Equivariant adjusted least squares estimator in two-line fitting model        
        
    
        Volume 3, Issue 1 (2016), pp. 19–45
            
    
                    Pub. online: 21 March 2016
                    
        Type: Research Article
            
                
             Open Access
Open Access
        
            
    
                Received
30 January 2016
                                    30 January 2016
                Revised
19 February 2016
                                    19 February 2016
                Accepted
19 February 2016
                                    19 February 2016
                Published
21 March 2016
                    21 March 2016
Abstract
We consider the two-line fitting problem. True points lie on two straight lines and are observed with Gaussian perturbations. For each observed point, it is not known on which line the corresponding true point lies. The parameters of the lines are estimated.
This model is a restriction of the conic section fitting model because a couple of two lines is a degenerate conic section. The following estimators are constructed: two projections of the adjusted least squares estimator in the conic section fitting model, orthogonal regression estimator, parametric maximum likelihood estimator in the Gaussian model, and regular best asymptotically normal moment estimator.
The conditions for the consistency and asymptotic normality of the projections of the adjusted least squares estimator are provided. All the estimators constructed in the paper are equivariant. The estimators are compared numerically.
            References
 Ahn, S.J.: Least Squares Orthogonal Distance Fitting of Curves and Surfaces in Space. Springer, Heidelberg (2004). doi:10.1007/b104017 
 Cheng, C.-L., Van Ness, J.W.: Statistical Regression with Measurement Error. Arnold, London (1999). MR1719513 
 Chiang, C.L.: On regular best asymptotically normal estimates. Ann. Math. Stat. 27(2), 336–351 (1956). doi:10.1214/aoms/1177728262 MR0089558 
 Fazekas, I., Kukush, A., Zwanzig, S.: Correction of nonlinear orthogonal regression estimator. Ukr. Math. J. 56(8), 1308–1330 (2004). MR2136312. doi:10.1007/s11253-005-0059-0 
 Kukush, A., Markovsky, I., Van Huffel, S.: Consistent fundamental matrix estimation in a quadratic measurement error model arising in motion analysis. Comput. Stat. Data Anal. 41(1), 3–18 (2002). MR1944689. doi:10.1016/S0167-9473(02)00068-3 
 Kukush, A., Markovsky, I., Van Huffel, S.: Correction of nonlinear orthogonal regression estimator. Comput. Stat. Data Anal. 47(1), 123–147 (2004). MR2087933. doi:10.1016/j.csda.2003.10.022 
 Markovsky, I., Van Huffel, S., Kukush, A.: On the computation of the multivariate structured total least squares estimator. Numer. Linear Algebra Appl. 11(5–6), 591–608 (2004). MR2067822. doi:10.1002/nla.361 
 Rohatgi, V.K., Székely, G.J.: Sharp inequalities between skewness and kurtosis. Stat. Probab. Lett. 8(4), 296–299 (1989). MR1028986. doi:10.1016/0167-7152(89)90035-7 
 Shklyar, S., Kukush, A., Markovsky, I., Van Huffel, S.: On the conic section fitting problem. J. Multivar. Anal. 98(3), 588–624 (2007). MR2293016. doi:10.1016/j.jmva.2005.12.003 
 Vidal, R., Ma, Y., Sastry, S.: Generalized principal component analysis (GPCA). IEEE Trans. Pattern Anal. Mach. Intell. 27(12), 1945–1959 (2005). doi:10.1109/TPAMI.2005.244 
 Waibel, P., Matthes, J., Gröll, L.: Constrained ellipse fitting with center on a line. J. Math. Imaging Vis. 53(3), 364–382 (2015). MR3397105. doi:10.1007/s10851-015-0584-x 
 Zelnik-Manor, L., Irani, M.: Multi-view subspace constraints on homographies. In: Proceedings of the 7th IEEE International Conference on Computer Vision, 1999, vol. 2, pp. 710–7152 (1999). doi:10.1109/ICCV.1999.790291 
 
            