Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 3, Issue 3 (2016)
  4. A limit theorem for singular stochastic ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • Cited by
  • More
    Article info Full article Related articles Cited by

A limit theorem for singular stochastic differential equations
Volume 3, Issue 3 (2016), pp. 223–235
Andrey Pilipenko   Yuriy Prykhodko  

Authors

 
Placeholder
https://doi.org/10.15559/16-VMSTA63
Pub. online: 8 November 2016      Type: Research Article      Open accessOpen Access

Received
19 September 2016
Revised
23 October 2016
Accepted
23 October 2016
Published
8 November 2016

Abstract

We study the weak limits of solutions to SDEs
\[ dX_{n}(t)=a_{n}\big(X_{n}(t)\big)\hspace{0.1667em}dt+dW(t),\]
where the sequence $\{a_{n}\}$ converges in some sense to $(c_{-}\mathbb{1}_{x<0}+c_{+}\mathbb{1}_{x>0})/x+\gamma \delta _{0}$. Here $\delta _{0}$ is the Dirac delta function concentrated at zero. A limit of $\{X_{n}\}$ may be a Bessel process, a skew Bessel process, or a mixture of Bessel processes.

References

[1] 
Barlow, M.T., Pitman, J., Yor, M.: On Walsh’s Brownian motions. Sémin. Probab. Strasbourg 23, 275–293 (1989). MR1022917. doi:10.1007/BFb0083979
[2] 
Blei, S.: On symmetric and skew Bessel processes. Stoch. Process. Appl. 122(9), 3262–3287 (2012). MR2946442. doi:10.1016/j.spa.2012.05.008
[3] 
Engelbert, H.J., Schmidt, W.: Strong Markov continuous local martingales and solutions of one-dimensional stochastic differential equations (Part III). Math. Nachr. 151(1), 149–197 (1991). MR1121203. doi:10.1002/mana.19911510111
[4] 
Gikhman, I.I., Skorokhod, A.V.: Stochastic Differential Equations. Springer (1979)
[5] 
Harrison, J.M., Shepp, L.A.: On skew Brownian motion. Ann. Probab. 9(2), 309–313 (1981). MR0606993. doi:10.1214/aop/1176994472
[6] 
Knight, F.B.: Essentials of Brownian Motion and Diffusion, vol. 18. American Mathematical Society (1981). MR0613983
[7] 
Kulinich, G., Kushnirenko, S., Mishura, Y.: Asymptotic behavior of integral functionals of unstable solutions of one-dimensional Itô stochastic differential equations. Theory Probab. Math. Stat. 89, 101–114 (2014). MR3235178. doi:10.1090/s0094-9000-2015-00938-8
[8] 
Kulinich, G.L., Kas’kun, E.P.: On the asymptotic behavior of solutions of a certain class of one-dimensional Ito stochastic differential equations. Theory Probab. Math. Stat. 56, 97–106 (1998). MR1791858
[9] 
Le Gall, J.-F.: Applications du temps local aux équations différentielles stochastiques unidimensionnelles. In: Séminaire de Probabilités XVII 1981/1982, pp. 15–31. Springer (1983). MR0770393. doi:10.1007/BFb0068296
[10] 
Lejay, A.: On the constructions of the skew Brownian motion. Probab. Surv. 3, 413–466 (2006). MR2280299. doi:10.1214/154957807000000013
[11] 
Makhno, S.Y.: Stochastic Equations. Limit Theorems. Kyiv (2012)
[12] 
Piera, F.J., Mazumdar, R.R.: Comparison results for reflected jump-diffusions in the orthant with variable reflection directions and stability applications. Electron. J. Probab. 13(61), 1886–1908 (2008). MR2453549. doi:10.1214/EJP.v13-569
[13] 
Pilipenko, A.Y., Prykhodko, Y.E.: On the limit behavior of a sequence of Markov processes perturbed in a neighborhood of the singular point. Ukr. Math. J. 67(4), 564–583 (2015). MR3432463. doi:10.1007/s11253-015-1101-5
[14] 
Portenko, N.I.: Generalized diffusion processes. In: Maruyama, G., Prokhorov, J.V. (eds.) Proceedings of the Third Japan–USSR Symposium on Probability Theory. Lecture Notes in Mathematics, vol. 550, pp. 500–523. Springer (1976). MR0440716. doi:10.1007/BFb0077511
[15] 
Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion. Grundlehren der mathematischen Wissenchaften A series of comprehensive studies in mathematics. Springer (1999). MR1725357. doi:10.1007/978-3-662-06400-9
[16] 
Skorokhod, A.V.: Studies in the Theory of Random Processes. Adiwes International Series in Mathematics. Addison–Wesley Publishing Company (1965). MR0185620

Full article Related articles Cited by PDF XML
Full article Related articles Cited by PDF XML

Copyright
© 2016 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Bessel process skew Bessel process limit theorems

MSC2010
60F17 60J60

Metrics
since March 2018
474

Article info
views

450

Full article
views

330

PDF
downloads

141

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy