Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 3, Issue 2 (2016)
  4. On fractal faithfulness and fine fractal ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • Cited by
  • More
    Article info Full article Related articles Cited by

On fractal faithfulness and fine fractal properties of random variables with independent Q∗-digits
Volume 3, Issue 2 (2016), pp. 119–131
Muslem Ibragim   Grygoriy Torbin  

Authors

 
Placeholder
https://doi.org/10.15559/16-VMSTA55
Pub. online: 9 June 2016      Type: Research Article      Open accessOpen Access

Received
20 May 2016
Accepted
3 June 2016
Published
9 June 2016

Abstract

We develop a new technique to prove the faithfulness of the Hausdorff–Besicovitch dimension calculation of the family $\varPhi ({Q}^{\ast })$ of cylinders generated by ${Q}^{\ast }$-expansion of real numbers. All known sufficient conditions for the family $\varPhi ({Q}^{\ast })$ to be faithful for the Hausdorff–Besicovitch dimension calculation use different restrictions on entries $q_{0k}$ and $q_{(s-1)k}$. We show that these restrictions are of purely technical nature and can be removed. Based on these new results, we study fine fractal properties of random variables with independent ${Q}^{\ast }$-digits.

References

[1] 
Albeverio, S., Torbin, G.: Image measures of infinite product measures and generalized Bernoulli convolutions. Trans. Dragomanov Natl. Pedagog. Univ., Ser. 1, Phys. Math. Sci. 5, 248–264 (2004)
[2] 
Albeverio, S., Torbin, G.: Fractal properties of singularly continuous probability distributions with independent ${Q}^{\ast }$-digits. Bull. Sci. Math. 129(4), 356–367 (2005). MR2134126. doi:10.1016/j.bulsci.2004.12.001
[3] 
Albeverio, S., Torbin, G.: On fine fractal properties of generalized infinite Bernoulli convolutions. Bull. Sci. Math. 132(8), 711–727 (2008). MR2474489. doi:10.1016/j.bulsci.2008.03.002
[4] 
Albeverio, S., Koshmanenko, V., Pratsiovytyi, M., Torbin, G.: On fine structure of singularly continuous probability measures and random variables with independent $\widetilde{Q}$-symbols. Methods Funct. Anal. Topol. 17(2), 97–111 (2011). MR2849470
[5] 
Albeverio, S., Kondratiev, Yu., Nikiforov, R., Torbin, G.: On fractal properties of non-normal numbers with respect to Rényi f-expansions generated by piecewise linear functions. Bull. Sci. Math. 138(3), 440–455 (2014). MR3206478. doi:10.1016/j.bulsci.2013.10.005
[6] 
Albeverio, S., Ivanenko, G., Lebid, M., Torbin, G.: On the Hausdorff dimension faithfulness and the Cantor series expansion. Math. Res. Lett., submitted for publication. arXiv:1305.6036
[7] 
Albeverio, S., Kondratiev, Yu., Nikiforov, R., Torbin, G.: On new fractal phenomena connected with infinite linear IFS. Math. Nachr., submitted for publication. arXiv:1507.05672
[8] 
Bernardi, M.P., Bondioli, C.: On some dimension problems for self-affine fractals. Z. Anal. Anwend. 18(3), 733–751 (1999). MR1718162. doi:10.4171/ZAA/909
[9] 
Besicovitch, A.: On the sum of digits of real numbers represented in the dyadic system. Math. Ann. 110(1), 321–330 (1935). MR1512941. doi:10.1007/BF01448030
[10] 
Billingsley, P.: Hausdorff dimension in probability theory II. Ill. J. Math. 5, 291–198 (1961). MR0120339
[11] 
Cutler, C.D.: A note on equivalent interval covering systems for Hausdorff dimension on $\mathbb{R}$,. Int. J. Math. Math. Sci. 11(4), 643–650 (1988). MR0959443. doi:10.1155/S016117128800078X
[12] 
Falconer, K.J.: Fractal Geometry. John Wiley & Sons, New York (1990). MR3236784
[13] 
Ibragim, M., Torbin, G.: Faithfulness and fractal properties of probability measures with independent ${Q}^{\ast }$-digits. Trans. Dragomanov Natl. Pedagog. Univ., Ser. 1, Phys. Math. Sci. 13(2), 35–46 (2012)
[14] 
Ibragim, M., Torbin, G.: On probabilistic approach to DP-transformations and faithfulness of coverings for the determination of the Hausdorff–Besicovitch dimension. Theory Probab. Math. Stat. 92, 28–40 (2015)
[15] 
Nikiforov, R., Torbin, G.: Fractal properties of random variables with independent $Q_{\infty }$-digits. Theory Probab. Math. Stat. 86, 169–182 (2013). MR2986457. doi:10.1090/S0094-9000-2013-00896-5
[16] 
Peres, Yu., Torbin, G.: Continued fractions and dimensional gaps. In preparation
[17] 
Pratsiovytyi, M., Torbin, G.: On analytic (symbolic) representation of one-dimensional continuous transformations preserving the Hausdorff–Besicovitch dimension. Trans. Dragomanov Natl. Pedagog. Univ., Ser. 1, Phys. Math. Sci. 4, 207–205 (2003)
[18] 
Rogers, C.: Hausdorff Measures. Cambridge Univ. Press, London (1970). MR0281862
[19] 
Shiryaev, A.N.: Probability. Springer, New York (1996). MR1368405. doi:10.1007/978-1-4757-2539-1
[20] 
Torbin, G.: Multifractal analysis of singularly continuous probability measures. Ukr. Math. J. 57(5), 837–857 (2005). MR2209816. doi:10.1007/s11253-005-0233-4
[21] 
Turbin, A.F., Pratsiovytyi, M.V.: Fractal Sets, Functions, Distributions. Naukova Dumka, Kiev (1992). MR1353239

Full article Related articles Cited by PDF XML
Full article Related articles Cited by PDF XML

Copyright
© 2016 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Hausdorff–Besicovitch dimension fractals faithful Vitali coverings Q*-expansion singularly continuous probability measures

MSC2010
11K55 26A30 28A80 60G30

Metrics
since March 2018
487

Article info
views

314

Full article
views

327

PDF
downloads

137

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy