
Itô’s formula yields
\[ \hspace{0.1667em}d\varPhi _{n}\big(X_{n}(t)\big)=A\big(nX_{n}(t)\big)\bigg(\frac{\bar{c}(nX_{n}(t))}{X_{n}(t)}\hspace{0.1667em}dt+\hspace{0.1667em}dW(t)\bigg).\]
So
\[\begin{array}{r@{\hskip0pt}l}\displaystyle \big|X_{n}(t)-X_{n}(s)\big|& \displaystyle \leqslant L\big|\varPhi _{n}\big(X_{n}(t)\big)-\varPhi _{n}\big(X_{n}(s)\big)\big|\\{} & \displaystyle \leqslant L\Bigg|{\int _{s}^{t}}A\big(nX_{n}(z)\big)\frac{\bar{c}(nX_{n}(z))}{X_{n}(z)}\hspace{0.1667em}dz\Bigg|+L\Bigg|{\int _{s}^{t}}A\big(nX_{n}(z)\big)\hspace{0.1667em}dW(z)\Bigg|.\end{array}\]
Let $|s-t|<\delta $, and let $\varDelta >0$ be fixed. Denote $f_{n}(t):={\int _{0}^{t}}A(nX_{n}(z))\hspace{0.1667em}dW(z)$.
a) Assume that $|X_{n}(z)|>\varDelta ,z\in [s,t]$. Then
\[ \Bigg|{\int _{s}^{t}}A\big(nX_{n}(z)\big)\frac{\bar{c}(nX_{n}(z))}{X_{n}(z)}\hspace{0.1667em}dz\Bigg|\leqslant C\delta /\varDelta ,\]
where $C=\| A\| _{\infty }\max (|c_{-}|,|c_{+}|)<\infty $. Hence, we have the estimate
\[ \big|X_{n}(t)-X_{n}(s)\big|\leqslant LC\delta /\varDelta +L\omega _{f_{n}}(\delta ),\]
where $\omega _{f}(\delta )=\sup _{|s-t|<\delta ,\hspace{2.5pt}s,t\in [0,T]}|f(t)-f(s)|$ is the modulus of continuity.
b) Assume that $|X_{n}(z_{0})|\leqslant \varDelta $ for some $z_{0}\in [s,t]$.
Denote $\tau :=\inf \{z\geqslant s:|X_{n}(z)|\leqslant \varDelta \}$ and $\sigma :=\sup \{z\leqslant t:|X_{n}(z)|\leqslant \varDelta \}$. Then
\[\begin{array}{r@{\hskip0pt}l}\displaystyle \big|X_{n}(t)-X_{n}(s)\big|& \displaystyle \leqslant \big|X_{n}(s)-X_{n}(\tau )\big|+\big|X_{n}(\sigma )-X_{n}(t)\big|+2\varDelta \\{} & \displaystyle \leqslant 2LC\delta /\varDelta +2L\omega _{f_{n}}(\delta )+2\varDelta .\end{array}\]
Thus, in any case, we have the following estimate of the modulus of continuity:
\[ \omega _{X_{n}}(\delta )\leqslant 2LC\delta /\varDelta +2L\omega _{f_{n}}(\delta )+2\varDelta .\]
Let $\varDelta \leqslant \varepsilon /6$. Then, for $\delta \leqslant \frac{\varepsilon \varDelta }{6LC}$, we have
\[\begin{array}{r@{\hskip0pt}l}\displaystyle \underset{n}{\sup }\mathrm{P}\big(\omega _{X_{n}}(\delta )\geqslant \varepsilon \big)& \displaystyle \leqslant \underset{n}{\sup }\mathrm{P}\big(\varepsilon /3+2L\omega _{f_{n}}(\delta )+\varepsilon /3\geqslant \varepsilon \big)\\{} & \displaystyle =\underset{n}{\sup }\mathrm{P}\big(\omega _{f_{n}}(\delta )\geqslant \varepsilon /6L\big)\to 0,\hspace{1em}\delta \to 0+.\end{array}\]
The last convergence follows from the fact that the sequence of distributions of $\{f_{n}(\cdot )={\int _{0}^{.}}A(nX_{n}(z))\hspace{0.1667em}dW(z)\}_{n\geqslant 1}$ in the space of continuous functions is weakly relatively compact because the function A is bounded.
Let us prove (12) in cases A1–A5.
Remark 6.
The proof below yields that condition (12) is true if $x_{n}=0$ for all $n\geqslant 0$.
Let $|x|<\alpha $. It is easy to see that $P_{x}({\sigma }^{n,\alpha }<\infty )=1,\hspace{2.5pt}n\in \mathbb{N}\cup \{\infty \}$. Since the process $X_{n}$ is continuous, we have $|X_{n}({\sigma }^{n,\alpha })|=\alpha $ a.s.
By ${p_{x}^{n}}=P_{x}(X_{n}({\sigma }^{n,\alpha })=\alpha ),\hspace{2.5pt}n\in \mathbb{N}\cup \{\infty \}$, we denote the probability to reach α before reaching $-\alpha $ when starting from x.
Using formulas (4) and (5) for the scale of a Bessel process and a skew Bessel process, it is easy to check that
(14)
\[ {p_{x}^{\infty }}=\left\{\begin{array}{l@{\hskip10.0pt}l}\mathbb{1}_{x\geqslant 0}-\big(1-\frac{\psi _{c_{-}}(-x)}{\psi _{c_{-}}(\alpha )}\big)\mathbb{1}_{x<0}\hspace{1em}& \text{in cases A1, A3},\\{} \frac{\psi _{c_{+}}(x)}{\psi _{c_{+}}(\alpha )}\cdot \mathbb{1}_{x>0}\hspace{1em}& \text{in cases A2, A4},\\{} \frac{\psi _{c}(|x|)}{\psi _{c}(\alpha )}(q\mathbb{1}_{x\geqslant 0}-p\mathbb{1}_{x<0})+p\hspace{1em}& \text{in case A5},\end{array}\right.\]
where $\psi _{c}$ is given in (4).
For $n\in \mathbb{N}$, we have (see [4, Section 15] and [15])
(15)
\[ {p_{x}^{n}}=\frac{\varphi _{n}(x)-\varphi _{n}(-\alpha )}{\varphi _{n}(\alpha )-\varphi _{n}(-\alpha )},\]
where
(16)
\[\begin{array}{r@{\hskip0pt}l}\displaystyle \varphi _{n}(x)& \displaystyle ={\int _{0}^{x}}\exp \Bigg\{-2{\int _{0}^{y}}a_{n}(z)\hspace{0.1667em}dz\Bigg\}\hspace{0.1667em}dy={\int _{0}^{x}}\exp \Bigg\{-2{\int _{0}^{y}}na(nz)\hspace{0.1667em}dz\Bigg\}\hspace{0.1667em}dy\\{} & \displaystyle =\frac{1}{n}{\int _{0}^{nx}}\exp \Bigg\{-2{\int _{0}^{y}}a(z)\hspace{0.1667em}dz\Bigg\}\hspace{0.1667em}dy=\frac{1}{n}\varphi (nx),\\{} \displaystyle \varphi (x)& \displaystyle :={\int _{0}^{x}}\exp \Bigg\{-2{\int _{0}^{y}}a(z)\hspace{0.1667em}dz\Bigg\}\hspace{0.1667em}dy.\end{array}\]
The function φ is increasing. It follows from the definition of a that φ is bounded from above (below) iff $c_{+}>1/2$ ($c_{-}>1/2$). The function φ has the following asymptotic behavior:
(17)
\[ \varphi (x)\sim \left\{\begin{array}{l@{\hskip10.0pt}l}\pm A(\pm \infty )\frac{|x{|}^{1-2c_{\pm }}}{1-2c_{\pm }}\hspace{1em}& \hspace{2.5pt}\text{if}\hspace{2.5pt}\hspace{2.5pt}c_{\pm }<1/2,\\{} \pm A(\pm \infty )\ln |x|\hspace{1em}& \hspace{2.5pt}\text{if}\hspace{2.5pt}\hspace{2.5pt}c_{\pm }=1/2,\end{array}\right.\hspace{1em}x\to \pm \infty ,\]
where
\[ A(y)=\exp \Bigg\{-2{\int _{0}^{y}}\widetilde{a}(z)\hspace{0.1667em}dz\Bigg\},\hspace{1em}y\in \mathbb{R},\]
and
(18)
\[ \underset{x\to \pm \infty }{\lim }\varphi (x)=\varphi (\pm \infty )\in \mathbb{R}\hspace{1em}\hspace{2.5pt}\text{if}\hspace{2.5pt}\hspace{2.5pt}c_{\pm }>1/2.\]
Condition (12) follows from (14), (15), (16), (17), (18) in cases A1–A5 (and in case A6 if $x_{n}=0,\hspace{2.5pt}n\geqslant 0$).
Set $\tau _{n}=\inf \{t\geqslant 0:|X_{n}(t)|\geqslant 1\}$.
Lemma 2.
Assume that
(19)
\[ \underset{\varepsilon \to 0+}{\lim }\underset{|x|\leqslant 1}{\sup }\underset{n}{\sup }\mathrm{E}_{x}{\int _{0}^{\tau _{n}}}\mathbb{1}_{|X_{n}(t)|\leqslant \varepsilon }\hspace{0.1667em}dt=0.\]
Then (9) is satisfied, that is,
\[ \forall T>0\hspace{1em}\underset{\varepsilon \to 0+}{\lim }\underset{n}{\sup }\mathrm{E}{\int _{0}^{T}}\mathbb{1}_{|X_{n}(t)|\leqslant \varepsilon }\hspace{0.1667em}dt=0.\]
Proof.
Introduce the notations
\[\begin{array}{r@{\hskip0pt}l}\displaystyle {S_{n,\pm }^{0}}& \displaystyle :=0,\hspace{2em}{T_{n,\pm }^{k}}:=\inf \big\{t\ge {S_{n,\pm }^{k-1}}:\hspace{2.5pt}X_{n}(t)=\pm 1\big\},\\{} \displaystyle {S_{n,\pm }^{k}}& \displaystyle :=\inf \big\{t\ge {T_{n,\pm }^{k}}:\hspace{2.5pt}X_{n}(t)=\pm \varepsilon \big\},\\{} \displaystyle {\tilde{T}_{n,\pm }^{k}}& \displaystyle :=\inf \big\{t\ge {S_{n,\pm }^{k}}:\hspace{2.5pt}\big|X_{n}(t)\big|=1\big\},\\{} \displaystyle {\beta _{n,\pm }^{k}}& \displaystyle :={\int _{{S_{n,\pm }^{k}}}^{{\tilde{T}_{n,\pm }^{k}}}}\mathbb{1}_{|X_{n}(t)|\leqslant \varepsilon }\hspace{0.1667em}dt,\hspace{2em}{\alpha _{n,\pm }^{k}}:={S_{n,\pm }^{k}}-{T_{n,\pm }^{k}},\hspace{1em}k\geqslant 1.\end{array}\]
Then
\[\begin{array}{r@{\hskip0pt}l}& \displaystyle {\int _{0}^{T}}\mathbb{1}_{|X_{n}(t)|\leqslant \varepsilon }\hspace{0.1667em}dt\\{} & \displaystyle \hspace{1em}\leqslant {\int _{0}^{\tau _{n}}}\mathbb{1}_{|X_{n}(t)|\leqslant \varepsilon }\hspace{0.1667em}dt+\sum \limits_{k}\big({\beta _{n,+}^{1}}+\cdots +{\beta _{n,+}^{k}}\big)\mathbb{1}_{{\alpha _{n,+}^{1}}<T,\dots ,{\alpha _{n,+}^{k}}<T,{\alpha _{n,+}^{k+1}}\geqslant T}\\{} & \displaystyle \hspace{2em}+\sum \limits_{k}\big({\beta _{n,-}^{1}}+\cdots +{\beta _{n,-}^{k}}\big)\mathbb{1}_{{\alpha _{n,-}^{1}}<T,\dots ,{\alpha _{n,-}^{k}}<T,{\alpha _{n,-}^{k+1}}\geqslant T}\hspace{0.1667em}.\end{array}\]
It follows from the strong Markov property that
\[\begin{array}{r@{\hskip0pt}l}& \displaystyle \sum \limits_{k}\mathrm{E}\big({\beta _{n,+}^{1}}+\cdots +{\beta _{n,+}^{k}}\big)\mathbb{1}_{{\alpha _{n,+}^{1}}<T,\dots ,{\alpha _{n,+}^{k}}<T,{\alpha _{n,+}^{k+1}}\geqslant T}\\{} & \displaystyle \hspace{1em}=\sum \limits_{k}k\mathrm{E}_{\varepsilon }{\int _{0}^{\tau _{n}}}\mathbb{1}_{|X_{n}(t)|\leqslant \varepsilon }\hspace{0.1667em}dt\hspace{0.1667em}{(1-p_{n,+})}^{k}p_{n,+}={(p_{n,+})}^{-1}\mathrm{E}_{\varepsilon }{\int _{0}^{\tau _{n}}}\mathbb{1}_{|X_{n}(t)|\leqslant \varepsilon }\hspace{0.1667em}dt,\end{array}\]
where $p_{n,+}=\mathrm{P}_{1}({S_{n,+}^{1}}\geqslant T)$.
Considering the last term similarly, we get the inequality
\[ \mathrm{E}{\int _{0}^{T}}\mathbb{1}_{|X_{n}(t)|\leqslant \varepsilon }\hspace{0.1667em}dt\leqslant \big(1+{(p_{n,+})}^{-1}+{(p_{n,-})}^{-1}\big)\underset{|x|\leqslant 1}{\sup }\underset{n}{\sup }\mathrm{E}_{x}{\int _{0}^{\tau _{n}}}\mathbb{1}_{|X_{n}(t)|\leqslant \varepsilon }\hspace{0.1667em}dt.\]
It is not difficult to see that $\sup _{n}{(p_{n,\pm })}^{-1}<\infty $. The lemma is proved.  □
Let us verify (19). It is known [6, Chap. 4.3] that
\[ u_{n,\varepsilon }(x):=\mathrm{E}_{x}{\int _{0}^{\tau _{n}}}\mathbb{1}_{|X_{n}(t)|\leqslant \varepsilon }\hspace{0.1667em}dt\]
is of the form
(20)
\[ u_{n,\varepsilon }(x)={\int _{-1}^{1}}G_{n}(x,y)\mathbb{1}_{|y|\leqslant \varepsilon }\hspace{0.1667em}m_{n}(dy),\]
where Green’s function $G_{n}$ equals
\[ G_{n}(x,y)=\left\{\begin{array}{l@{\hskip10.0pt}l}\frac{(\varphi _{n}(x)-\varphi _{n}(-1))(\varphi _{n}(1)-\varphi _{n}(y))}{\varphi _{n}(1)-\varphi _{n}(-1)},\hspace{1em}& x\leqslant y,\\{} G_{n}(y,x),\hspace{2.5pt}\hspace{1em}& x\geqslant y,\end{array}\right.\]
with $\varphi _{n}$ given by formula (16), and
\[ m_{n}(dx)=\exp \Bigg\{2{\int _{0}^{x}}a_{n}(z)\hspace{0.1667em}dz\Bigg\}\hspace{0.1667em}dx.\]
The function $u_{n,\varepsilon }(x)$ is a generalized solution (because $a_{n}$ may be discontinuous) of the equation
\[ 1/2\hspace{0.1667em}{u^{\prime\prime }_{n,\varepsilon }}(x)+a_{n}(x){u^{\prime }_{n,\varepsilon }}(x)=-\mathbb{1}_{|x|\leqslant \varepsilon }(x),\hspace{1em}|x|\leqslant 1,\]
with boundary conditions $u_{n,\varepsilon }(\pm 1)=0$.
A direct verification of the condition $\lim _{\varepsilon \to 0+}\sup _{|x|\leqslant 1}\sup _{n}u_{n,\varepsilon }(x)=0$ is possible but cumbersome. We prove the corresponding convergence using the comparison theorem. We consider only the case where $a_{n}$ satisfies the Lipschitz condition. The general case follows by approximation.
It follows from the Itô–Tanaka formula that
\[\begin{array}{r@{\hskip0pt}l}\displaystyle \hspace{0.1667em}d\big|X_{n}(t)\big|& \displaystyle =\big(X_{n}(t)\big)\hspace{0.1667em}a_{n}\big(X_{n}(t)\big)\hspace{0.1667em}dt+\big(X_{n}(t)\big)\hspace{0.1667em}dW(t)+\hspace{0.1667em}dl_{n}(t)\\{} & \displaystyle =\big(X_{n}(t)\big)\hspace{0.1667em}a_{n}\big(X_{n}(t)\big)\hspace{0.1667em}dt+\hspace{0.1667em}dW_{n}(t)+\hspace{0.1667em}dl_{n}(t),\end{array}\]
where $W_{n}$ is a new Wiener process, and $l_{n}$ is the local time of $X_{n}$ at zero.
Let $-1/2<c<\min (c_{-},c_{+},0)$. It follows from the arguments of [12] on comparison of reflecting SDEs that $|X_{n}(t)|\geqslant Y_{n}(t),\hspace{2.5pt}t\geqslant 0$, where $Y_{n}$ satisfies the following SDE with reflection at zero:
\[ \hspace{0.1667em}dY_{n}(t)=\bar{a}_{n}\big(Y_{n}(t)\big)\hspace{0.1667em}dt+\hspace{0.1667em}dW_{n}(t)+\hspace{0.1667em}d\tilde{l}_{n}(t).\]
Here $W_{n}(t)={\int _{0}^{t}}(X_{n}(s))\hspace{0.1667em}dW(s)$ is a Wiener process, $\tilde{l}_{n}$ is the local time of $Y_{n}$ at 0, $\bar{a}_{n}(x)=n\bar{a}(nx),\hspace{2.5pt}\bar{a}(x)=-(|a(x)|+|a(-x)|)-\frac{c}{x}\mathbb{1}_{|x|>1}+r(x)$, and r is any nonpositive function such that $\bar{a}$ satisfies Lipschitz condition. We will also assume that $\int _{\mathbb{R}}|r(x)|\hspace{0.1667em}dx\leqslant \int _{\mathbb{R}}|b(x)|\hspace{0.1667em}dx$. The Lipschitz property is used only for application of comparison theorem.
To prove (19), it suffices to verify that
\[ \underset{\varepsilon \to 0}{\lim }\underset{x\in [0,1]}{\sup }\underset{n}{\sup }\bar{u}_{n,\varepsilon }(x):=\underset{\varepsilon \to 0}{\lim }\underset{x\in [0,1]}{\sup }\underset{n}{\sup }\mathrm{E}_{x}{\int _{0}^{\bar{\tau }_{n}}}\mathbb{1}_{Y_{n}(s)\in [0,\varepsilon ]}\hspace{0.1667em}ds=0,\]
where $\bar{\tau }_{n}$ is the entry time of $Y_{n}$ into $[1,\infty )$.
It is known [6] that
\[ \bar{u}_{n,\varepsilon }(x)=2{\int _{x}^{1}}\exp \Bigg\{-2{\int _{1}^{y}}\bar{a}_{n}(z)\hspace{0.1667em}dz\Bigg\}{\int _{0}^{y}}\mathbb{1}_{[0,\varepsilon ]}(z)\exp \Bigg\{2{\int _{1}^{y}}\bar{a}_{n}(z)\hspace{0.1667em}dz\Bigg\}\hspace{0.1667em}dy\]
is a (generalized) solution of the equation
\[ 1/2\hspace{0.1667em}{\bar{u}^{\prime\prime }_{n,\varepsilon }}(x)+\bar{a}_{n}(x){\bar{u}^{\prime }_{n,\varepsilon }}(x)=-\mathbb{1}_{[0,\varepsilon ]},\hspace{1em}x\in [0,1],\]
with boundary conditions ${u^{\prime }_{n,\varepsilon }}(0)=0,\hspace{2.5pt}u_{n,\varepsilon }(1)=0$. So
(21)
\[\begin{array}{r@{\hskip0pt}l}& \displaystyle \underset{x\in [0,1]}{\sup }\underset{n}{\sup }\bar{u}_{n,\varepsilon }(x)\\{} & \displaystyle \hspace{1em}=\bar{u}_{n,\varepsilon }(0)\\{} & \displaystyle \hspace{1em}=2{\int _{0}^{1}}\exp \Bigg\{-2{\int _{1}^{y}}\bar{a}_{n}(z)\hspace{0.1667em}dz\Bigg\}{\int _{0}^{y}}\mathbb{1}_{[0,\varepsilon ]}(z)\exp \Bigg\{2{\int _{1}^{y}}\bar{a}_{n}(z)\hspace{0.1667em}dz\Bigg\}\hspace{0.1667em}dy\\{} & \displaystyle \hspace{1em}\leqslant K{\int _{0}^{1}}\exp \Bigg\{{\int _{0}^{y}}{\bar{y}}^{-2c}\hspace{0.1667em}dz\Bigg\}{\int _{0}^{y}}\mathbb{1}_{[0,\varepsilon ]}(z)\hspace{0.1667em}{y}^{2c}\hspace{0.1667em}dy,\end{array}\]
where K is a constant that depends only on $\int _{\mathbb{R}}|b(x)|\hspace{0.1667em}dx$ and c (and is independent of n). By our choice, $c\in (-1/2,0)$, so the right-hand side of (21) tends to 0 as $\varepsilon \to 0+$ by the Lebesgue dominated convergence theorem.
The theorem is proved in cases A1–A5.
Consider case A6. Note that conditions (7)–(11) are satisfied for ${\xi }^{(n)}=X_{n}$, $n\geqslant 1$, and ${\xi }^{(0)}=X_{\infty }$, where $X_{\infty }$ is given in the theorem. In particular, this implies that the sequence of distributions of stochastic processes $\{X_{n}\}$ in the space of continuous functions is weakly relatively compact. Choosing an arbitrary convergent subsequence, without loss of generality, we may assume that $\{X_{n}\}$ itself converges weakly to a continuous process X. Let $\delta >0$, and let ${\sigma }^{n,\delta }=\inf \{t\geqslant 0:X_{n}(t)=\delta \},\hspace{2.5pt}{\sigma }^{\delta }=\inf \{t\geqslant 0:X(t)=\delta \}$. It follows from formulas for the scale function of the processes $\{X_{n}\}$ that $\lim _{n\to \infty }P(X_{n}({\sigma }^{n,\delta })=\delta )=p,\hspace{2.5pt}\lim _{n\to \infty }P(X_{n}({\sigma }^{n,\delta })=-\delta )=1-p$, where p is given by (6). Formulas (9) and (11) imply that the limit process exits from the interval $[-\delta ,\delta ]$ with probability 1.
Observe that, for almost all $\delta >0$, with respect to the Lebesgue measure, the distribution of $X_{n}({\sigma }^{n,\delta }+\cdot )$ converges weakly as $n\to \infty $ to the distribution of $X(\delta +\cdot )$. Indeed, by the Skorokhod theorem on a single probability space (see [16]), without loss of generality, we may assume that the sequence $\{X_{n}\}$ converges to X uniformly on compact sets with probability 1. For simplicity, we will assume that the convergence holds for all ω and that also ${\sigma }^{n,\delta },{\sigma }^{\delta }<\infty $ for all $\omega ,n,\delta >0$. So we show convergence
(22)
\[ X_{n}\big({\sigma }^{n,\delta }+\cdot \big)\to X\big({\sigma }^{\delta }+\cdot \big)\]
if we prove that
(23)
\[ {\sigma }^{n,\delta }\to {\sigma }^{\delta },\hspace{1em}n\to \infty .\]
Convergence (23) may fail only if ${\sigma }^{\delta }$ is a point of a local maximum of X. It follows from the definition that ${\sigma }^{\delta }$ is a point of a strict local maximum of X from the left. The set of points of local maximums that are strict maximums from the left is at most countable. This yields that, for almost all ω and almost all $\delta >0$ with respect to the Lebesgue measure, we have convergence (23) and hence (22).
On the other hand, the distribution of $X_{n}({\sigma }^{n,\delta }+\hspace{0.1667em}\cdot )$ converges weakly as $n\to \infty $ to the distribution of the process $\mathbb{1}_{\varOmega _{-}}{B_{c_{-}}^{-}}(-\delta ,\cdot )+\mathbb{1}_{\varOmega _{+}}{B_{c_{+}}^{+}}(\delta ,\cdot )$, where $P(\varOmega _{-})=1-p,\hspace{2.5pt}P(\varOmega _{+})=p$, and the σ-algebra $\{\varnothing ,\varOmega _{-},\varOmega _{+},\varOmega \}$ is independent of $\sigma ({B_{c_{\pm }}^{\pm }}(\pm \delta ,t),t\geqslant 0)$.
Recall that assumptions of the theorem yield
\[ P\big(\exists t\geqslant 0:{B_{c_{\pm }}^{\pm }}(\pm \delta ,t)=0\big)=0.\]
It follows from (9) that
\[ P\Bigg({\int _{0}^{\infty }}\mathbb{1}_{X(s)=0}\hspace{0.1667em}ds=0\Bigg)=1.\]
Thus, we have the almost sure convergence in $C([0,\infty ))$
\[ X\big({\sigma }^{\delta }+\cdot \big)\to X(\cdot ),\hspace{1em}\delta \to 0.\]
The processes $\mathbb{1}_{\varOmega _{-}}{B_{c_{-}}^{-}}(-\delta ,\cdot )+\mathbb{1}_{\varOmega _{+}}{B_{c_{+}}^{+}}(\delta ,\cdot )$ converge in distribution to
\[ \mathbb{1}_{\varOmega _{-}}{B_{c_{-}}^{-}}(0,\cdot )+\mathbb{1}_{\varOmega _{+}}{B_{c_{+}}^{+}}(0,\cdot ),\]
where the σ-algebras $\{\varnothing ,\varOmega _{-},\varOmega _{+},\varOmega \}$ and $\sigma ({B_{c_{\pm }}^{\pm }}(0,t),t\geqslant 0)$ are independent.
This completes the proof of Theorem 1.

Acknowledgments

The authors thank the anonymous referee for valuable comments that helped improving the presentation.

References

[1] 
Barlow, M.T., Pitman, J., Yor, M.: On Walsh’s Brownian motions. Sémin. Probab. Strasbourg 23, 275–293 (1989). MR1022917. doi:10.1007/BFb0083979
[2] 
Blei, S.: On symmetric and skew Bessel processes. Stoch. Process. Appl. 122(9), 3262–3287 (2012). MR2946442. doi:10.1016/j.spa.2012.05.008
[3] 
Engelbert, H.J., Schmidt, W.: Strong Markov continuous local martingales and solutions of one-dimensional stochastic differential equations (Part III). Math. Nachr. 151(1), 149–197 (1991). MR1121203. doi:10.1002/mana.19911510111
[4] 
Gikhman, I.I., Skorokhod, A.V.: Stochastic Differential Equations. Springer (1979)
[5] 
Harrison, J.M., Shepp, L.A.: On skew Brownian motion. Ann. Probab. 9(2), 309–313 (1981). MR0606993. doi:10.1214/aop/1176994472
[6] 
Knight, F.B.: Essentials of Brownian Motion and Diffusion, vol. 18. American Mathematical Society (1981). MR0613983
[7] 
Kulinich, G., Kushnirenko, S., Mishura, Y.: Asymptotic behavior of integral functionals of unstable solutions of one-dimensional Itô stochastic differential equations. Theory Probab. Math. Stat. 89, 101–114 (2014). MR3235178. doi:10.1090/s0094-9000-2015-00938-8
[8] 
Kulinich, G.L., Kas’kun, E.P.: On the asymptotic behavior of solutions of a certain class of one-dimensional Ito stochastic differential equations. Theory Probab. Math. Stat. 56, 97–106 (1998). MR1791858
[9] 
Le Gall, J.-F.: Applications du temps local aux équations différentielles stochastiques unidimensionnelles. In: Séminaire de Probabilités XVII 1981/1982, pp. 15–31. Springer (1983). MR0770393. doi:10.1007/BFb0068296
[10] 
Lejay, A.: On the constructions of the skew Brownian motion. Probab. Surv. 3, 413–466 (2006). MR2280299. doi:10.1214/154957807000000013
[11] 
Makhno, S.Y.: Stochastic Equations. Limit Theorems. Kyiv (2012)
[12] 
Piera, F.J., Mazumdar, R.R.: Comparison results for reflected jump-diffusions in the orthant with variable reflection directions and stability applications. Electron. J. Probab. 13(61), 1886–1908 (2008). MR2453549. doi:10.1214/EJP.v13-569
[13] 
Pilipenko, A.Y., Prykhodko, Y.E.: On the limit behavior of a sequence of Markov processes perturbed in a neighborhood of the singular point. Ukr. Math. J. 67(4), 564–583 (2015). MR3432463. doi:10.1007/s11253-015-1101-5
[14] 
Portenko, N.I.: Generalized diffusion processes. In: Maruyama, G., Prokhorov, J.V. (eds.) Proceedings of the Third Japan–USSR Symposium on Probability Theory. Lecture Notes in Mathematics, vol. 550, pp. 500–523. Springer (1976). MR0440716. doi:10.1007/BFb0077511
[15] 
Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion. Grundlehren der mathematischen Wissenchaften A series of comprehensive studies in mathematics. Springer (1999). MR1725357. doi:10.1007/978-3-662-06400-9
[16] 
Skorokhod, A.V.: Studies in the Theory of Random Processes. Adiwes International Series in Mathematics. Addison–Wesley Publishing Company (1965). MR0185620
Reading mode PDF XML

Table of contents
  • 1 Introduction
  • 2 Bessel process. Skew Bessel process. Definition, properties
  • 3 Main results
  • 4 Proof
  • Acknowledgments
  • References

Copyright
© 2016 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Bessel process skew Bessel process limit theorems

MSC2010
60F17 60J60

Metrics
since March 2018
475

Article info
views

450

Full article
views

330

PDF
downloads

141

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

  • Theorems
    1
Theorem 1.
Theorem 1.
If $c_{+}\textit{and}\hspace{2.5pt}c_{-}>-1/2$, then the sequence of processes $\{X_{n}\}$ converges weakly to a limit process $X_{\infty }$. In particular:
  • A1. If
    • (a) $x_{0}>0$ and $c_{+}\geqslant 1/2$, or
    • (b) $x_{0}\geqslant 0$ and $c_{-}<c_{+}<1/2$, or
    • (c) $x_{0}=0$ and $c_{-}<1/2\leqslant c_{+}$,
    then
    \[ X_{\infty }(t)={B_{c_{+}}^{+}}(x_{0},t),\hspace{1em}t\geqslant 0.\]
  • A2. Similarly, if
    • (a) $x_{0}<0$ and $c_{-}\geqslant 1/2$, or
    • (b) $x_{0}\leqslant 0$ and $c_{+}<c_{-}<1/2$, or
    • (c) $x_{0}=0$ and $c_{+}<1/2\leqslant c_{-}$,
    then
    \[ X_{\infty }(t)={B_{c_{-}}^{-}}(x_{0},t),\hspace{1em}t\geqslant 0.\]
  • A3. If $x_{0}<0$, $c_{-}<1/2$, and $c_{-}<c_{+}$, then the limiting process evolves as ${B_{c_{-}}^{-}}$ until hitting 0 and then proceeds as ${B_{c_{+}}^{+}}$ indefinitely, that is,
    \[ X_{\infty }(t)={B_{c_{-}}^{-}}(x_{0},t)\cdot \mathbb{1}_{t\leqslant \tau }+{B_{c_{+}}^{+}}(0,t-\tau )\cdot \mathbb{1}_{t>\tau },\hspace{1em}t\geqslant 0,\]
    where $\tau =\inf \{t:X_{\infty }(t)\geqslant 0\}$ and ${B_{c_{\pm }}^{\pm }}$ are independent (positive and negative) Bessel processes.
  • A4. Similarly, if $x_{0}>0$, $c_{+}<1/2$, and $c_{+}<c_{-}$, then
    \[ X_{\infty }(t)={B_{c_{+}}^{+}}(x_{0},t)\cdot \mathbb{1}_{t\leqslant \tau }+{B_{c_{-}}^{-}}(0,t-\tau )\cdot \mathbb{1}_{t>\tau },\hspace{1em}t\geqslant 0,\]
    where $\tau =\inf \{t:X_{\infty }(t)\leqslant 0\}$.
  • A5. If $c_{+}=c_{-}=:c<1/2$, then, for any $x_{0}$,
    \[ X_{\infty }(t)={B_{c,\gamma }^{\mathit{skew}}}(x_{0},t),\hspace{1em}t\geqslant 0,\]
    where $\gamma =({\int _{-\infty }^{+\infty }}\widetilde{a}(z)\hspace{0.1667em}dz)=\frac{1-\exp \{-2{\int _{-\infty }^{+\infty }}\widetilde{a}(z)\hspace{0.1667em}dz\}}{1+\exp \{-2{\int _{-\infty }^{+\infty }}\widetilde{a}(z)\hspace{0.1667em}dz\}}$.
  • A6. Finally, if $x_{0}=0$, $c_{+}\geqslant 1/2$, and $c_{-}\geqslant 1/2$, then the distribution of the limit process $X_{\infty }$ equals
    \[ p\cdot \mathbb{P}_{{B_{c_{+}}^{+}}}+(1-p)\cdot \mathbb{P}_{{B_{c_{-}}^{-}}},\]
    where
    (6)
    \[ p=\frac{{\textstyle\int _{0}^{\infty }}A(-y){(y\vee 1)}^{-2c_{-}}\hspace{0.1667em}dy}{{\textstyle\int _{0}^{\infty }}(A(-y){(y\vee 1)}^{-2c_{-}}+A(y){(y\vee 1)}^{-2c_{+}})\hspace{0.1667em}dy},\]
    $A(y)=\exp \{-2{\int _{0}^{y}}\widetilde{a}(z)\hspace{0.1667em}dz\}$, and $\mathbb{P}_{{B_{c_{\pm }}^{\pm }}}$ are the distributions of positive and negative Bessel processes ${B_{c_{\pm }}^{\pm }}(0,\cdot )$ starting from 0.

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy