Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 2, Issue 4 (2015)
  4. On packing dimension preservation by dis ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • More
    Article info Full article

On packing dimension preservation by distribution functions of random variables with independent Q˜-digits
Volume 2, Issue 4 (2015), pp. 371–389
Oleksandr Slutskyi  

Authors

 
Placeholder
https://doi.org/10.15559/15-VMSTA44
Pub. online: 23 December 2015      Type: Research Article      Open accessOpen Access

Received
16 October 2015
Revised
13 December 2015
Accepted
13 December 2015
Published
23 December 2015

Abstract

The article is devoted to finding conditions for the packing dimension preservation by distribution functions of random variables with independent $\tilde{Q}$-digits.
The notion of “faithfulness of fine packing systems for packing dimension calculation” is introduced, and connections between this notion and packing dimension preservation are found.

References

[1] 
Albeverio, S., Torbin, G.: Fractal properties of singularly continuous probability distributions with independent ${q}^{\ast }$-digits. Bull. Sci. Math. 129(4), 356–367 (2005). MR2134126. doi:10.1016/j.bulsci.2004.12.001
[2] 
Albeverio, S., Pratsiovytyi, M., Torbin, G.: Fractal probability distributions and transformations preserving the Hausdorff–Besicovitch dimension. Ergod. Theory Dyn. Syst. 24(1), 1–16 (2004). MR2041258. doi:10.1017/S0143385703000397
[3] 
Albeverio, S., Pratsiovytyi, M., Torbin, G.: Transformations preserving the Hausdorff–Besicovitch dimension. Cent. Eur. J. Math. 6(1), 119–128 (2008). MR2379954. doi:10.2478/s11533-008-0007-y
[4] 
Albeverio, S., Koshmanenko, V., Pratsiovytyi, M., Torbin, G.: On fine structure of singularly continuous probability measures and random variables with independent $\tilde{Q}$-symbols. Methods Funct. Anal. Topol. 2(1), 97–111 (2011). MR2849470
[5] 
Albeverio, S., Ivanenko, G., Lebid, M., Torbin, G.: On the Hausdorff dimension faithfulness and the Cantor series expansion. arXiv:1305.6036
[6] 
Billingsley, P.: Hausdorff dimension in probability theory. II. Ill. J. Math. 5(1), 291–298 (1961). MR0120339
[7] 
Das, M.: Billingsley’s packing dimension. Proc. Am. Math. Soc. 136(1), 273–278 (2008). MR2350413. doi:10.1090/S0002-9939-07-09069-7
[8] 
Falconer, K.: Fractal Geometry: Mathematical Foundations and Applications. Wiley, Chichester (2003). MR2118797. doi:10.1002/0470013850
[9] 
Li, J.: A class of probability distribution functions preserving the packing dimension. Stat. Probab. Lett. 81(1), 1782–1791 (2011). MR2845889. doi:10.1016/j.spl.2011.07.010
[10] 
Mattila, P.: Geometry of Sets and Measures in Euclidean Spaces. Cambridge University Press, Cambridge (1995). MR1333890. doi:10.1017/CBO9780511623813
[11] 
Nikiforov, R., Torbin, G.: Fractal properties of random variables with independent $Q_{\infty }$-digits. Probab. Theory Math. Stat. 86, 150–162 (2012). MR2986457. doi:10.1090/S0094-9000-2013-00896-5
[12] 
Slutskyi, O., Torbin, G.: Analog of the Billingsley theorem for the packing dimension. Trans. Natl. Pedagog. Univ. Ukr., Math. 1, 192–199 (2012).
[13] 
Torbin, G.: Probabilistic approach to transformations saving fractal dimension. Math. Bull. Shevchenko Sci. Soc. 4(1), 275–283 (2007) (in Ukrainian)
[14] 
Torbin, G.: Probability distributions with independent q-symbols and transformations preserving the Hausdorff dimension. Theory Stoch. Process. 13(1), 281–293 (2007). MR2343830
[15] 
Tricot, C.: Two definitions of fractional dimension. Math. Proc. Camb. Philos. Soc. 91(1), 57–74 (1982). MR0633256. doi:10.1017/S0305004100059119
[16] 
Turbin, A., Pratsiovytyi, N.: Fractal Sets, Functions, and Distributions, Naukova Dumka, Kyiv (1992) (in Russian). MR1353239

Full article PDF XML
Full article PDF XML

Copyright
© 2015 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Packing dimension of a set Hausdorff–Besicovitch dimension of a set faithfulness of fine packing system for packing dimension calculation Q̃-expansion of real numbers packing-dimension-preserving transformations

MSC2010
28A78 28A80

Metrics
since March 2018
385

Article info
views

523

Full article
views

441

PDF
downloads

158

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy