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Abstract We develop a new technique to prove the faithfulness of the Hausdorff–Besicovitch
dimension calculation of the family Φ(Q∗) of cylinders generated by Q∗-expansion of real
numbers. All known sufficient conditions for the family Φ(Q∗) to be faithful for the Hausdorff–
Besicovitch dimension calculation use different restrictions on entries q0k and q(s−1)k . We
show that these restrictions are of purely technical nature and can be removed. Based on these
new results, we study fine fractal properties of random variables with independent Q∗-digits.
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1 Introduction

Hausdorff measures and the Hausdorff dimension are important tools in the study of
fractals and singularly continuous probability measures. The determination or even
estimation of the Hausdorff dimension of a set or measure is the crucial problem in
fractal analysis, and a lot of research papers were devoted to these problems. Because
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of this reason, many interesting methods for the simplification of the procedure of the
determination of the Hausdorff dimension were invented and developed during the
last 20 years. One approach to such a simplification consists in some restrictions of
admissible coverings. This idea came from Besicovitch’s works and has been used by
Rogers and Taylor to construct comparable net measures [18] as approximations of
the Hausdorff measures. In this paper, we develop this approach via construction of
net coverings that lead to a special family of net measures, which are more general
that comparable ones. We discuss the notion of faithfulness and nonfaithfulness of the
family of cylinders generated by different systems of numerations for the Hausdorff
dimension calculation.

Let us shortly recall that the α-dimensional Hausdorff measure of a set E ⊂ [0, 1]
with respect to a given fine family of coverings Φ is defined by

Hα(E,Φ) = lim
ε→0

inf|Ej |≤ε

∑
j

|Ej |α = lim
ε→0

Hα
ε (E, Φ),

where the infimum is taken over all at most countable ε-coverings {Ej } of E, Ej ∈ Φ.
The nonnegative number

dimH (E, Φ) = inf
{
α : Hα(E, Φ) = 0

}
is called the Hausdorff dimension of the set E ⊂ [0, 1] w.r.t. the family Φ. If Φ is
the family of all subsets of [0, 1] or Φ coincides with the family of all closed (open)
subintervals of [0,1], then dimH (E, Φ) is equal to the classical Hausdorff dimension
dimH (E) of a subset E ⊂ [0, 1].

A fine covering family Φ is said to be a faithful family of coverings (nonfaithful
family of coverings) for the Hausdorff dimension calculation on [0, 1] if

dimH (E,Φ) = dimH (E), ∀E ⊆ [0, 1]
(resp. ∃E ⊆ [0, 1] : dimH (E,Φ) 
= dimH (E)).

It is clear that any family Φ of comparable net-coverings (i.e., net-coverings
that generate comparable net-measures) is faithful. Conditions for Vitali coverings
to be faithful were studied by many authors (see, e.g., [2, 6, 7, 10] and the refer-
ences therein). First steps in this direction have been done by Besicovitch [9], who
proved the faithfulness of the family of cylinders of a binary expansion. His result
was extended by Billingsley [10] to the family of s-adic cylinders, by Turbin and
Pratsiovytyi [21] to the family of Q-S-cylinders, and by Albeverio and Torbin [2] to
the family of Q∗-cylinders for the matrices Q∗ with elements p0k, p(s−1)k bounded
away from zero.

In all these papers, their authors used essentially the same approach to prove the
faithfulness of the corresponding family of coverings: it has been shown that there
exist positive constants C and n0 ∈ N such that, for any ε > 0 and for any interval
(a; b) with b−a < ε, there exist at most n0 cylinders from fine covering families that
cover the interval (a, b) and their lengths do not exceed the value C(b−a). It is rather
obvious that such families Φ of cylinders generates comparable Hausdorff measures
[18], and, therefore, they are faithful for the Hausdorff dimension calculation. Albev-
erio et al. [7] correctly mentioned that it was rather paradoxical that initial examples
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of nonfaithful families of coverings first appeared in the two-dimensional case (as a
result of active studies of self-affine sets during the last decade of XX century, see,
e.g., [8]). The family of cylinders of the classical continued fraction expansion can
probably be considered as the first (and rather unexpected) example of nonfaithful
one-dimensional net-family of coverings [16]. By using approach which has been in-
vented by Yuval Peres to prove the nonfaithfulness of the family of continued fraction
cylinders, in [7] the nonfaithfulness of the family Φ(Q∞) of cylinders of the Q∞-ex-
pansion with polynomially decreasing elements {qi} has been proven. This shows, in
particular, that the family of cylinders of the classical Lüroth expansion is nonfaith-
ful. Rather general sufficient conditions for Φ(Q∞) to be faithful were also obtained
in [7, 15].

In 2012, Ibragim and Torbin [13] developed a new method to prove the faithful-
ness of the family of cylinders of Q∗-expansion for the matrices Q∗ with elements
p0k, p(s−1)k not tending to zero “too quickly.” In particular, they proved the following
result.

Theorem. Let q∗
k := max{q0k, q1k, . . . , qs−1k}. If⎧⎨⎩ lim

k→∞
ln q0,k

ln(q∗
1 q∗

2 ...q∗
k )

= 0,

lim
k→∞

ln qs−1,k

ln(q∗
1 q∗

2 ...q∗
k )

= 0,
(1)

then
dimH (E) = dimH

(
E,Φ(Q∗)

)
, ∀E ⊂ [0, 1].

This theorem, a generalization of [2], extended the family of faithful coverings
generated by cylinders of Q∗-expansion. In particular, we can easily apply this theo-
rem to prove the faithfulness of the family of cylinders generated by the matrix

Q∗ =

⎛⎜⎜⎜⎜⎝
1

10 . . . 1
10k

. . .

1
2 − 1

10 . . . 1
2 − 1

10k
. . .

1
2 − 1

10 . . . 1
2 − 1

10k
. . .

1
10 . . . 1

10k
. . .

⎞⎟⎟⎟⎟⎠ .

On the other hand, if p0k, p(s−1)k tend to zero “too quickly” (e.g., s = 4, q0k =
q3k = 1

10k , q1k = q2k = 1
2 − 1

10k ), then the above theorem does not work.
In the next section, we develop a new approach to prove the faithfulness of fam-

ilies of coverings and prove essentially new sufficient conditions for Q∗-cylinders to
be faithful (we do not need any information about the boundedness from zero of the
elements q0k and q(s−1)k or any information about the rate of their convergence to
zero).

2 On new sufficient conditions of fractal faithfulness for the family of cylinders
of Q∗-expansions

Theorem 2.1. Let qk := maxi qik , let

S(m, δ) :=
∞∑

k=1

⎛⎝ m+k∏
i=m+1

qi

⎞⎠δ

,
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and let
S(δ) := sup

m
S(m, δ).

If
S(δ) < +∞, ∀δ > 0, (2)

then the family Φ(Q∗) of cylinders generated by Q∗-expansion of real numbers is
faithful for the calculation of the Hausdorff dimension on the unit interval, that is,

dimH E = dimH

(
E,Φ(Q∗)

)
, ∀E ⊂ [0, 1].

Proof. It is clear that for the determination of the Hausdorff dimension of subsets
from [0, 1] it suffices to consider coverings by intervals (aj , bj ), where aj and bj

belong to a set A that is dense in [0, 1]. Let A be the set of all Q∗-irrational points,
that is, the set of points that are not end-points of Q∗-cylinders (the Q∗-expansion of
these points does not contain digits 0 or s − 1 in a period).

Let E be an arbitrary subset of [0, 1]. Let us fix ε > 0 and α > 0. Let {Ej } be an
arbitrary ε-covering of the set E, Ej = (aj , bj ), aj ∈ A, bj ∈ A, |Ej | < ε.

For the interval Ej , there exists a unique cylinder Δα1α2...αnj
containing Ej such

that any cylinder of a higher rank does not contain Ej . In the case where aj and bj

belong to different cylinders of the first rank, we define Δα1α2...αnj
:= [0, 1].

Let us split Δα1...αnj
on the next rank cylinders. From the maximality of the rank

of the cylinder Δα1α2...αnj
it follows that there exists at least one point that is an end-

point of a cylinder of rank nj + 1 and belongs to the interval (aj , bj ). It is clear that
the point

cj = Δα1(aj )...αnj
(aj )(αnj +1(aj )+1)0...0...

possesses such properties.
Let M0 = M0(j) be a family of cylinders of rank nj + 1 belonging to (aj , bj ).

It is clear that M0 contains less than s cylinders (if the points aj and bj belong to
neighboring cylinders of rank nj + 1, then M0 is empty). Therefore, the α-volume of
these cylinders does not exceed s|Ej |α .

Let dj := sup M0 = Δα1(aj )...αnj
(aj )αnj +1(bj ) 0...0....

To cover the set Ej by cylinders from Φ(Q∗), let us cover the sets (aj , cj ) and
[dj , bj ) separately. Let us choose δ ∈ (0, α).

First, let us estimate the α-volume of coverings of the set (aj , cj ).
Let L1 = L1(j) be the family of all cylinders of rank nj + 2 belonging to the

cylinder Δα1(aj )α2(aj )...αnj +1(aj ) and to the set (aj , cj ]. Let

A1 = A1(j) := {
i : i ∈ {

αnj +2(aj ) + 1, . . . , s − 1
}}

.

The corresponding α-volume of these cylinders is equal to∑
i∈A1

|Δα1(aj )α2(aj )...αnj +1(aj ) i |α ≤ s · max
i∈A1

|Δα1(aj )α2(aj )...αnj +1(aj ) i |α

= s · max
i∈A1

(|Δα1(aj )α2(aj )...αnj +1(aj ) i |α−δ|Δα1(aj )α2(aj )...αnj +1(aj ) i |δ
)
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≤ s|Ej |α−δ · max
i∈A1

|Δα1(aj )α2(aj )...αnj +1(aj ) i |δ

≤ s|Ej |α−δ · (
qnj +2 |Δα1(aj )α2(aj )...αnj

(aj )|
)δ ≤ s|Ej |α−δ · qδ

nj +2.

Let L2 = L2(j) be the family of all cylinders of rank nj + 3 belonging to the
cylinder Δα1(aj )α2(aj )...αnj +2(aj ) and to the set (aj , cj ]. Let

A2 = A2(j) := {
i : i ∈ {

αnj +3(aj ) + 1, . . . , s − 1
}}

.

The corresponding α-volume of these cylinders is equal to∑
i∈A2

|Δα1(aj )α2(aj )...αnj +2(aj ) i |α

≤ s · max
i∈A2

|Δα1(aj )α2(aj )...αnj +2(aj ) i |α

= s · max
i∈A2

(|Δα1(aj )α2(aj )...αnj +2(aj ) i |α−δ|Δα1(aj )α2(aj )...αnj +2(aj ) i |δ
)

≤ s|Ej |α−δ · max
i∈A2

|Δα1(aj )α2(aj )...αnj +2(aj ) i |δ

≤ s|Ej |α−δ · (
qnj +2qnj +3 |Δα1(aj )α2(aj )...αnj

(aj )|
)δ ≤ s · |Ej |α−δ · (qnj +2qnj +3)

δ.

Similarly, let Lk = Lk(j) be the family of all cylinders of rank nj + k + 1
belonging to the cylinder Δα1(aj )α2(aj )...αnj +k(aj ) and to the set (aj , cj ]. Let

Ak = Ak(j) := {
i : i ∈ {

αnj +k+1(aj ) + 1, . . . , s − 1
}}

.

The corresponding α-volume of these cylinders is equal to∑
i∈Ak

|Δα1(aj )α2(aj )...αnj +k(aj ) i |α

≤ s · max
i∈Ak

|Δα1(aj )α2(aj )...αnj +k(aj ) i |α

= s · max
i∈Ak

(|Δα1(aj )α2(aj )...αnj +k(aj ) i |α−δ|Δα1(aj )α2(aj )...αnj +k(aj ) i |δ
)

≤ s|Ej |α−δ · max
i∈Ak

|Δα1(aj )α2(aj )...αnj +k(aj ) i |δ

≤ s|Ej |α−δ ·
(

k+1∏
i=2

qnj +i |Δα1(aj )α2(aj )...αnj
(aj )|

)δ

≤ s|Ej |α−δ ·
(

k+1∏
i=2

qnj +i

)δ

.

So, the set (aj , cj ) can be covered by a countable family of cylinders from L1,
L2, . . . , Lk, . . . . The total α-volume of all these cylinders does not exceed the value

s|Ej |α−δ
∞∑

k=1

(
k+1∏
i=2

qnj +i

)δ

≤ S(δ) · s |Ej |α−δ.

Now let us estimate the α-volume of the set [dj , bj ).
Let R1 = R1(j) be the family of all cylinders of rank nj + 2 belonging to the

cylinder Δα1(bj )α2(bj )...αnj +1(bj ) and to the set [dj , bj ). Let

B1 = B1(j) := {
i : i ∈ {

0, . . . , αnj +2(bj ) − 1
}}

.
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The corresponding α-volume of these cylinders is equal to∑
i∈B1

|Δα1(bj )α2(bj )...αnj +1(bj ) i |α

≤ s · max
i∈B1

|Δα1(bj )α2(bj )...αnj +1(bj ) i |α

= s · max
i∈B1

(|Δα1(bj )α2(bj )...αnj +1(bj ) i |α−δ|Δα1(bj )α2(bj )...αnj +1(bj ) i |δ
)

≤ s|Ej |α−δ · max
i∈B1

|Δα1(bj )α2(bj )...αnj +1(bj ) i |δ

≤ s|Ej |α−δ · (
qnj +2 |Δα1(bj )α2(bj )...αnj

(bj )|
)δ ≤ s · |Ej |α−δ · qδ

nj +2.

Similarly, for k > 1, let Rk = Rk(j) be the family of all cylinders of rank nj +
k + 1 belonging to the cylinder Δα1(bj )α2(bj )...αnj +k(bj ) and to the set [dj , bj ). Let

Bk = Bk(j) := {
i : i ∈ {

0, . . . , αnj +k+1(bj ) − 1
}}

.

The corresponding α-volume of these cylinders is equal to∑
i∈Rk

|Δα1(bj )α2(bj )...αnj +k(bj ) i |α

≤ s · max
i∈Bk

|Δα1(bj )α2(bj )...αnj +k(bj ) i |α

= s · max
i∈Bk

(|Δα1(bj )α2(bj )...αnj +k(bj ) i |α−δ|Δα1(bj )α2(bj )...αnj +k(bj ) i |δ
)

≤ s|Ej |α−δ · max
i∈Bk

|Δα1(bj )α2(bj )...αnj +k(bj ) i |δ

≤ s|Ej |α−δ ·
(

k+1∏
i=2

qnj +i

)δ

|Δα1(bj )α2(bj )...αnj
(bj )|δ ≤ s · |Ej |α−δ

(
k+1∏
i=2

qnj +i

)δ

.

So, the set [dj , bj ) can be covered by a countable family of cylinders from R1,
R2, . . . , Rk, . . . . The total α-volume of these cylinders does not exceed the value

s|Ej |α−δ

∞∑
k=1

(
k+1∏
i=2

qnj +i

)δ

≤ S(δ) · s |Ej |α−δ.

Hence, the interval (aj , bj ) can be covered by using at most s cylinders from
M0 = M0(j), a countable family of cylinders from L1, L2, . . . , Lk, . . . and a count-
able family of cylinders from R1, R2, . . . , Rk, . . . . We emphasize that all these cylin-
ders are subsets of (aj , bj ) and their total α-volume does not exceed the value(

1 + 2S(δ)
) · s |Ej |α−δ, ∀δ ∈ (0, α).

Therefore, given a subset E, α ∈ (0, 1], δ ∈ (0, α), ε > 0, and an ε-covering of
the set E by intervals (aj , bj ), aj ∈ A, bj ∈ A, there exists an ε-covering of E by
cylinders from Φ(Q∗) such that its α-volume does not exceed the value(

1 + 2S(δ)
) · s

∑
j

|Ej |α−δ.
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Hence, for any α ∈ (0, 1], δ ∈ (0, α), and E ⊂ [0, 1], we have

Hα(E) ≤ Hα
(
E,Φ

(
Q∗)) ≤ (

1 + 2S(δ)
) · s Hα−δ(E).

So,
dimH

(
E,Φ

(
Q∗)) ≤ dimH (E) + δ, ∀δ ∈ (0, α),

which proves the inequality

dimH

(
E,Φ

(
Q∗)) ≤ dimH (E), ∀E ⊂ [0, 1].

Therefore,
dimH

(
E,Φ

(
Q∗)) = dimH (E)

for any E ⊂ [0, 1], which proves the theorem.

Corollary 2.1. If
sup
ik

qik < 1, (3)

then the family Φ(Q∗) of cylinders generated by Q∗-expansion of real numbers is
faithful for the calculation of the Hausdorff dimension on the unit interval.

Proof. If supik qik < 1, then there exists a positive constant q < 1 such that qk < q

for all k ∈ N . In such a case,

S(m, δ) :=
∞∑

k=1

⎛⎝ m+k∏
i=m+1

qi

⎞⎠δ

≤
∞∑

k=1

qkδ = qδ

1 − qδ
, ∀m ∈ N,

so that

S(δ) := sup
m

S(m, δ) ≤ qδ

1 − qδ
< +∞, ∀δ > 0.

Therefore, the family Φ(Q∗) is faithful.

From this corollary it follows, in particular, that the family Φ(Q∗) of cylinders
generated by the matrix

Q∗ =

⎛⎜⎜⎜⎜⎝
1
10 . . . 1

10k . . .

1
2 − 1

10 . . . 1
2 − 1

10k . . .

1
2 − 1

10 . . . 1
2 − 1

10k . . .

1
10 . . . 1

10k . . .

⎞⎟⎟⎟⎟⎠
is faithful.

Let us show how sufficient conditions for the faithfulness obtained in [2] can be
easily derived from our results.

Corollary 2.2. If inf
k

{q0k, q(s−1)k} > 0, then the family Φ(Q∗) of cylinders generated

by Q∗-expansion of real numbers is faithful for the calculation of the Hausdorff–
Besicovitch dimension on the unit interval.

Proof. If infk{q0k, q(s−1)k} > 0, then there exists a positive constant q∗ such that
q0k > q∗, q(s−1)k > q∗, ∀k ∈ N . Therefore, supik qik ≤ 1 − 2q∗ < 1. So, the
faithfulness of Φ(Q∗) follows from the previous corollary.
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From the proof of the corollary it follows that it is easy to extend the results of [2]
in the following way.

Corollary 2.3. If infk{q0k} > 0, then the family Φ(Q∗) of cylinders generated by Q∗-
expansion of real numbers is faithful for the calculation of the Hausdorff dimension
on the unit interval.

Proof. If infk{q0k} > 0, then there exists a positive constant q∗ such that q0k >

q∗, ∀k ∈ N . Therefore, supik qik ≤ 1 − q∗ < 1. So, the faithfulness of Φ(Q∗)
follows from Corollary 2.1.

So, for the faithfulness of the family Φ(Q∗), it suffices to control only elements
of the first raw of the matrix Q∗.

Let us also mention that Theorem 2.1 can give a positive answer on the faith-
fulness of Φ(Q∗) even for the case where infk{q0k, q(s−1)k} = 0 and supik qik = 1
simultaneously. To illustrate this, let us consider the matrix

Q∗ =

⎛⎜⎜⎝
1
4

1
3 . . . 1

2n+1
1
3 . . .

1
2

1
3 . . . 2n−1

2n
1
3 . . .

1
4

1
3 . . . 1

2n+1
1
3 . . .

⎞⎟⎟⎠ ,

that is,

q0k = q1k = q2k = 1

3
, k = 2n, n ∈ N,

and

q0k = q2k = 1

2n+1
, q1k = 2n − 1

2n
, k = 2n − 1, n ∈ N.

In such a case, infk{q0k, q(s−1)k} = 0 and supik qik = 1, but it is clear that
qkqk+1 < 1

3 for all k ∈ N , and, therefore,

S(m, δ) :=
∞∑

k=1

⎛⎝ m+k∏
i=m+1

qi

⎞⎠δ

≤ qδ
m+1 + 2

∞∑
n=1

(
1

3

)nδ

= 1 + 2

3δ − 1
, ∀m ∈ N.

So, S(δ) < +∞ for all δ > 0, which proves the faithfulness of the family Φ(Q∗).

3 On fine fractal properties of random variables with independent Q∗-symbols

Let {ξk} be a sequence of independent random variables taking values 0, 1, . . . , s − 1
with probabilities p0k, p1k, . . . , ps−1k , respectively. The random variable

ξ = Δ
Q∗
ξ1ξ2...ξk ...

(4)

is said to be the random variable with independent Q∗-symbols. Let νξ be the corre-
sponding probability measure.

The Lebesgue structure of νξ is well studied (see, e.g., [2, 4]). It is known, in
particular, that the distribution of ξ is of pure type. It is of pure discrete type if and
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only if
∞∏

k=1

max
i

pik > 0, (5)

of pure absolutely continuous type if and only if

∞∏
k=1

(√
p0kq0k + √

p1kq1k + · · · + √
p(s−1)kq(s−1)k

)
> 0, (6)

and of pure singularly continuous type if and only if infinite products (5) and (6) are
equal to zero.

Let us recall that the Hausdorff dimension of the distribution of a random variable
τ is defined as follows:

dimH (τ) = inf
{
dimH (E), E ∈ Bτ

}
,

where Bτ is the family of all possible (not necessarily closed) supports of the random
variable τ , that is,

Bτ ={
E : E ∈ B, Pτ (E) = 1

}
.

Let us also recall the notion of the Hausdorff–Billingsley dimension of a set w.r.t.
a probability measure and w.r.t. a system of partitions. Let υ be a continuous prob-
ability measure on [0, 1], and let Φ be the family of cylinders generated by some
expansion. Then the (υ − α)-Hausdorff measure of a set E ⊂ [0, 1] w.r.t. the family
Φ and measure υ is defined as follows:

Hα(E, υ,Φ) = lim
ε→0

[
inf

υ(Ej )≤ε

{∑
j

υα(Ej )

}]
= lim

ε→0
Hα

ε (E, υ,Φ),

where Ej ∈ Φ,
⋃

j Ej ⊃ E.
The number

dimυ(E, Φ) = inf
{
α : Hα(E, υ,Φ) = 0

}
is called the Hausdorff–Billingsley dimension of a set E w.r.t. υ and Φ.

Let

hj := −
s−1∑
i=0

pij ln pij , 0 ln 0 := 0, Hn :=
n∑

j=1

hj ,

bj := −
s−1∑
i=0

pij ln qij , Bn :=
n∑

j=1

bj ,

and

dj := −b2
j +

s−1∑
i=0

pij ln2 qij .
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Theorem 3.1. Assume that the following conditions hold:

S(δ) < +∞, ∀δ > 0; (7)
∞∑

j=1

dj

j2
< +∞; (8)

lim
n→∞

Bn

n
> 0. (9)

Then the Hausdorff dimension of the distribution of a random variable with indepen-
dent Q∗-symbols is equal to

dimH νξ = lim
n→∞

Hn

Bn

. (10)

Proof. Let Δn(x) = Δ
Q∗
α1(x)α2(x)...αn(x) be the cylinder of rank n of the Q∗-expansion

of x. Let ν = νξ , and let μ be the Lebesgue measure on [0, 1].
Then

ν
(
Δn(x)

) = pα1(x)1 · pα2(x)2 · . . . · pαn(x)n,

μ
(
Δn(x)

) = qα1(x)1 · qα2(x)2 · . . . · qαn(x)n.

Let us consider
ln ν(Δn(x))

ln μ(Δn(x))
=

∑n
j=1 ln pαj (x)j∑n
j=1 ln qαj (x)j

.

If a real number x = Δ
Q∗
α1(x)α2(x)...αn(x)... is chosen randomly so that

P(αj (x) = i) = pij (i.e., the distribution of the random variable x coincides with
the initial probability measure ν), then {ηj } = {ηj (x)} = {ln pαj (x)j } and {ψj } =
{ψj(x)} = {ln qαj (x)j } are sequences of independent random variables with the fol-
lowing distributions:

ηj ln p0j ln p1j . . . ln p(s−1)j

p0j p1j . . . p(s−1)j

ψj ln q0j ln q1j . . . ln q(s−1)j

p0j p1j . . . p(s−1)j

It is clear that Mηj = −hj and |hj | ≤ ln s.
It is not hard to check that Mη2

j = ∑s−1
i=0 pij ln2 pij ≤ 4

e2 [2].
From the strong law of large numbers [19] it follows that, for ν-almost all x ∈

[0, 1], the following equality holds:

lim
n→∞

(η1 + η2 + · · · + ηn) − M(η1 + η2 + · · · + ηn)

n
= 0. (11)

It is clear that M(η1 + η2 + · · · + ηn) = −Hn.
To show that the strong law of large numbers can also be applied to the sequence

{ψj }, let us consider

Mψj =
s−1∑
i=0

pij ln qij , Mψ2
j =

s−1∑
i=0

pij ln2 qij .
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Since dj = D(ψj ) and the series
∑∞

j=1
dj

j2 converges (see (8)), by Kolmogorov’s
theorem (strong law of large numbers [19]) it follows that, for ν-almost all x ∈ [0, 1],

lim
n→∞

(ψ1 + ψ2 + · · · + ψn) − M(ψ1 + ψ2 + · · · + ψn)

n
= 0. (12)

Let us remark that M(ψ1 + ψ2 + · · · + ψn) = −Bn.
Now let us consider the set

A =
{
x : lim

n→∞

(
η1(x) + η2(x) + · · · + ηn(x)

ψ1(x) + ψ2(x) + · · · + ψn(x)
− Hn

Bn

)
= 0

}

=
{
x : lim

n→∞
(
η1(x)+η2(x)+···+ηn(x)+Hn

n
) − Hn

Bn
(
ψ1(x)+ψ2(x)+···+ψn(x)+Bn

n
)

(
ψ1(x)+ψ2(x)+···+ψn(x)+Bn

n
) − Bn

n

= 0

}
.

By the Gibbs inequality it follows that hj ≤ bj . Hence, 0 ≤ Hn

Bn
=

∑n
j=1 hj∑n
j=1 bj

≤ 1.

Since limn→∞
Bn

n
> 0 (see (9)), we deduce the existence of a constant c1 > 0

such that |Bn

n
| ≥ c1 for all n ∈ N .

Therefore, for ν-almost all x ∈ [0, 1],

lim
n→∞

(
η1(x)+η2(x)+···+ηn(x)+Hn

n
) − Hn

Bn
(
ψ1(x)+ψ2(x)+···+ψn(x)+Bn

n
)

(
ψ1(x)+ψ2(x)+···+ψn(x)+Bn

n
) − Bn

n

= 0.

So, ν(A) = 1 and dimν(A,Φ) = 1.
Let us consider the sets

A1 =
{
x : lim

n→∞

(
η1(x) + η2(x) + · · · + ηn(x)

ψ1(x) + ψ2(x) + · · · + ψn(x)
− Hn

Bn

)
= 0

}
,

A2 =
{
x : lim

n→∞

(
η1(x) + η2(x) + · · · + ηn(x)

ψ1(x) + ψ2(x) + · · · + ψn(x)

)
≤ lim

n→∞
Hn

Bn

}
=

{
x : lim

n→∞
ln ν(Δn(x))

ln μ(Δn(x))
≤ lim

n→∞
Hn

Bn

}
,

and

A3 =
{
x : lim

n→∞

(
η1(x) + η2(x) + · · · + ηn(x)

ψ1(x) + ψ2(x) + · · · + ψn(x)

)
≥ lim

n→∞
Hn

Bn

}
=

{
x : lim

n→∞
ln ν(Δn(x))

ln μ(Δn(x))
≥ lim

n→∞
Hn

Bn

}
.

It is obvious that A ⊂ A1. By the same arguments as in [2] we can easily check
that A1 ⊂ A3 and A ⊂ A2.

Let D = limn→∞
Hn

Bn
.

From A ⊂ A2 it follows that dimμ(A,Φ) ≤ dimμ(A2, Φ). From Theorem 2.1 of
[10] it follows that dimμ(A2, Φ) ≤ D. Therefore, dimμ(A,Φ) ≤ D.

From the condition A ⊂ A3 and Theorem 2.2 of [10] it follows that dimμ(A,Φ) ≥
D · dimν(A,Φ) = D · 1 = D. Hence, dimμ(A,Φ) = D.
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Since μ is the Lebesgue measure on [0, 1], we get dimH (A,Φ) =
dimμ(A,Φ) = D. From (7) and Theorem 1 it follows that the family Φ of cylinders
of the Q∗-expansion is faithful for the determination of the Hausdorff–Besicovitch
dimension on the unit interval, and, therefore, dimH (A,Φ) = dimH (A). Hence,
dimH (A) = D.

Finally, let us prove that the constructed set A is the minimal dimensional support
of the measure ν. To this end, let us consider an arbitrary support C of the measure ν.
It is clear that the set C1 = C ∩A is also a support of the measure ν and that C1 ⊂ C.
Then dimH (C1) ≤ dimH (C) and C1 ⊂ A.

Let us prove that dimH (C1) = dimH (A).
From C1 ⊂ A it follows that dimH (C1) ≤ dimH (A) = D. On the other hand,

C1 ⊂ A ⊂ A3 =
{
x : lim

n→∞
ln ν(Δn(x))

ln μ(Δn(x))
≥ D

}
.

Therefore, from Theorem 2.2 of [10] it follows that

dimH (C1) = dimμ(C1, Φ) ≥ D · dimν(C1, Φ) = D · 1 = D.

So, dimH (C1) = D = dimH (A).
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