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Abstract We consider the two-line fitting problem. True points lie on two straight lines and
are observed with Gaussian perturbations. For each observed point, it is not known on which
line the corresponding true point lies. The parameters of the lines are estimated.

This model is a restriction of the conic section fitting model because a couple of two lines
is a degenerate conic section. The following estimators are constructed: two projections of
the adjusted least squares estimator in the conic section fitting model, orthogonal regression
estimator, parametric maximum likelihood estimator in the Gaussian model, and regular best
asymptotically normal moment estimator.

The conditions for the consistency and asymptotic normality of the projections of the ad-
justed least squares estimator are provided. All the estimators constructed in the paper are
equivariant. The estimators are compared numerically.

Keywords Conic section fitting, curve fitting, subspace clustering
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1 Introduction

1.1 Two-line fitting model

Consider a problem of estimation of two lines by perturbed observations of points
that lie on the lines. Let the true points (ξi, ηi) lie on the union of two different lines
η = k1ξ + h1 and η = k2ξ + h2, that is,[

either ηi = k1ξi + h1,

or ηi = k2ξi + h2,
i = 1, 2, . . . . (1)
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Let these points be observed with perturbations (δi, εi), i = 1, . . . , n, that is, the
observed points are (xi, yi), i = 1, . . . , n, with

xi = ξi + δi, (2)

yi = ηi + εi . (3)

The perturbations are assumed to be independent and identically normally distributed,(
δi

εi

)
∼ N

(
0, σ 2I

)
, (4)

where I is the 2 × 2 identity matrix.
The parameters k1, h1, k2, h2, and σ 2 are to be estimated.
We consider both functional and structural models. In functional model, the true

points are assumed to be nonrandom. In structural model, the true points are assumed
to be independent and identically distributed (i.i.d.). The errors (δi, εi) are i.i.d. and
independent of the true points.

In the structural model, (ξi, ηi, δi , εi) are i.i.d. random vectors, and thus, the ob-
served points (xi, yi) are i.i.d. In the functional model, the observed points are inde-
pendent, Gaussian, with different means but with common covariance matrix.

Remark 1. The true lines defined by Eqs. (1) cannot be parallel to the y-axis. In or-
der to avoid overflows during evaluation of the estimators (except of RBAN-moment
estimator), another parameterization is used internally: �τ�(ζ − ζ 0) = 0, where �τ is a
unit vector orthogonal to the line, and ζ 0 is a point on the line. The computation of the
RBAN-moment estimator (see Section 2.4) is implemented for explicit parameteriza-
tion only. Computational optimization of the RBAN-moment estimator is a matter of
further work.

The explicit parameterization has the advantage that the number of parameters
is equal to the dimension of parameter space. (In [12], the second-order equation
(5) has six unknown coefficients, but the conic section can be parameterized with
five parameters. The parameter space for the parameters of the conic section was
the five-dimensional unit sphere in the six-dimensional Euclidean space. Mismatch
between the number of parameters and the dimension of the parameter space made
the asymptotic covariance matrix of the estimator singular.)

In simulations, the confidence intervals for the coordinates of the intersection
point of the two lines are obtained based on the asymptotic covariance matrix for the
intersection point. For the projections the ALS2 estimator, that asymptotic covariance
matrix can be evaluated without use of explicit line parameterization.

1.2 Conic section fitting model

Let the true points (ξi, ηi) lie on the second-order algebraic curve

Aξ2
i + 2Bξiηi + Cη2

i + 2Dξi + 2Eηi + F = 0, i = 1, 2, . . . . (5)

Hereafter, a second-order algebraic curve is called a “conic section” or a “conic.”
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The points are observed with Gaussian perturbations, and the perturbed points are
denoted as (xi, yi). We have the same equations

xi = ξi + δi,

yi = ηi + εi,

(
δi

εi

)
∼ N

(
0, σ 2I

)
,

as (2)–(4) in the two-line fitting model.
The vector of coefficients in (5) is denoted by β = (A, 2B,C, 2D, 2E,F)�. The

nonzero vector β and the error variance σ 2 are the parameters of interest.
Similarly to the two-line fitting model, the functional and the structural models

are distinguished.
A couple of lines is a degenerate case of a conic section. Therefore, the conic

section fitting model is an extension of the two-line fitting model.

1.3 ALS2 estimator in conic section fitting model

We consider the adjusted least squares (ALS) estimator for unknown σ 2. The estima-
tor is constructed in [7]. Introduce the 6 × 6 symmetric matrix

ψ(x, y; v)

=

⎛⎜⎜⎜⎜⎜⎜⎝

x4−6x2v+3v2 (x3 − 3xv)y (x2−v)(y2−v) ∗ ∗ ∗
(x3 − 3xv)y (x2−v)(y2−v) x (y3 − 3yv) ∗ ∗ ∗

(x2−v)(y2−v) x (y3 − 3yv) y4−6y2v+3v2 ∗ ∗ ∗
x3 − 3xv (x2 − v)y x (y2 − v) x2 − v xy x

(x2 − v)y x (y2 − v) y3 − 3yv xy y2 − v y

x2 − v xy y2 − v x y 1

⎞⎟⎟⎟⎟⎟⎟⎠ .

Asterisks are typed instead of some entries above the diagonal of a symmetric matrix.
The entries of the matrix ψ(x, y; v) are generalized Hermite polynomials in x and y.
The matrix ψ(x, y; v) is constructed such that E ψ(xi, yi; σ 2) = ψ(ξi, ηi; 0) in the
functional model and ψ(ξi, ηi; 0)β = 0 for the true points and true parameters.

Denote

Ψ n(v) =
n∑

i=1

ψ(xi, yi; v).

The estimator σ̂ 2 of the error variance σ 2 is obtained from the equation

λmin
(
Ψ n

(
σ̂ 2)) = 0. (6)

Equation (6) always has a unique nonnegative solution. If n ≥ 6, then the solution
to (6) is positive almost surely.

The matrix Ψ n(σ̂
2) is singular. Define the estimator β̂ of the vector β as a nonzero

solution to the equation
Ψ n

(
σ̂ 2)β̂ = 0.

The strong consistency of the ALS2 estimator is proved in [7] and [11] under
somewhat different conditions. The asymptotic normality is proved in [12] for the
functional model and in [13] for the structural model. Two consistent estimators of
the asymptotic covariance matrix are constructed in [13].
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Denote

ψ ′
v(x, y; v) = ∂

∂v
ψ(x, y; v), Ψ ′′

1 = ∂2

∂v2
ψ(x, y; v),

Ψ ′
n(v) = d

dv
Ψ n(v),

Ψ n =
n∑

i=1

ψ(ξi, ηi; 0), Ψ ′
n =

n∑
i=1

ψ ′
v(ξi, ηi; 0),

Ψ ∞ = lim
n→∞

1

n
Ψ n = lim

n→∞
1

n
Ψ n

(
σ 2), Ψ ′∞ = lim

n→∞
1

n
Ψ ′

n = lim
n→∞

1

n
Ψ ′

n

(
σ 2).

Under the conditions of Proposition 1 stated further, the latter limits exist almost
surely. See [12] for explicit expressions of the matrices ψ ′

v(x, y; v), Ψ ′′
1, Ψ ∞, and

Ψ ′∞. Note that Ψ ′′
1 is a constant matrix.

Proposition 1. In the functional model, for all integer p ≥ 0 and q ≥ 0 such that
p + q ≤ 4, let the following limits exist and be finite:

lim
n→∞

1

n

n∑
i=1

ξ
p
i η

q
j =: μp,q,

whereas in the structural model, let E ξ4
1 < ∞ and E η4

1 < ∞. In both models, let
rank Ψ ∞ = 5. Then:

1. The estimator β̂ is strongly consistent in the following sense:

min

(∥∥∥∥ β̂

‖β̂‖ − β

‖β‖
∥∥∥∥, ∥∥∥∥ β̂

‖β̂‖ + β

‖β‖
∥∥∥∥) → 0 a.s., (7)

σ̂ 2 → σ 2 a.s. (8)

2. β�Ψ ′∞β < 0.

3. Eventually, β̂�Ψ ′
n(σ̂

2)β̂ < 0.

“Eventually” in the previous statement means that almost surely there exists n0

such that β̂�Ψ ′
n(σ̂

2)β̂ < 0 for all n ≥ n0. In other words, almost surely, β̂�Ψ ′
n(σ̂

2)β̂ ≥
0 holds only for finitely many n.

Denote the normalized version of the true parameter

β tn =
√

−1

β�Ψ ′∞β
β.

Normalize the estimator of β in such a way that β̃�Ψ ′
n(σ̂

2)β̃ = −n and β�β̃ ≥ 0.
Therefore, denote

β̃ =
⎧⎨⎩
√ −n

β̂�Ψ ′
n(σ̂ 2)β̂

β̂ if β�β̂ ≥ 0,

−
√ −n

β̂�Ψ ′
n(σ̂ 2)β̂

β̂ if β�β̂ < 0.
(9)
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Proposition 2. 1. Under the conditions of Proposition 1, the estimator β̃ is a strongly
consistent estimator of β tn = (−β�Ψ ′∞β)−1/2β, that is, β̃ → β tn a.s.

2. In the functional model, for all integer p ≥ 0 and q ≥ 0 such that p + q ≤ 6,
let the following limits exist and be finite:

lim
n→∞

1

n

n∑
i=1

ξ
p
i η

q
j =: μp,q,

whereas in the structural model, let E ξ6
1 < ∞ and E η6

1 < ∞. In both models, let

rank Ψ ∞ = 5. Then the estimator θ̂ = (β̃�, σ̂ 2)� is asymptotically normal in the
following sense:

√
n

(
β̃ − β tn
σ̂ 2 − σ 2

)
d−→ N(0, Σ

θ̂
), (10)

where

Σ
θ̂

=
(

Ψ ∞ Ψ ′∞β tn
β�

tnΨ
′∞ 1

2β�
tnΨ

′′
1β tn

)−1

B
(

Ψ ∞ Ψ ′∞β tn
β�

tnΨ
′∞ 1

2β�
tnΨ

′′
1β tn

)−1

,

B = lim
n→∞

1

n

n∑
i=1

E sis
�
i ,

si =
(

ψ(xi, yi; σ 2)β tn
1
2β�

tnψ(xi, yi; σ 2)β tn − 1
2

)
.

3. Under the conditions of part 2 of Proposition 2, the following estimator of the
asymptotic covariance matrix is consistent:

Σ̂
θ̂
(n) = A−1(n)B(n)A−1(n),

A(n) =
(

1
n
Ψ n(σ̂

2) 1
n
Ψ ′

n(σ̂
2)β̃

1
n
β̃

�
Ψ ′

n(σ̂
2) 1

2 β̃
�
Ψ ′′

1β̃

)
, B(n) = 1

n

n∑
i=1

ŝi ŝ
�
i ,

ŝi =
(

ψ(xi, yi; σ̂ 2)β̃
1
2 β̃�ψ(xi, yi; σ̂ 2)β̃ − 1

2

)
,

that is,

Σ̂
θ̂
(n) → Σ

θ̂

in probability.

1.4 Estimation methods

The methods of fitting an algebraic curve (or surface) to observed points can be clas-
sified as follows.
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Algebraic distance methods, where the residuals in the equations for the algebraic
curve are minimized. For example, the minimum point of the sum of squared residuals∑n

i=1(Ax2
i +2Bxiyi+Cy2

i +2Dxi+2Eyi+F)2 (with some normalizing constraint in
order to avoid A = B = . . . = F = 0) in the conic fitting problem and

∑n
i=1(k1xi +

h1 − yi)
2(k2xi + h2 − yi)

2 in the two-line fitting problem is called the ordinary least
squares (OLS) estimator.

The criterion function for the OLS estimator is simple enough and can be adjusted
so that the resulting estimator is consistent (under some conditions). Such an estima-
tor is called the adjusted least squares (ALS) estimator. The OLS and ALS estimators
are method-of-moments estimators, meaning that the criterion functions for the esti-
mators are polynomials whose coefficients are sample moments of coordinates of the
observed points. Hence, the OLS and ALS estimators can be computed efficiently.

In order to obtain parameters of two lines, the observed points are fitted with a
conic section, and then the parameters of the conic section are used to obtain the
parameters of two lines. There are some papers where this idea is used.

The problem of estimating the fundamental matrix for two-camera view is con-
sidered in [6]. The fundamental matrix is a singular matrix whose left and right null-
vectors are the coordinates of each camera in the coordinate system of the other cam-
era. Initially, the ALS estimator of the fundamental matrix is evaluated. Then it is
projected so that the estimated fundamental matrix is singular.

In [14] the problem of segmentation of a finite-dimensional vector space onto
linear subspaces is considered, and the generalized principal component analysis
method is introduced. The sample is fitted with an algebraic cone (a set of points
that satisfy a homogeneous algebraic equation) by the OLS method. Then subspaces
are extracted from the algebraic cone with use of a small learning sample. An appli-
cation of segmentation of a vector space onto hyperplanes for searching planes on
binocular image is given in [16].

In [15] an ellipsoid fitting problem with a constraint such that a center of the
ellipsoid lies on a given line is considered. The algebraic distance with embedded
constraint is minimized. The analytical (behavioral) properties of the optimization
problem are studied. We consider a conic section fitting problem but with different
constraint—the conic is degenerated to a couple of straight lines.

Geometric distance methods, where distances between the estimated curve and each
point are minimized. The sum of squares of those distances is minimized, and the
orthogonal regression (OR) estimator is obtained.

A numerical algorithm for evaluation of the orthogonal regression estimator is
presented in monograph [1].

The orthogonal regression is consistent in the single straight line fitting problem
[3, Section 1.3.2(a)]. In nonlinear models, the estimator may be inconsistent. There is
a one-step correction procedure in explicit and implicit models [5, 9] with application
in the ellipsoid fitting model [9]. However, in the two-line fitting model, the correction
from [9] is unstable.

Probabilistic methods. They are used to obtain the maximum likelihood (ML) esti-
mator and Bayes estimators.
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1.5 Notation

Let {An, n = 1, 2, . . .} be a sequence of random events. The random event An is
said to hold eventually if almost surely there exists n0 such that An occurs for all
n ≥ n0. In other words, the random event An holds eventually if and only if it does
not occur only for finitely many n almost surely.

The estimator β̂ is called asymptotically normal if
√

n(β̂ − βtrue) → N(0,Σ) in
distribution, were the asymptotic covariance matrix Σ may be singular, and n is the
sample size. This definition differs from the conventional one adopted in asymptotic
theory because here only

√
n-asymptotic normality is considered.

Let ζ ∼ N(μ,Σ) be a bivariate random vector. Then E = {z : (z−μ)�Σ−1(z−
μ) ≤ 1} is called the 40% ellipsoid of the normal distribution because P(ζ ∈ E) ≈
0.3935. This is the ellipsoid where the probability density function is at least 0.3679
of its maximum.

1.6 Outline

In Section 2, we construct five estimators for parameters of the two line fitting model.
In Section 3, we propose two definitions of the equivariance of an estimator and state
that all of the five estimators are equivariant. The estimators are compared numeri-
cally in Section 4. The proofs are given in Appendix A.

2 Estimators

2.1 ALS2 estimator and its projections

The two-line fitting model is a restriction of the conic section fitting model. A couple
of lines defined by the equation (k1ξ − η + h1)(k2ξ − η + h2) = 0 is a degenerate
conic section

Aξ2 + 2Bξη + Cη2 + 2Dξ + 2Eη + F = 0, (11)

with coefficients

A = Ck1k2, 2D = C(k1h2 + k2h1),

2B = −C(k1 + k2), 2E = −C(h1 + h2),

F = Ch1h2,

(12)

with a constraint C �= 0.
The conic section ALS2 estimator provides estimation of the error variance σ 2

and the coefficients A,B, . . . , F .
Denote by ν(i) ∈ {1, 2} the indicator of a line which the true point (ξi, ηi) belongs

to. Equation (1) can be rewritten as

ηi = kν(i)ξi + hν(i), i = 1, 2, . . . .

The indicator ν(i) is nonrandom in the functional model, and it is a random variable
in the structural model.
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Proposition 3. Let, in the functional model,

∞∑
n=1

ξ6
n

n2
< ∞;

either k1 �= k2 or

{
h1 �= h2,

supn≥1
1
n

∑n
i=1 ξ2

i < ∞; and

lim inf
n→∞ λmin

⎛⎜⎜⎝1

n

∑
i=1,...,n
ν(i)=j

⎛⎜⎝ 1 ξi ξ2
i

ξi ξ2
i ξ3

i

ξ2
i ξ3

i ξ4
i

⎞⎟⎠
⎞⎟⎟⎠ > 0 for j = 1, 2.

Then the ASL2 estimators β̂ and σ̂ 2 are strongly consistent in the sense of (7) and (8).

There are two cases where the structural model is not identifiable. If the common
distribution of the true points is concentrated on a straight line and on a single point
(presumably not on the line), that is,

∃ line � ⊂ R
2 ∃z ∈ R

2 : supp (ξ1, η1) ⊂ � ∪ {z}, (13)

then there are many ways to fit the true points with two lines. If the common distri-
bution of the true points is concentrated in four points, that is,

# supp (ξ1, η1) = 4, (14)

then there are three ways to fit the true points with two lines (unless three of the four
points lie on a straight line, which is a particular case of (13)).

Proposition 4. In the structural model, assume that E |ξ1|3 < ∞ and that noniden-
tifiability conditions (13) and (14) do not hold. Then the ALS2 estimator is strongly
consistent in the sense of (7) and (8).

In order to estimate the parameters k1, h1, k2, and h2, we can solve Eqs. (12).
With ignoring the last equation F = Ch1h2, the solution is

k1,2 = −B ± √
B2 − AC

C
, (15)

h1 = 2(D + k1E)

C(k2 − k1)
, (16)

h2 = 2(D + k2E)

C(k1 − k2)
. (17)

Substituting the elements of the ALS2 estimator β̂ = (Â, 2B̂, Ĉ, 2D̂, 2Ê, F̂ )�
into the right-hand side of (15)–(17), we obtain an “ignore-F̂ ” estimator:

k̂1,2 = −B̂ ±
√

B̂2 − ÂĈ

Ĉ
, (18)

ĥ1 = 2(D̂ + k̂1Ê)

Ĉ(k̂2 − k̂1)
, (19)
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ĥ2 = 2(D̂ + k̂2Ê)

Ĉ(k̂1 − k̂2)
. (20)

If the conic section estimated by the ALS2 estimator is a hyperbola, then the
“ignore-F̂ ” estimate of the two lines comprises the asymptotes of the hyperbola.

Choose the sign ± in (18) such that k̂1 < k̂2.
We need the notation

(k1, h1, k2, h2)
� = lob(β)

for the function that expresses the line parameters k1, h1, k2, h2 in elements of β and
is defined by (15)–(17). With this notation, we can write

(k̂1, ĥ1, k̂2, ĥ2)
� = lob(β̂) = lob(β̃).

Proposition 5. In the functional model, assume the following:

k1 < k2,

∞∑
n=1

ξ6
n

n2
< ∞, and

lim inf
n→∞ λmin

⎛⎜⎜⎝1

n

∑
i=1,...,n
ν(i)=j

⎛⎜⎝ 1 ξi ξ2
i

ξi ξ2
i ξ3

i

ξ2
i ξ3

i ξ4
i

⎞⎟⎠
⎞⎟⎟⎠ > 0 for j = 1, 2.

Then the “ignore-F̂” estimator of the parameters of two lines is strongly consistent,
that is,

k̂j → kj , ĥj → hj , j = 1, 2,

as n → ∞ almost surely.

Proposition 6. If in the structural model, k1 < k2, E |ξ1|3 < ∞, and neither condi-
tion (13) nor condition (14) holds, then the “ignore-F̂” estimator is consistent.

Now, we state the asymptotic normality of the “ignore-F̂ ” estimator.

Proposition 7. In the functional model, assume the following:

• k1 < k2,

• for j = 1, 2 and p = 0, 1, . . . , 6, the following limits exist and are finite:

μ
(j)
p := lim

n→∞
1

n

∑
i=1,...,n
ν(i)=j

ξ
p
i .

• for j = 1 and j = 2, the matrices⎛⎜⎝μ
(j)

0 μ
(j)

1 μ
(j)

2

μ
(j)

1 μ
(j)

2 μ
(j)

3

μ
(j)

2 μ
(j)

3 μ
(j)

4

⎞⎟⎠
are nonsingular.
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Then the “ignore-F̂” estimator (k̂1, ĥ1, k̂2, ĥ2)
� is asymptotically normal, namely

√
n

⎛⎜⎜⎝
k̂1 − k1

ĥ1 − h1

k̂2 − k2

ĥ2 − h2

⎞⎟⎟⎠ d−→ N
(
0,KΣβ̃K�), (21)

where Σβ̃ is the asymptotic covariance matrix of β̃, and K is the 4 × 6 matrix of

derivatives of the mapping (A, 2B,C, 2D, 2E,F)� �→ (k1, h1, k2, h2)
� defined in

(15)–(17) at the true parameters β tn, that is,

K = d lob(β)

dβ�

∣∣∣∣
β=βtn

.

The matrix KΣβ̃K� is nonsingular.

Proposition 8. If, in the structural model, k1 < k2, E ξ6
1 < ∞, and neither (13)

nor (14) holds, then the “ignore-F̂” estimator is asymptotically normal, that is, (21)
holds.

Remark 2. The estimators k̂1, ĥ1, k̂2, and ĥ2 obtained in (18)–(20) do not change if
Â, B̂, . . . , Ê are multiplied by a common factor. So it does not matter which normal-
ization of β is used.

Equation (11) represents a couple of intersecting straight lines if and only if∣∣∣∣∣∣
A B D

B C E

D E F

∣∣∣∣∣∣ = 0 and AC < B2. (22)

Denote

�(β) =
∣∣∣∣∣∣
A B D

B C E

D E F

∣∣∣∣∣∣ = ACF + 2BDE − AE2 − CD2 − B2F,

�′(β) = d�(β)

dβ� = (
CF−E2,DE−BF,AF−D2, BE−CD,BD−AE,AC−B2),

where the function �(β) and its derivative �′(β) are evaluated at the point β =
(A, 2B,C, 2D, 2E,F)�.

Perform one-step update of the estimator β̃ to make it closer to the surface
�(β) = 0:

β̃1st = β̃ − �(β̃)

�′(β̃)Σ̂β̃�′(β̃)�
Σ̂β̃�′(β̃)�. (23)

Then use expressions (15)–(17) to estimate k1, h1, k2, h2:

(k̂1,1st, ĥ1,1st, k̂2,1st, ĥ2,1st)
� = lob(β̃1st).
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Proposition 9. Under the conditions of Proposition 7 in the functional model or un-
der the conditions of Proposition 8 in the structural model, the estimator (k̂1,1st, ĥ1,1st,

k̂2,1st, ĥ2,1st)
� is consistent and asymptotically normal, and its asymptotic covariance

matrix is equal to

K

(
Σβ̃ − Σβ̃�′(β tn)

��′(β tn)Σβ̃

�′(β tn)Σβ̃�′(β tn)
�

)
K�.

Remark 3. The normalization of the estimator β̂ affects its asymptotic covariance ma-
trix, and hence has effect on the estimates (k̂1,1st, ĥ1,1st, k̂2,1st, ĥ2,1st)

�. However, the
normalization does not affect the asymptotic covariance matrix of (k̂1,1st, ĥ1,1st, k̂2,1st,

ĥ2,1st)
�.

2.2 Orthogonal regression estimator

The sum of squared distances between each observed point and the closer of two lines
is equal to

Q(k1, h1, k2, h2) =
n∑

i=1

min

(
(yi − k1xi − h1)

2

k2
1 + 1

,
(yi − k2xi − h2)

2

k2
2 + 1

)
. (24)

The orthogonal regression estimator is a Borel-measurable function of observations
such that

(k̂1,OR, ĥ1,OR, k̂2,OR, ĥ2,OR) ∈ argmax
(k1,h1,k2,h2)∈R4

Q(k1, h1, k2, h2).

In the functional model, the orthogonal regression estimator is the maximum like-
lihood estimator. However, because the dimension of parameter space grows as the
sample size is increasing, the orthogonal regression estimator may be inconsistent.

2.3 Parametric maximum likelihood estimator

The estimator is constructed in the structural model, so it should be called the struc-
tural maximum likelihood estimator.

If a Gaussian distribution of a random point (ξ, η) is concentrated on a straight
line η = kξ + h, then it is a singular normal distribution:

(ξ, η) ∼ N

((
μξ

kμξ + h

)
,

(
σ 2

ξ kσ 2
ξ

kσ 2
ξ k2σ 2

ξ

))
, (25)

where μξ and σ 2
ξ are the expectation and variance of the random variable ξ . Note that

the covariance matrix σ 2
ξ

( 1 k
k k2

)
is singular and positive semidefinite.

If the distribution of a random point (ξi, ηi) is concentrated on two straight lines
η = k1ξ + h1 and η = k2ξ + h2 and the distribution on each line is Gaussian, then,
due to (25), the conditional distributions are

[(
ξi, ηi

) | ν(i) = j
] ∼ N

((
μjξ

kjμjξ + hj

)
,

(
σ 2

jξ kjσ
2
jξ

kjσ
2
jξ k2

j σ
2
jξ

))
= N(μj ,Σ0j )
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for j = 1, 2. The matrices Σ0j are positive semidefinite and singular, that is,
λmin(Σ01) = λmin(Σ02) = 0, and the points μj are the centers of Gaussian dis-
tribution of the points on each line.

The distribution of (ξi, ηi) is a mixture of two singular normal distributions(
ξi

ηi

)
∼ mixture of

{
N(μ1,Σ01) with weight p,

N(μ2,Σ02) with weight 1 − p,
(26)

where p = P(ν(i) = 1) = P(ν(1) = 1) is the probability that the point (ξi, ηi) lies
of the first line.

The distribution of the observed points is also a mixture of two Gaussian distri-
butions (

xi

yi

)
∼ mixture of

{
N(μ1,Σ1) with weight p,

N(μ2,Σ2) with weight 1 − p,
(27)

with Σj = Σ0j + σ 2I, where σ 2 is the error variance; see (4). Note that λmin(Σ1) =
λmin(Σ2) = σ 2.

The likelihood function for the sample of points with a mixture of two normal
distributions is

L(p,μ1,Σ1,μ2,Σ2) =
n∏

i=1

(
pφN(μ1,Σ1)(xi, yi) + (1−p)φN(μ1,Σ1)(xi, yi)

)
, (28)

where

φN(μ,Σ)(x, y) = 1

2π
√

det Σ
exp

{
−1

2

((
x

y

)
− μ

)�
Σ−1

((
x

y

)
− μ

)}
is the density of a bivariate normal distribution.

One method of evaluating the maximum likelihood estimator is as follows:

1. Find the point of conditional minimum

(μ̂1, Σ̂1, μ̂2, Σ̂2) = argmin
μ1,Σ1,μ2,Σ2

such that λmin(Σ1)=λmin(Σ2)

min
p∈[0,1] L(p,μ1,Σ1,μ2,Σ2).

2. Set

σ̂ 2 = λmin(Σ1) = 1

2

(
σ̂1xx + σ̂1yy −

√
(σ̂1xx − σ̂1yy)2 + 4σ̂ 2

1xy

)
. (29)

Here σ̂jxx , σ̂jxy , and σ̂jyy are the entries of the matrix Σ̂j , and μ̂jx and μ̂jy

are the elements of the vector μ̂j :

μ̂j =
(

μ̂jx

μ̂jy

)
, Σ̂j =

(
σ̂jxx σ̂jxy

σ̂jxy σ̂jyy

)
.
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3. Find the estimates k̂1, ĥ1, k̂2, ĥ2 from the equations

μ̂j =
(

μjx

k̂jμjx + ĥj

)
, Σ̂j =

(
σ̂ 2

jξ + σ̂ 2 k̂j σ̂
2
jξ

k̂j σ̂
2
jξ k̂2

j σ̂
2
jξ + σ̂ 2

)
,

that is, set

k̂j = σ̂jxy

σ̂jxx − σ̂ 2
, (30)

ĥj = μ̂jy − k̂j μ̂jx . (31)

The denominator σ̂jxx − σ̂ 2 may be equal to 0 with some positive probability.
Occurrence of this event means that the estimated figure is a straight line and a single
point outside the line rather than two straight lines.

In order to make the statement of consistency easier, assume that k1 < k2 and
choose the estimator such that k̂1 ≤ k̂2.

2.4 RBAN moment estimator

The regular best asymptotically normal (RBAN) estimators were developed by Chi-
ang [4]. Our RBAN moment estimator differs from the original RBAN so that not
only the observed points (xi, yi), but also monomials x

p
i y

q
i , p + q ≤ 4, are averaged.

Introduce the 14-dimensional vectors whose elements are the monomials of coor-
dinates of observed points:

m(x, y) = (
x4, x3y, x2y2, xy3, y4, x3, x2y, xy2, y3, x2, xy, y2, x, y

)�
, (32)

mi = m(xi, yi).

Evaluate the average and sample covariance matrix of the vectors mi :

m = 1

n

n∑
i=1

mi , Σm = 1

n

n∑
i=1

(mi − m)( mi − m)�.

Denote
f1
(
k, h, σ 2; (μp)4

q=1

) = E m(ξ + δ, kξ + h + ε),

where ξ , δ, and ε are independent random variables such that

E ξq = μq and (δ, ε)�∼N(0, σ 2I).

Basically, the function f1 is defined for all μp, p = 1, . . . , 4, that comprise possible
4-tuples of moments of a random variable, that is, satisfy

μ2 − μ2
1 ≥ 0,(

μ4 − 4μ3μ1 + 6μ2μ
2
1 − 3μ4

1

)(
μ2 − μ2

1

)− (
μ3 − 3μ2μ1 + 2μ3

1

)2 − (
μ2− μ2

1

)3 ≥ 0;
see [10]. However, since the elements of the vector-function f1 are polynomials of its
arguments, it can be extended to R

7.
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Denote

f2
(
k1, h1, k2, h2, σ

2; p,
(
μ

(j)
q

)2 4
j=1,q=1

)
= pf1

(
k1, h1, σ

2; (μ(1)
q

)4
q=1

)+ (1−p)f1
(
k2, h2, σ

2; (μ(2)
q

)4
q=1

)
.

In the structural model,

E mi = f2
(
k1, h1, k2, h2, σ

2; P
(
ν(1)=1

)
,
(
E
[
ξ

q

1 | ν(1)=j
])2 4

j=1,q=1

)
.

Consider the equation

f2
(
k̂1, ĥ1, k̂2, ĥ2, σ̂

2; p̂,
(
μ̂

(j)
q

)2 4
j=1,q=1

) = m. (33)

It is a system of 14 equations in 14 variables. If (33) has a solution, then the moment
estimator can be defined as one of the solutions. However, (33) may have no solution.

In the rest of Section 2.4, μ
(•)• = (μ

(j)
q )2 4

j=1,q=1 is a 2 × 4 matrix.

The estimator is defined as a point where (f2(. . .)−m)�Σ−1
m (f2(. . .)−m) attains

its minimum:(
k̂1, ĥ1, k̂2, ĥ2, σ̂

2)
= argmin

k1,...,σ
2

min
p,μ

(•)•

(
f2
(
k1, . . . , σ

2; p,μ(•)•
)− m

)�
Σ−1

m

(
f2
(
k1, . . . , σ

2; p,μ(•)•
)− m

)
.

This minimization problem is similar to that in Theorem 6 in [4]. The minimum

min
p∈R min

μ
(•)• ∈R2×4

(
f2
(
k1, . . . , σ

2; p,μ(•)•
)− m

)�
Σ−1

m

(
f2
(
k1, . . . , σ

2; p,μ(•)•
)− m

)�
can be evaluated explicitly, and this allows us to reduce the dimension of minimiza-
tion problem. The reduction of dimension of the optimization problem was used, for
example, in [8].

The routines evaluating the RBAN-moment estimator and the estimator for its
covariance matrix are developed without rigid theoretical basis; see Section 4.3.

3 Equivariance

3.1 Two definitions of equivariance

The similarity transformation of R2 is

g(z) = KUz + �z, z ∈ R
2, (34)

where U is an orthogonal matrix, K �= 0 is a scaling coefficient, and �z ∈ R
2 is an

intercept.
The transformation of a sample of points acting elementwise is also denoted g(Z):

if Z = {zi , i = 1, . . . , n}, then g(Z) = {g(zi ), i = 1, . . . , n}.
Hereafter, we use vector notation: the observed points are denoted zi = (xi, yi)

�,
and the true points are denoted ζ i = (ξi, ηi)

�.
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The underlying statistical structure is (Rn×2,B(Rn×2), PZ|θ , θ ∈ Θ), where Z ∈
R

n×2 is the observed sample, Z = {zi , i = 1, . . . , n}, B(Rn×2) is the Borel σ -field,
and θ is a parameter that uniquely identifies the distribution of the observed points;
θ = (ζ 1, . . . , ζ n; σ 2) in the functional model, and θ = (Pζ ; σ 2) in the structural
model. Here ζ 1, . . . , ζ n are points located on two strait lines, and Pζ is a probability
measure concentrated on two straight lines.

The statistical structure is invariant with respect to transformation g if the change
of the probability measure induced by the transformation of the sample can be ob-
tained by some transformation g̃ of parameters, that is, if there exists a bijection
g̃ : Θ → Θ such that

∀θ ∈ Θ : Pg(Z)|θ = PZ|g̃(θ).

Here Pg(Z)|θ is the induced probability measure; it is sometimes denoted Pg(Z)|θ =
PZ|θg−1.

The statistical structure is similarity invariant if it is invariant with respect to all
similarity transformations of the form (34).

In order to become similarity invariant, the underlying statistical structure needs
some extension. We assume that the true points lie on two lines, which may be parallel
to the y-axis. The following restrictions do not ruin the invariance:

• The true lines �1 and �2 intersect each other but do not coincide.

• The true points ζ 1 . . . , ζ n in the functional model or the set supp(Pζ ) where
the true points are concentrated in the structural model can be covered with two
lines uniquely. In the structural model, this means that the nonidentifiability
conditions (13) and (14) do not hold.

With these restrictions, the statistical structure is invariant with

g̃
(
ζ 1, . . . , ζ n; σ 2) = (

g(ζ 1), . . . , g(ζ n); K2σ 2)
in the functional model and

g̃
(
Pζ ; σ 2) = (

Pg(ζ ); K2σ 2)
in the structural model.

Let ��(θ) and sigma2(θ) be functions that extract the parameters of interest. If,
in the functional model, θ = (ζ 1, . . . , ζ n; σ 2) and points ζ 1, . . . , ζ n lie on the lines
�1 and �2 or if, in the structural model, θ = (Pζ ; σ 2) and the probability measure is
concentrated on the union of two lines �1∪�2, then ��(θ) = {�1, �2}. If θ = (. . . ; σ 2),
then sigma2(θ) = σ 2.

We treat {�1, �2} as an unordered couple, that is, {�1, �2} = {�2, �1}.
The transformation of the lines parameters and the transformation of σ 2 do not

interfere each other, and these transformations are not interfered by a particular loca-
tion or distribution of true points on the lines, that is, the parameter transformation g̃

is such that there exists transformations g̃�� and g̃σ 2 such that

��
(
g̃(θ)

) = g̃��

(
��(θ)

)
,

sigma2
(
g̃(θ)

) = g̃σ 2

(
sigma2(θ)

)
.
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These transformations are

g̃��

({�1, �2}
) = {

g(�1), g(�2)
}
, (35)

g̃σ 2

(
σ 2) = K2σ 2.

The estimator is called equivariant with respect to the transformation g if, when
the data are transformed, the estimator follows the inducing transformation of param-
eters. The estimator �̂�(Z) for two lines and the estimator σ̂ 2(Z) for error variance
are equivariant with respect to similarity transformation g if

�̂�
(
g(Z)

) = g̃��

(
�̂�(Z)

)
, (36)

σ̂ 2(g(Z)
) = g̃σ 2

(
σ̂ 2(Z)

)
. (37)

The estimator is called similarity equivariant if it is equivariant with respect to any
similarity transformation g.

In a fitting problem, an estimator for a “true figure” is called fitting equivariant
with respect to transformation g(z), g : R → R if, when the sample is transformed,
the estimated “true figure” follows the same transformation g. An estimator is called
similarity fitting equivariant if it is fitting equivariant with respect to any similarity
transformation.

In the two-line fitting problem, denote by ∪{�1, �2} = �1 ∪ �2 the union of a pair
of two lines. An estimator �̂�(Z) is similarity fitting equivariant if and only if for any
similarity transformation g(z),

∪ �̂�
(
g(Z)

) = g
(∪ �̂�(Z)

)
. (38)

The similarity fitting equivariant estimator depends on geometry of the plane and
does not depend on the Cartesian coordinate system used.

Because of (35), in the two-line fitting model, the estimator for two lines �̂�(Z) is
similarity equivariant if and only if it is similarity fitting equivariant.

3.2 Similarity equivariance of the five estimators

Some troubles, which may arise during estimation, are not addressed yet.

• The estimation may fail with small positive probability. For example, the conic
section estimated with the ALS2 estimator is an ellipse with some positive
probability, and if it is, then the “ignore-F̂ ” estimator fails. (If the estimator is
consistent, then the failure probability tends to 0 as n → ∞).

• The estimation may fail, for example, because the estimated line should be
parallel to the y-axis, but the estimating procedure does not handle such case.

• The optimization problem may have multiple extremal points. For the ALS2
estimator, it may occur that dim{β : Ψn(σ̂

2)β = 0} > 1.

In order to define the equivariance of an unreliable estimator, we allow that the
estimators fail simultaneously in both sides of (36), (37), or (38). Also, we allow that
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for fixed similarity transformation g(z), equation (36), (37), or (38) does not hold
with probability 0.

The equivariance of the ALS2 estimator in the conic section fitting problem is
verified in [11, Section 5.5] (see Theorem 30 there for similarity fitting equivariance).
That implies the equivariance of the “ignore-F̂ ” estimator.

In order to make the updated before ignore-F̂ step estimator equivariant, we use
normalization of the ALS2 estimator (9) rather than ‖β̂‖ = 1.

The orthogonal regression estimator and the parametric maximum likelihood es-
timator are maximum likelihood estimators, but in different models. Thus, they are
equivariant.

The criterion function for the RBAN-moment estimator is similarity invariant. This
means that the criterion function does not change when the data sample follows a sim-
ilarity transformation and the parameters follow the inducing transformation. Thus,
the RBAN-moment estimator is equivariant.

3.3 An example of equivariant but not fitting equivariant estimator
Consider a further restriction of the mixture-of-two-normal-distributions model from
Section 2.3. Assume that covariance matrices of Σ1 and Σ2 have the same diagonal
entries but additive inverse off-diagonal entries:

Σ1 =
(

σ 2
ξ + σ 2 −kσ 2

ξ

−kσ 2
ξ k2σ 2

ξ + σ 2

)
and Σ2 =

(
σ 2

ξ + σ 2 kσ 2
ξ

kσ 2
ξ k2σ 2

ξ + σ 2

)
.

The statistical structure is invariant in scaling of the y-coordinate, (xnew, ynew) =
(xold, ryold), r > 0. This transformation maps the lines y = −kx+h1 and y = kx+h2
onto the lines y = −rkx + rh1 and y = rkx + rh2, respectively. The maximum like-
lihood estimator in this model is equivariant. However, this equivariance is somewhat
strange. The transformation of parameters that induces the scaling of the y-coordinate
of the observed points does not induce the same transformation of the true points nor
the same mapping of the true lines. The estimated lines follow the transformation of
parameters rather than the transformation of observed points. This is illustrated in
Fig. 1.

Let kold be the true value of the parameter k before the transformation. Then after
the transformation, the value of the parameter is

knew =
t +

√
t2 + 4r2k2

oldσ
4
ξ old

2rkoldσ
2
ξ old

with t = (r2k2
old − 1) σ 2

ξ old + (r2 − 1) σ 2
old. If 0 < r2 �= 1, kold �= 0, and σ 2 > 0,

then knew �= rkold. Hence, the maximum likelihood estimator is not fitting equivariant
with respect to scaling of the y-coordinate here.

4 Simulations

4.1 Simulation setup
A sample of the true points (ξi, ηi), i = 1, . . . , n, is generated from a random distri-
bution concentrated on (a subset of) two lines. Three distributions of the true points
are used; see Fig. 2:
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Fig. 1. Two samples, one of points (x, yold) (the unmodified sample) and one of points
(x, ynew) = (x, 1

2yold) (the shrunken-in-y sample), are fitted with two lines (the estimated
lines are the solid lines on the figures). The estimated lines for the unmodified sample (blue
solid lines on the left figure) when scaled with the same transformation as the observed points
are scaled (blue dashed line on the right figure) do not coincide with the actually estimated lines
for the shrunken-in-y sample (red solid lines on the right figure). The ellipsoids are the 40%
ellipsoids of the estimated normal distributions (the compound distributions of the estimated
mixture distributions) (color figure online)

Fig. 2. Three distributions of the true points: a mixture of two singular normal distributions,
a discrete distribution, and a uniform distribution on two line segments. For the first case,
a sample of 1000 points is plotted, whereas for the second and third cases, the support of the
distribution of the true points is plotted. For the first case, the distribution of the observed points
is a mixture of normal distributions, and 40% ellipsoids for its components are plotted

• a mixture of two singular normal distributions,

• a discrete distribution,

• a uniform distribution on two line segments.

These three distributions of true points are concentrated on the same two lines

4y = 1 − 3x and 12y = 16x + 5,

which intersect one another at the point (−0.08, 0.31).
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For the same sample of true points {(ξi, ηi), i = 1, . . . , n}, 100 samples of the
measurement errors {(δi, εi), i = 1, . . . , n}, (δi, εi)

� ∼ N(0, σ 2), are simulated,
and 100 samples of the observed points (xi, yi) are obtained; see (2) and (3). For each
sample of the observed points, the estimates of the parameters of the true lines were
evaluated with the following five methods: two ALS2-based estimators (the ignore-F̂
estimator and the estimator with one-step update of the ALS2 estimator before the
ignore-F̂ step), the orthogonal regression estimator, the parametric maximum likeli-
hood estimator, and the RBAN moment estimator.

For each estimated couple of lines, the point of their intersection is found. The 100
estimates of intersection points are averaged, and their sample standard deviations
are evaluated. For the ALS2-based estimators and the RBAN moment estimator, the
standard errors of the estimators are also evaluated.

4.2 Notes on computation of particular estimators

For computation of the orthogonal regression estimator, the k-means method is used.
Initially, two lines were chosen randomly. Then classification and mean steps are
alternated. On the classification step, the observed points are split into two clusters
based on which line is closer to the point. (The first cluster contains all the observed
points that are closer to the first line than to the second line, and the second cluster
contains the other observed points.) On the means step, each cluster is fitted with a
straight line by the orthogonal regression method (the two lines are updated). The
algorithm is completed when the classification step does now change the clusters.
The obtained parameters of the two lines deliver a local minimum to the criterion
function Q(k1, h1, k2, h2) (24). Trying to obtain the global minimum, the algorithm
is restarted several times with different initial two lines.

For computation of the parametric maximum likelihood estimator, the expect-
ation–maximization algorithm [2] is used. The equation for optimization problem of
finding a minimum of the likelihood function L(p,μ1,Σ1,μ2,Σ2) (28) such that
λmin(Σ1) = λmin(Σ2) is

n∑
i=1

φN(μ1,Σ1)(xi, yi) − φN(μ2,Σ2)(xi, yi)

pφN(μ1,Σ1)(xi, yi) + (1−p)φN(μ2,Σ2)(xi, yi)
= 0,

n∑
i=1

p
∂φN(μ1,Σ1)(xi ,yi )

∂par + (1−p)
∂φN(μ2,Σ2)(xi ,yi )

∂par

pφN(μ1,Σ1)(xi, yi) + (1−p)φN(μ2,Σ2)(xi, yi)
= 0,

where par is a vector parameterization of (μ1,Σ1,μ2,Σ2) such that λmin(Σ1) =
λmin(Σ2). Hence, the maximum likelihood estimator is a stationary point of the func-
tion

Qw(p, par) =
n∑

i=1

(
wi ln

(
pφN(μ1,Σ1)(xi, yi)

)+ (1−wi) ln
(
(1−p)φN(μ1,Σ1)(xi, yi)

))
with fixed

wi = p̂φN(μ̂1,Σ̂1)
(xi, yi)

p̂φN(μ̂1,Σ̂1)
(xi, yi) + (1−p̂)φN(μ̂2,Σ̂2)

(xi, yi)
.
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The EM algorithm is iterative. Once the (m−1)th approximation (p(m−1), μ
(m−1)
1 ,

Σ
(m−1)
1 , μ

(m−1)
2 ,Σ

(m−1)
2 ) is obtained, the weights are evaluated:

w
(m−1)
i =

p(m−1)φ
N(μ

(m−1)
1 ,Σ

(m−1)
1 )

(xi, yi)

p(m−1)φ
N(μ

(m−1)
1 ,Σ

(m−1)
1 )

(xi, yi) + (1−p(m−1))φ
N(μ

(m−1)
2 ,Σ

(m−1)
2 )

(xi, yi)
.

Then mth approximation (p(m), μ
(m)
1 ,Σ

(m)
1 , μ

(m)
2 ,Σ

(m)
2 ) is obtained by minimizing

n∑
i=1

(
w

(m−1)
i ln

(
pφN(μ1,Σ1)(xi, yi)

)+ (
1−w

(m−1)
i

)
ln
(
(1−p)φN(μ2,Σ2)(xi, yi)

))
under the constraint λmin(Σ1) = λmin(Σ2). The point where the minimum is attained
can be explicitly expressed in w

(m−1)
i , xi , and yi , i = 1, . . . , n.

4.3 RBAN-moment estimator

In case the criterion function

Q(θ) = Q
(
k1, h1, k2, h2, σ

2)
= min

p∈R min
M∈R2×4

(
f2(θ; p, M) − m

)�
Σ−1

m

(
f2(θ; p, M) − m

)
has multiple minima, a consistent estimator—that is, the “ignore-F̂ ” estimator—is
used as the initial point, and the criterion function Q(θ) is searched for a local min-
imum nearby. Here θ = (k1, h1, k2, h2, σ

2)� is a vector meaning the parameters of
interest.

The knowledge or misspecification of the parameter p does not affect the estima-
tor for the parameters of interest k1, . . . , σ 2. Thus, for estimation of the asymptotic
covariance matrix, assume p = 0.5 to be known. The estimator of the asymptotic
covariance matrix of (θ, M) is

Σ̂θ,M = (
f ′

2(θ̂; 0.5, M̂)�Σ−1
m f ′

2(θ̂; 0.5, M̂)
)−1

,

where
f ′

2(θ; 0.5, M) =
(

∂f2(θ; 0.5,M)

∂θ� ,
∂f2(θ; 0.5,M)

∂(vec M)�
)

.

The estimator of the asymptotic covariance matrix of θ is the principal submatrix of
Σ̂θ,M.

4.4 Simulation results

Average of estimated centers over 100 simulations, standard deviations over 100 sim-
ulations, and medians of estimated standard errors are presented in Tables 1–3.

Using the estimator F̂ (by one-step update before ignore-F̂ step), we improve the
precision of estimation. The precision of the RBAN-moment estimator approximates
the precision of the updated before ignore-F̂ step estimator.
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Table 1. Means, standard deviations, and median standard errors of the estimates of intersection
points for true points having mixture of singular normal distributions

Method Means Standard deviations Standard errors
True value −0.08 0.31

n = 1000, σ = 0.1 (σ 2 = 0.01)

Ignore-F̂ −0.1098 0.2753 0.8611 0.3866 0.1918 0.1125
Update −0.0820 0.2912 0.0706 0.0620 0.0437 0.0479
OR 0.6533 3.4524 0.0877 0.6783
ML −0.0795 0.3077 0.0326 0.0269
RBAN 0.0647 0.3759 0.3563 0.2606 0.0350 0.0438

n = 10000, σ = 0.1 (σ 2 = 0.01)

Ignore-F̂ −0.0909 0.3052 0.0646 0.0308 0.0601 0.0303
Update −0.0796 0.3080 0.0127 0.0156 0.0124 0.0155
OR 0.5492 3.1488 0.0175 0.1701
ML −0.0776 0.3083 0.0103 0.0088
RBAN −0.0789 0.3100 0.0126 0.0154 0.0127 0.0154

n = 100000, σ = 0.1
Ignore-F̂ −0.0799 0.3101 0.0211 0.0095 0.0188 0.0093
Update −0.0801 0.3098 0.0037 0.0042 0.0039 0.0047
OR 0.5606 3.2041 0.0063 0.0484
ML −0.0801 0.3101 0.0030 0.0025
RBAN −0.0801 0.3101 0.0038 0.0042 0.0039 0.0048

n = 1000, σ = 0.02
Ignore-F̂ −0.0799 0.3099 0.0151 0.0075 0.0147 0.0072
Update −0.0795 0.3097 0.0052 0.0051 0.0052 0.0049
OR −0.0792 0.3092 0.0050 0.0044
ML −0.0794 0.3093 0.0048 0.0043
RBAN −0.0797 0.3098 0.0063 0.0057 0.0052 0.0049

The parametric maximum likelihood estimator is the best when the normality con-
dition, which was assumed during construction of the estimator, is satisfied. Other-
wise, it is biased.

The orthogonal regression and the maximum likelihood estimators are good for
small error variance (σ 2 = 0.022). For σ 2 = 0.12, the orthogonal regression estima-
tor is broken down when the distribution of true points is a mixture of two normal
distributions and is biased for the two other distributions of true points.

Mean-square deviance of the intersection of the estimated lines from the true
intersection point is presented in Table 4.

For small errors, the RBAN-moment estimator is a bit less accurate than the up-
dated before ignore-F̂ step estimator. For σ 2 = 0.12, the difference is negligible.

The parametric maximum likelihood estimator has the smallest deviation from the
true value, except for the discrete distribution of true points and σ 2 = 0.01.

For small errors (σ 2 = 0.022), the orthogonal regression estimator outperforms
the consistent estimators and has the deviation approximately as small as the para-
metric maximum likelihood estimator.

Normalization of the estimator of β affects the ALS2-based estimator of two
lines with one-step update before the ignore-F̂ step. With normalization ‖β̂‖ = 1,
the derived estimator of two lines is not equivariant, whereas with normalization
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Table 2. Means, standard deviations, and median standard errors of the estimates of intersection
points for discrete distribution of the true points

Method Means Standard deviations Standard errors
True value −0.08 0.31

n = 1000, σ = 0.1
Ignore-F̂ −0.0699 0.3077 0.0263 0.0290 0.0241 0.0263
Update −0.0722 0.3116 0.0197 0.0186 0.0203 0.0175
OR −0.0755 0.3188 0.0148 0.0144
ML −0.0958 0.3315 0.0131 0.0120
RBAN −0.0717 0.3105 0.0209 0.0175 0.0205 0.0178

n = 10000, σ = 0.1
Ignore-F̂ −0.0783 0.3109 0.0092 0.0078 0.0080 0.0083
Update −0.0785 0.3114 0.0071 0.0054 0.0065 0.0061
OR −0.0721 0.3157 0.0048 0.0046
ML −0.0931 0.3278 0.0043 0.0035
RBAN −0.0786 0.3113 0.0071 0.0053 0.0065 0.0061

n = 100000, σ = 0.1
Ignore-F̂ −0.0798 0.3098 0.0031 0.0024 0.0026 0.0027
Update −0.0799 0.3099 0.0025 0.0016 0.0021 0.0019
OR −0.0715 0.3151 0.0017 0.0013
ML −0.0932 0.3283 0.0013 0.0011
RBAN −0.0799 0.3099 0.0024 0.0017 0.0021 0.0019

n = 1000, σ = 0.02
Ignore-F̂ −0.0796 0.3094 0.0033 0.0032 0.0036 0.0033
Update −0.0798 0.3097 0.0030 0.0024 0.0033 0.0023
OR −0.0782 0.3086 0.0021 0.0018
ML −0.0786 0.3087 0.0019 0.0018
RBAN −0.0796 0.3092 0.0030 0.0028 0.0033 0.0024

β̃
�
Ψ ′

n(σ̂
2)β̃ = −n, the derived estimator is equivariant. Comparison of equivari-

ant and nonequivariant versions of the estimator is displayed in Table 5.
There is a tendency that the equivariant version of the estimator is more accurate

for small samples than the nonequivariant version. The two versions of the estima-
tor are consistent and asymptotically equivalent. When the estimation is precise, the
difference between the versions is negligible. When the estimation is imprecise, it is
impossible to make inference which version is more accurate.

4.5 Comparison of two estimators for asymptotic covariance matrix in the conic
section fitting model

In [13] a conic section fitting model is considered, and two estimators (Σ̂true and
Σ̂sample) for the asymptotic covariance matrix of the ALS2 estimator are constructed.

The software developed here can be used to make numerical comparison of the es-
timates of the asymptotic covariance matrices. The data are generated as described in
Section 4.1 with 1000 simulations for each set of true points. Thus, the true conic un-
necessarily was chosen degenerate. For each simulation, the parameters of the conic
section were estimated; its center is found, and two confidence ellipsoids for the cen-
ter were constructed using two different estimators of the asymptotic covariance ma-
trix.
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Table 3. Means, standard deviations, and median standard errors of the estimates of intersection
points for uniform distribution of the true points on two line segments

Method Means Standard deviations Standard errors
True value −0.08 0.31

n = 1000, σ = 0.1
Ignore-F̂ −0.0785 0.3122 0.0363 0.0274 0.0318 0.0301
Update −0.0794 0.3140 0.0216 0.0258 0.0205 0.0290
OR −0.0616 0.3127 0.0185 0.0167
ML −0.0934 0.3118 0.0116 0.0111
RBAN −0.0807 0.3126 0.0219 0.0293 0.0193 0.0292

n = 10000, σ = 0.1
Ignore-F̂ −0.0796 0.3107 0.0103 0.0103 0.0099 0.0095
Update −0.0796 0.3110 0.0067 0.0103 0.0065 0.0094
OR −0.0639 0.3087 0.0064 0.0049
ML −0.0904 0.3106 0.0042 0.0033
RBAN −0.0797 0.3107 0.0066 0.0104 0.0064 0.0095

n = 100000, σ = 0.1
Ignore-F̂ −0.0798 0.3098 0.0035 0.0030 0.0032 0.0030
Update −0.0798 0.3098 0.0021 0.0029 0.0020 0.0030
OR −0.0625 0.3085 0.0015 0.0014
ML −0.0891 0.3107 0.0012 0.0011
RBAN −0.0796 0.3097 0.0023 0.0030 0.0020 0.0030

n = 1000, σ = 0.02
Ignore-F̂ −0.0799 0.3100 0.0041 0.0032 0.0041 0.0035
Update −0.0798 0.3101 0.0033 0.0032 0.0032 0.0034
OR −0.0803 0.3103 0.0023 0.0021
ML −0.0805 0.3101 0.0022 0.0020
RBAN −0.0798 0.3100 0.0035 0.0033 0.0032 0.0034

Table 4. Mean-square distances between estimated and true intersection points
n σ Ignore-F̂ Update OR ML RBAN

Distribution of true points is a mixture of normals
1000 0.1 0.9403 0.0954 3.2978 0.0421 0.6124

10000 0.1 0.0722 0.0201 2.9127 0.0138 0.0199
100000 0.1 0.0230 0.0056 2.9645 0.0038 0.0056

1000 0.02 0.0168 0.0073 0.0067 0.0065 0.0084
Discrete distribution of true points
1000 0.1 0.0403 0.0281 0.0228 0.0320 0.0284

10000 0.1 0.0121 0.0091 0.0118 0.0228 0.0090
100000 0.1 0.0039 0.0029 0.0101 0.0226 0.0029

1000 0.02 0.0046 0.0038 0.0036 0.0032 0.0042
Uniform distribution of true points
1000 0.1 0.0453 0.0367 0.0310 0.0209 0.0365

10000 0.1 0.0145 0.0123 0.0181 0.0117 0.0123
100000 0.1 0.0046 0.0036 0.0177 0.0093 0.0037

1000 0.02 0.0052 0.0046 0.0031 0.0030 0.0048

The sample coverage probability and median (over 1000 ellipsoids) area of the
confidence ellipsoids is presented in Table 6. The ellipsoids were constructed for
confidence levels 0.8 and 0.95. The area of 95% confidence ellipsoids is displayed in
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Table 5. Comparison of two versions (equivariant (ev) and nonequivariant (ne)) of the updated
before ignore-F̂ step estimator

n σ Ver. Means Standard deviations Standard errors
True value: −0.08 0.31
Distribution of true points is a mixture of normals
1000 0.1 ev −0.082046 0.291175 0.070617 0.062003 0.043713 0.047939

ne −0.044038 0.247382 0.251372 0.514473 0.038853 0.050167
10000 0.1 ev −0.079623 0.308039 0.012652 0.015582 0.012403 0.015471

ne −0.085055 0.304177 0.015924 0.018695 0.012506 0.015550
100000 0.1 ev −0.080137 0.309780 0.003710 0.004173 0.003925 0.004749

ne −0.080991 0.309386 0.003880 0.004255 0.003926 0.004742
1000 0.02 ev −0.079548 0.309703 0.005156 0.005131 0.005174 0.004891

ne −0.079918 0.309508 0.005247 0.005149 0.005179 0.004918
Discrete distribution of true points
1000 0.1 ev −0.072202 0.311648 0.019709 0.018553 0.020266 0.017500

ne −0.071460 0.312230 0.020049 0.018740 0.020213 0.017457
10000 0.1 ev −0.078482 0.311377 0.007087 0.005371 0.006518 0.006066

ne −0.078418 0.311436 0.007090 0.005387 0.006520 0.006054
100000 0.1 ev −0.079868 0.309929 0.002460 0.001647 0.002060 0.001900

ne −0.079863 0.309934 0.002461 0.001647 0.002060 0.001901
1000 0.02 ev −0.079772 0.309728 0.002967 0.002376 0.003320 0.002344

ne −0.079755 0.309732 0.002963 0.002375 0.003319 0.002339
Uniform distribution of true points
1000 0.1 ev −0.079405 0.313977 0.021551 0.025759 0.020451 0.028992

ne −0.078507 0.315350 0.022219 0.026091 0.020512 0.029115
10000 0.1 ev −0.079604 0.311024 0.006673 0.010337 0.006467 0.009389

ne −0.079576 0.311176 0.006685 0.010349 0.006456 0.009372
100000 0.1 ev −0.079795 0.309802 0.002075 0.002919 0.001974 0.002994

ne −0.079794 0.309818 0.002076 0.002921 0.001972 0.002992
1000 0.02 ev −0.079833 0.310081 0.003252 0.003249 0.003172 0.003418

ne −0.079825 0.310097 0.003250 0.003249 0.003169 0.003411

Table 6. Coverage probability and area of confidence ellipsoids (c.e.) for centers by the ALS2
estimator

n σ Σ̂true-based estimator Σ̂sample-based estimator
Coverage probab. Area of Coverage probab. Area of

80%, 95%, 95% c.e., 80%, 95%, 95% c.e.,
% % ×10−4 % % ×10−4

Distribution of true points is a mixture of normals
1000 0.1 70.6 80.2 1449. 70.0 79.2 1562.

10000 0.1 79.4 93.8 236.2 79.6 92.9 259.4
100000 0.1 80.7 94.9 15.38 80.6 94.9 15.17

1000 0.02 80.4 95.1 15.95 78.0 94.1 19.86
Discrete distribution of true points

1000 0.1 78.1 93.9 81.80 77.4 93.4 78.94
10000 0.1 81.1 95.6 12.34 80.9 95.8 12.39

100000 0.1 80.1 94.6 1.205 79.9 94.7 1.204
1000 0.02 81.0 94.9 1.984 81.3 95.2 1.988

Uniform distribution of true points
1000 0.1 82.1 94.3 152.9 81.5 94.3 138.4

10000 0.1 81.0 96.6 20.36 80.3 96.3 18.92
100000 0.1 78.4 95.0 1.823 78.6 95.0 1.842

1000 0.02 78.7 94.7 2.926 78.5 94.1 3.041
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Table 6, and the area of 80% confidence ellipsoid is log20(5) = 0.5372 of the area of
95% confidence ellipsoids.

Note that standard errors for coverage probability are 1.3% for 80% confidence
ellipsoids and 0.7% for 95% confidence ellipsoids. The simulations do not allow us to
make an inference which estimator is better. Thus, Σ̂sample-based estimator updated
before ignore-F̂ step is compared with other estimators in simulations in Section 4.4
because of simpler explicit expression for Σ̂sample.

A Proofs

Proof of Proposition 1. The strong consistency of the estimator follows from [11,
Theorem 17]. Under the conditions of Proposition 1,

1

n
Ψ n

(
σ 2) → Ψ ∞ a.s. (39)

1

n
Ψ n → Ψ ∞ (a.s. in the structural model). (40)

By Lemma 5 in [11], lim sup 1
n
β�Ψ

′
nβ < 0, which, together with (40), implies

β�Ψ ′∞β < 0 (see the proof of Theorem 2 in [12]). Then

β̂
�
Ψ ′

n(σ̂
2)β̂

n ‖β̂‖2
= β̂

�
Ψ ′

n(σ
2)β̂

n ‖β̂‖2
+ (σ̂ 2 − σ 2)β̂

�
Ψ ′′

1β̂

‖β̂‖2
→ β�Ψ ′∞β

‖β‖2
a.s. (41)

Eventually, the left-hand side of (41) in negative.

Proof of Proposition 2. The strong consistency of β̃ follows from (7) and (41). The
proof of asymptotic normality and consistency of the estimator of the asymptotic
covariance matrix can be obtained by modification of the proofs of Theorem 2 in [12]
and Theorem 3 in [13].

Proof of Proposition 3. The conditions of consistency Theorem 1 in [12] can be ver-
ified, and the consistency follows.

The most tedious is the condition

lim inf
n→∞

1

n
λmin,2(Ψ n) > 0. (42)

Denote

Kj =

⎛⎜⎜⎜⎜⎝
0 0 1
0 hj kj

0 1 0
hj kj 0
1 0 0

⎞⎟⎟⎟⎟⎠ , j = 1, 2.

Then K1K
�
1 + K2K

�
2 is a positive semidefinite matrix, and

det
(
K1K

�
1 + K2K

�
2

) = 2(h1 − h2)
4 + 2(h1 − h2)

2(k1 − k2)
2 + 2(k1 − k2)

4 > 0.
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Thus, λmin(K1K
�
1 + K2K

�
2 ) > 0.

The matrix

K1

∑
i=1,...,n
ν(i)=1

⎛⎝ 1 ξi ξ2
i

ξi ξ2
i ξ3

i

ξ2
i ξ3

i ξ4
i

⎞⎠K�
1 + K2

∑
i=1,...,n
ν(i)=2

⎛⎝ 1 ξi ξ2
i

ξi ξ2
i ξ3

i

ξ2
i ξ3

i ξ4
i

⎞⎠K�
2

is the principal submatrix of Ψ n. By the Cauchy interlacing theorem,

λmin,2(Ψ n) ≥ λmin

⎛⎜⎜⎝ 2∑
j=1

Kj

∑
i=1,...,n
ν(i)=j

⎛⎝ 1 ξi ξ2
i

ξi ξ2
i ξ3

i

ξ2
i ξ3

i ξ4
i

⎞⎠K�
j

⎞⎟⎟⎠

≥ λmin
(
K1K

�
1 + K2K

�
2

)
min

j=1, 2

⎛⎜⎜⎝λmin

⎛⎜⎜⎝ ∑
i=1,...,n
ν(i)=j

⎛⎝ 1 ξi ξ2
i

ξi ξ2
i ξ3

i

ξ2
i ξ3

i ξ4
i

⎞⎠
⎞⎟⎟⎠
⎞⎟⎟⎠ ,

and then inequality (42) can easily be proved.

Proof of Proposition 4. Proposition 4 follows from Proposition 25 in [11]. The iden-
tifiability condition (S5-) in [11] holds because the intersection of a couple of lines
and a conic section may be a finite set with not more than four points, a straight line,
a straight line and a point outside the line, or the couple of lines and the conic section
coincide; in the last case, the coefficients of the equations for the lines and the conic
section satisfy relations (12).

Proofs of Propositions 5, 6, 7, and 8. Consistence of the “ignore-F̂ ” estimator fol-
lows from the consistency of the ALS2 estimator β̂ and from the continuity of the
function lob(β) at the point of the true value of the parameter β. The asymptotic
normality of the “ignore-F̂ ” follows from the asymptotic normality of β̃ and the dif-
ferentiability of lob(β) at the point β tn.

Proof of Proposition 9. The consistency and asymptotic normality of the β̃ estima-
tor, the differentiability of the functional �(β) at point β tn (note that �(β tn) = 0),
and the convergence

1

�′(β̃)Σ̂β̃�′(β̃)�
Σ̂β̃�′(β̃)� → 1

�′(β tn)Σβ̃�′(β tn)
� Σβ̃�′(β tn)

�

imply the convergence and asymptotic normality of the updated estimator β̃1st. Thus,
the consistency and asymptotic normality of (k̂1,1st, ĥ1,1st, k̂2,1st, ĥ2,1st)

� can be
proved similarly to those of the “ignore-F̂ ” estimator.
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