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Abstract The article is devoted to finding conditions for the packing dimension preservation
by distribution functions of random variables with independent Q̃-digits.
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1 Introduction

Let (M, ρ) be a metric space. Suppose that the Hausdorff–Besicovitch dimension
dimH [8] is well defined in (M, ρ). A transformation f : M → M is called dimen-
sion-preserving transformation [13] or DP-transformation if

dimH

(
f (E)

) = dimH (E), ∀E ⊂ M.

Let G(M, dimH ) be the set of all DP-transformations defined on (M, ρ). It is
easy to see that G forms a group w.r.t. the composition of transformations. It is well
known that any bi-Lipschitz transformation belongs to this group [8]. However, G is
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essentially wider than the group of all bi-Lipschitz transformations. In 2004, some
sufficient conditions for belonging of distribution functions of random variable with
independent s-adic digits to group G was proved by G. Torbin et al. [2]. There exist
a lot of DP-functions that are not bi-Lipschitz.

Sufficient conditions for distribution functions of random variables with indepen-
dent s-adic digits to be DP have been found by G. Torbin [13] in 2007. These condi-
tions were generalized for Q by G. Torbin [14] and later for Q∗- and Q̃-expansions
by S. Albeverio, V. Koshmanenko, M. Pratsiovytyi, and G. Torbin [3, 4].

Recently, G. Torbin and M. Ibragim proved rather general sufficient conditions
for distribution functions of random variables with independent Q̃-digits to be in DP-
class. The notion of fine covering system faithfulness for dimH calculation [5] plays
an important role in the proof of these conditions. This notion gives us the possibility
to consider coverings by sets from some family Φ and to be sure that a “dimension”
calculated in such a way is equal to dimH . Faithfulness of the family of all s-adic
cylinders (if s is fixed) have been proven by Billingsley [6] in 1961. Faithfulness
of the family of Q-cylinders have been proven by M. Pratsiovytyi and A. Turbin
[16] in 1992, and faithfulness of the family of Q∗-cylinders (under the condition
of separation from zero of the corresponding coefficients) have been proven by S.
Albeverio and G. Torbin [1] in 2005. It is necessary to remark that the last result can
be easily generalized to Q̃-expansion under a similar condition.

In 1982, C. Tricot [15] introduced the notion of packing dimension dimP . This di-
mension is in some sense dual to the Hausdorff–Besicovitch dimension: the definition
of dimH of a set F is based on ε-coverings of this figure, but the definition of dimP

is based on ε-packings (the countable sets of disjoint open balls Bk(rk, ck), k ∈ N,
with radii rk � ε and centers ck ∈ F ). The packing dimension has all “good” prop-
erties of a fractal dimension, such as the countable stability. Therefore, proving or
disproving similar results for dimP is important. For example, we consider the group
of packing-dimension-preserving transformations (or PDP-transformations).

Definition 1.1. The transformation f is said to be a PDP-transformation if

∀E ⊂ M, dimP

(
f (E)

) = dimP (E).

There are a lot of problems with proving of many conjectures for dimP because
work with packings is essentially more complicated than work with coverings [10].

These problems are solving bit by bit. For example, M. Das [7] has proven the
Billingsley theorem for packing dimension; J. Li [9] obtained some sufficient condi-
tions for distribution functions of random variables with independent Q̃-digits to be
in PDP-class. Namely, J. Li has proven the following theorem.

Theorem 1.1. Let Fξ be the distribution function of a random variable ξ with inde-
pendent Q̃-representation. If infi,j qij = q∗ > 0 and infi,j pij = p∗ > 0, then Fξ

preserves the packing dimension if and only if

lim sup
k→∞

h1 + h2 + · · · + hk

b1 + b2 + · · · + bk

= 1,

where hj = − ∑nj

i=1 pij ln pij and bj = − ∑nj

i=1 pij ln qij .
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In Remark 4.2 at the and of article [9], we read: “The conditions infi,j qij =
q∗ > 0 and infi,j pij = p∗ > 0 play an important role in the proof of the theorem.
Open question: What can we say about the topic if we remove these conditions?”

S. Albeverio, M. Pratsiovytyi, and G. Torbin [3] removed the condition infi,j pij =
p∗ > 0 in a similar situation for DP-transformations.

In case of packing dimension, the approach of [3] is complicated because it re-
quires appropriate results about the fine packing system faithfulness for packing di-
mension calculation. Even the definition of the fine packing system faithfulness is a
problem because centers of all balls in packings should be in the set the dimension of
which is calculated.

The aim of this paper is to propose some alternative definition of the packing di-
mension, uncentered packing dimension or dimP(unc). In the proposed definition, the
condition “the centers of balls should be in the figure the dimension of which is cal-
culated” in the definition of dimP is replaced by “every ball should have a nonempty
intersection with the figure.” We prove that, in some wide class of metric spaces (in-
cluding R

n), the value of packing dimension with uncentered balls is matching to
the value of classical packing dimension. Introduction of the fine packing system
faithfulness notion is very simple in the case of proposed definition. It allows us to
prove faithfulness (under the condition of separation from zero of the coefficients) of
a Q̃-cylinder system and sufficient conditions for the distribution function of a ran-
dom variable with independent Q̃-digits to be in the PDP-class. The corresponding
theorem is the main result of the paper.

Theorem 1.2. Let infi,j qij := qmin. Suppose that qmin > 0. Let

T :=
{
k : k ∈ N, pk <

qmin

2

}
;

Tk := T ∩ {1, 2, . . . , k};

B := lim sup
k→∞

∑
j∈Tk

ln 1
pj

k
.

Let Fξ be the distribution function of a random variable ξ with independent Q̃-
representation. Then Fξ preserves the packing dimension if and only if

{
dimP μξ = 1;
B = 0.

2 Packing dimension

Let us recall the definition of packing dimension in the form given, for example, in
[8].

Definition 2.1. Let E ⊂ M and ε > 0. A finite or countable family {Ej } of open
balls is called an ε-packing of a set E if
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1. |Ei | � ε for all i;

2. ci ∈ E, i ∈ N, where ci is the center of the ball Ei ;

3. Ei ∩ Ej = ∅ for all i, j , i 	= j .

Remark 2.1. The empty set of balls is a packing of any set.

Definition 2.2. Let E ⊂ M , α � 0, ε > 0. Then the α-dimensional packing premea-
sure of a bounded set E is defined by

Pα
ε (E) := sup

{∑
i

|Ei |α
}
,

where the supremum is taken over all at most countable ε-packings {Ej } of E (if
Ej = ∅ for all j , then Pα

ε (E) = 0).

Definition 2.3. The α-dimensional packing quasi-measure of a set E is defined by

Pα
0 (E) := lim

ε→0
Pα

ε (E).

Definition 2.4. The α-dimensional packing measure is defined by

Pα(E) := inf

{∑
j

Pα
0 (Ej ) : E ⊂

⋃
Ej

}
,

where the infimum is taken over all at most countable coverings {Ej } of E, Ej ⊂ M.

Definition 2.5. The nonnegative number

dimP (E) := inf
{
α : Pα(E) = 0

}
is called the uncentered packing dimension of a set E ⊂ M .

3 Uncentered packing dimension

Definition 3.1. Let E ⊂ M and ε > 0. A finite or countable family {Ej } of open
balls is called an uncentered ε-packing of a set E if

1. |Ei | � ε for all i;

2. Ei ∩ E 	= ∅;

3. Ei ∩ Ej = ∅ for all i, j , i 	= j .

Remark 3.1. The empty set of balls is an uncentered packing of any set.

Definition 3.2. Let E ⊂ M , α � 0, ε > 0. Then the uncentered α-dimensional
packing premeasure of a bounded set E is defined by

Pα
ε(unc)(E) := sup

{∑
i

|Ei |α
}
,

where the supremum is taken over all at most countable uncentered ε-packings {Ei}
of E.
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Definition 3.3. The uncentered α-dimensional packing quasi-measure of a set E is
defined by

Pα
0(unc)(E) := lim

ε→0
Pα

ε(unc)(E).

Definition 3.4. Uncentered α-dimensional packing measure is defined by

Pα
(unc)(E) := inf

{∑
j

Pα
0(unc)(Ej ) : E ⊂

⋃
Ej

}
,

where the infimum is taken over all at most countable coverings {Ej } of E, Ej ⊂ M.

Remark 3.2. If (M, ρ) = R
1 and α = 1, then the α-dimensional packing measure

and uncentered α-dimensional packing measure are the Lebesgue measure.

Definition 3.5. The nonnegative number

dimP(unc)(E) := inf
{
α : Pα

(unc)(E) = 0
}
.

is called the uncentered packing dimension of a set E ⊂ M .

Theorem 3.1. Let (M, ρ) be a metric space. Let C ∈ N. If for all r > 0 and for any
open ball I with |I | = 8r , there exist at most N(I) balls Ii, i ∈ {1, . . . , N(I)} such
that Ii ⊂ I, i ∈ {1, . . . , N(I), |Ii | = r, i ∈ {1, . . . , N(I)}, and N(I) ≤ C. Then

dimP(unc)(E) = dimP (E).

Proof. Step 1. Let us prove the inequality dimP(unc)(E) � dimP (E).
By the definitions and supremum property we have

Pα
r(unc)(E) � Pα

r (E).

By the limit property of inequalities we have

Pα
0(unc)(E) � Pα

0 (E).

Hence,
Pα

(unc)(E) � Pα(E).

Let dimP(unc)(E) = α0. By the definition of dimP(unc)(E) we have

∀ε > 0, Pα0+ε
(unc) (E) = 0.

Therefore,
∀ε > 0, Pα0+ε

0 (E) = 0,

and, consequently,
dimP (E) � α0.

Hence, it follows that dimP(unc)(E) � dimP (E), which is our claim.
Step 2. Let us show that dimP(unc)(E) � dimP (E).
If dimP(unc)(E) = 0, then the statement is true.
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Let us consider the case dimP(unc)(E) 	= 0. Fix 0 < t < s < dimP(unc)(E).
Since s < dimP(unc)(E), we have

Ps
(unc)(E) = +∞,

Ps
0(unc)(E) = +∞.

Therefore,
∀r > 0, Ps

r(unc)(E) = +∞.

From this and from the supremum property, it follows that there is an uncentered
packing V := {Ei} of the set E with∑

i

|Ei |s > 1. (1)

Let us divide the packing V into classes

Vk := {
Ei : 2−k−1 � |Ei | < 2−k

}
.

Let nk be the number of balls Vk . We will show that

∃k0 : nk0 � 2k0t
(
1 − 2t−s

)
.

To obtain a contradiction, suppose that

nk < 2kt
(
1 − 2t−s

)
for all k.

Then∑
i

|Ei |s <
∑

k

2−ks · nk <
∑

k

2−ks · 2kt
(
1 − 2t−s

) = (
1 − 2t−s

) ·
∑

k

(
2t−s

)k = 1,

which contradicts our assumption (1).
Therefore, such k0 exists. Let us consider Vk0 . We denote by A1, A2, . . . , Ank0

the balls in Vk0 , that is,
Vk0 = {A1, A2, . . . , Ank0

}.
Fix r := 2−k0−1. Then the radius of any Ai is less than r . Let Ti be a point of Ai

such that Ti ∈ Ai ∩ E. Let V ′ be the set of balls with the centers Ti and radius r , that
is,

V ′ = {
A′

i : A′
i = B(Ti, r)

}
.

Fix
V ∗ = {

A∗
i : A∗

i = B(Ti, 4r)
}
.

Let us divide the set V ′ into classes K1,K2, . . . , Kl as follows.

1. Let us take a ball A′
j1

= A′
1 and put it in K1 together with all other balls A′

i ∈
V ′ such that A′

i ∩ A′
j1

	= ∅.

2. Let us take an arbitrary ball A′
j2

∈ V ′ \ K1 and put it in K2 together with all
other balls A′

i ∈ V ′ \ K1 such that A′
i ∩ A′

j2
	= ∅.
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3. Let us continue this way until V ′ \ (K1 ∪K2 ∪· · ·∪Kl) 	= ∅. Since the number
of elements in a set V ′ is a finite, we can find such a number l.

Now suppose that the balls A′
i and A′

j intersect each other. In other words,
ρ(Ti, Tj ) � 2r . Therefore, Aj ⊂ A∗

i .
The radius of Aj is greater than r/2. By the theorem condition, there are no more

than C disjoint balls with radius r/2 in a ball with radius 4r

Therefore, there are no more than C balls in any class Ki .
Moreover, in the case i < m, the balls A′

ji
and A′

jm
do not intersect each other.

Indeed, suppose otherwise. Then A′
jm

is in a class Ki or in a class with number less
than i.

Hence,
V ′′ = {

A′
j1

, A′
j2

, . . . , A′
jl

}
is a centered packing of a set E, and the t-volume of this packing is less than the
t-volume of the uncentered packing Vk0 no more than C times. Therefore,

∑
V ′′

∣∣A′
ji

∣∣t � nk0 · 2−k0t

C
� 2k0t

(
1 − 2t−s

) · 2−k0t

C
= 1 − 2t−s

C
.

From this it follows that

P t

2−k0
(E) � 1 − 2t−s

C
.

By the inequality 2−k0 < r we get

P t
r (E) � 1 − 2t−s

C
for all r > 0.

Consequently, as r → 0, we get the inequality

P t
0(E) � 1 − 2t−s

C
.

Let us show that P t (E) � 1−2t−s

C
. Recall the definition

P t (E) = inf

{∑
j

P t
0(Ej ) : E ⊂

⋃
Ej

}
,

where the infimum is taken over all at most countable coverings Ej of a set E.
Let {Ej } be an at most countable covering of E. Since dimP(unc)(E) > s, there is

j0 such that dimP(unc)(Ej0) > s (by the countable stability of the packing dimension
dimP(unc)). In other words, we have

Ps
(unc)(Ej0) = +∞,

Ps
0(unc)(Ej0) = +∞.

We conclude by the part of the theorem already proved for E that

P t
0(Ej0) �

1 − 2t−s

C
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and ∑
j

P t
0(Ej ) �

1 − 2t−s

C
.

But the previous inequality is true for an arbitrary covering {Ej } of a set E and for
the infimum for all coverings. Therefore,

P t (E) � 1 − 2t−s

C

and
dimP (E) � t.

Since t-dimP(unc)(E) can be approximated by 0, we get dimP (E) � dimP(unc)(E),
which completes the proof.

Corollary 3.1. If M = R
n, then dimP(unc)(E) = dimP (E).

Proof. Let B8r be a ball with radius 8r , Br be a ball with radius r , and λ be the
n-dimensional Lebesgue measure. Then

λ(B8r ) = 8n · λ(Br).

Therefore, we can put no more than C = 8n disjoint balls with radii r in a ball
with radius 8r , which completes the proof.

3.1 Packing dimension with respect to the family of sets

Let Φ be a family of balls in a metric space (M, ρ).

Definition 3.6. Let E ⊂ M , α � 0, ε > 0. Then the α-dimensional packing premea-
sure of a bounded set E with respect to Φ is defined by

Pα
ε (E,Φ) := sup

{∑
i

|Ei |α
}
,

where the supremum is taken over all uncentered ε-packings {Ei} ⊂ Φ of E (if
{Ei} = ∅, then Pα

ε (E,Φ) = 0).

Definition 3.7. The α-dimensional packing quasi-measure of a set E w.r.t. Φ is de-
fined by

Pα
0 (E,Φ) := lim

ε→0
Pα

ε (E,Φ).

Definition 3.8. The α-dimensional packing measure w.r.t. Φ is defined by

Pα(E,Φ) := inf

{∑
j

Pα
0 (Ej ,Φ) : E ⊂

⋃
Ej

}
,

where the infimum is taken over all at most countable coverings {Ej } of E, Ej ⊂ M.
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Definition 3.9. The nonnegative number

dimP (E,Φ) := inf
{
α : Pα(E,Φ) = 0

}
is called the packing dimension of a set E ⊂ M w.r.t. Φ.

Remark 3.3. In the definition of dimP (E,Φ), we used uncentered packing. But we
will denote this dimension without index (unc) because:

1. We will work in R
n. In this space, centered and uncentered packing dimensions

are equal;

2. The centered packing dimension w.r.t. some family of balls is not defined.

Theorem 3.2.
dimP (E,Φ) � dimP(unc)(E).

Proof. Let Φ0 be the family of all open balls of M . Then

Pα
r(unc)(E) = Pα

r (E,Φ0).

Since Φ ⊆ Φ0, by the supremum property we have

Pα
r (E,Φ) � Pα

r (E,Φ0).

By the inequality for packing premeasures it follows that

dimP (E,Φ) � dimP(unc)(E),

which proves the theorem.

4 Faithfulness of the open balls families for packing dimension calculation

Definition 4.1. Suppose that some open balls family Φ satisfies the following condi-
tion: for all E ⊂ M , dimP(unc)(E,Φ) = dimP(unc)(E). Then Φ is said to be faithful
for uncentered packing dimension calculation.

Remark 4.1. The notion of faithfulness is introduced for the Hausdorff–Besicovitch
dimension dimH [11]. It is clear that

∀Φ ⊂ 2M, dimH (E,Φ) � dimH (E).

Theorem 4.1 (The sufficient condition for the open-ball family to be faithful for
packing dimension calculation). Suppose that

1. Φ is a family of intervals from [0; 1];
2. ∃C > 0 : ∀(a; b) ⊂ [0; 1], ∃Δ(a; b) ∈ Φ such that:

(a) a+b
2 ∈ Δ(a, b);

(b) Δ(a, b) ⊂ (a; b);

(c) b−a
|Δ(a,b)| � C.

Then Φ is a faithful open-ball family for packing dimension calculation.
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Proof. Let E be any set, α � 0, and r > 0. Let {Ei} = {(ai; bi)} be a family of
disjoint intervals such that ai+bi

2 ∈ E and bi − ai < r .
Then the following inequality holds:∑

i

|Ei |α �
∑

i

∣∣Δ(ai, bi)
∣∣α · Cα.

Taking the supremum (over all sets of intervals {Ei} satisfying the previous con-
ditions), we have

Pα
r (E) � sup

{Ei }
∣∣Δ(ai, bi)

∣∣α · Cα.

Any set of intervals {Δ(ai, bi)} satisfies the conditions from the Pα
r(unc)(E,Φ)

definition. So,
sup
{Ei }

∣∣Δ(ai, bi)
∣∣α · Cα � Pα

r(unc)(E,Φ) · Cα.

Therefore,
Pα

r (E) � Pα
r(unc)(E,Φ) · Cα.

Taking the limit of both sides, we have

Pα
0 (E) � Pα

0(unc)(E,Φ) · Cα.

Taking the infimum over all possible coverings of the set E, we have

Pα(E) � Pα
(unc)(E,Φ) · Cα

and
dimP (E) � dimP(unc)(E,Φ).

Since [0; 1] ⊂ R
1, it follows that

dimP (E) = dimP(unc)(E)

and
dimP(unc)(E) � dimP(unc)(E,Φ).

Using
dimP(unc)(E) � dimP(unc)(E,Φ) for all Φ,

we obtain that Φ is a faithful open-ball family for the packing dimension calculation.

5 Sufficient conditions for Q̃-expansion cylindric interval family to be faithful

The Q̃-expansion of real numbers is a generalization of s-expansion and Q-expansion
and was described, for example, in [4].

Theorem 5.1. Let Φ be the system of cylindric intervals of some Q̃-expansion. Sup-
pose that

inf
i,j

qij = qmin > 0.

Then Φ is a faithful ball family for packing dimension calculation.
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Proof. Let Q̃0 be the set of Q̃-rational points, and E′ be any subset of [0; 1]. Let
E = E′ \ Q̃0. Since Q̃0 is countable, it follows that

dimP(unc)(Q̃0) = 0, dimP(unc)(Q̃0, Φ) = 0,

and

dimP(unc)
(
E′) = dimP(unc)(E), dimP(unc)

(
E′, Φ

) = dimP(unc)(E,Φ).

The proof is completed by showing that

dimP(unc)(E) = dimP(unc)(E,Φ)

for every set E ⊂ [0; 1] if E does not contain Q̃-rational points.
Let (a; b) ⊂ [0; 1]. Let Δ(a, b) be the Q̃-cylindric interval of the minimal rank

such that
a + b

2
∈ Δ(a; b) ⊂ (a; b).

Denote the rank of Δ(a, b) by k. Since this rank is minimal, it follows that (a; b)

is a subset of one or two cylinders with rank k − 1. Let us denote the cylinder with
rank k − 1 that contains Δ(a, b) by Δ′. If the second cylinder exists, then we denote
it by Δ′′.

Let us consider the following two cases.

Case 1. The Δ′′ does not exist. Then∣∣Δ(a, b)
∣∣ � b − a �

∣∣Δ′∣∣,
and, therefore, ∣∣Δ(a, b)

∣∣ � (b − a) · qmin.

Case 2. The Δ′′ exists. Then∣∣Δ′∣∣ · 2 � b − a ⇒ ∣∣Δ(a, b)
∣∣ � (b − a) · qmin

2
.

Summary of the two cases. For every interval (a; b), there exists a Q̃-cylindric
interval Δ(a, b) such that a+b

2 ∈ Δ(a; b) and

∣∣Δ(a, b)
∣∣ � (b − a) · qmin

2
.

It follows that the family Φ satisfies the conditions of Theorem 4.1 and is faithful for
packing dimension calculation.

Corollary 5.1. Let Φ be a family of Q∗-cylinders under the condition infi,j qij > 0.
Then Φ is faithful for packing dimension calculation.

Corollary 5.2. Let Φ be a family of Q-cylinders. Then Φ is faithful for packing
dimension calculation.

Corollary 5.3. Let Φ be a family of s-adic cylinders. Then Φ is faithful for packing
dimension calculation.
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6 Proof of the main result

To prove the main result, we need the following two lemmas.

Lemma 6.1. Let Q̃ be the matrix ‖qik‖, i ∈ N, k ∈ {0, 1, . . . , Nk − 1}. If

lim
i→∞

ln qikk

ln(qi11qi22 . . . qik−1(k−1))
= 0

for every sequence (ik), then the open-ball family Φ of the respective expansion cylin-
der interiors is faithful for packing dimension calculation.

Proof. Let us fix a set E ⊂ [0; 1]. Let us fix any numbers m ∈ N, δ > 0 and consider
the following sets:

Wm,δ =
{
x ∈ E : ln qikk(x)

ln(qi11(x)qi22(x) . . . qik−1(k−1)(x))
< δ, ∀k � m

}
.

Fix some value m and consider any set Wm,δ corresponding to this value. There
exists ε > 0 such that |cm| � ε for any cylinder cm of rank m. Consider the centered
ε-packing of the set Wm,δ by intervals Ej .

For every interval Ej , there exists a cylindric interval Δ(Ej ) such that:

1. Δ(Ej ) ⊂ Ej ;

2. Δ(Ej ) contains the middle point xj of the Ej ;

3. Δ(Ej ) has the minimal possible rank. We denote this rank by ij .

We will say that the cylinder Δ′(Ej ) is the “father” of Δ(Ej ) if Δ′(Ej ) ⊃ Δ(Ej )

and the rank of Δ′(Ej ) is equal to ij −1. It is obvious that |Δ′(Ej )| � |Ej |
2 . Therefore,

|Ej | � 2|Δ(Ej )|
qikj kj

(xj )
, where xj ∈ Wm,δ.

Let us estimate the α-volume of packing of the set E by intervals Ej :

∑
k

|Ej |α �
∑

k

∣∣Δ(Ej )
∣∣α ·

(
2

qikj kj
(xj )

)α

.

This inequality is equivalent to

∑
k

|Ej |α �
∑

k

∣∣Δ(Ej )
∣∣α−δ · ∣∣Δ(Ej )

∣∣δ ·
(

2

qikj kj
(xj )

)α

.

Let us estimate the expression

ln

(∣∣Δ(Ej )
∣∣δ ·

(
2

qikj kj
(xj )

)α)

= δ ln
(
qi11(x)qi22(x) . . . qikj −1(kj −1)(x)

) + α ln 2 − α ln qikj kj
(xj ).
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Since xj ∈ Wm,δ , it follows that

δ ln
(
qi11(x)qi22(x) . . . qikj −1(kj −1)

)
� ln qikj kj

(xj ).

Therefore,

ln

(∣∣Δ(Ej )
∣∣δ ·

(
2

qikj kj
(xj )

)α)
� α ln 2 + (1 − α) ln qikj kj

(xj ) � α ln 2.

Thus, we have ∑
j

|Ej |α � 2
∑
j

∣∣Δ(Ej )
∣∣α−δ

.

Take the suprema over all possible centered packings {Ej } of both parts of the previ-
ous inequality:

Pα
ε (Wm,δ) � 2Pα−δ

ε(unc)(Wm,δ,Φ).

Take the limit as ε → 0:

Pα
0 (Wm,δ) � 2Pα−δ

0(unc)(Wm,δ,Φ).

We obtain that
Pα(Wm,δ) � 2Pα−δ

(unc)(Wm,δ,Φ).

Denote α0 = dimP (Wm,δ). Then for all α < α0, the left part is equal to infinity. Thus,
for all α < α0, the right part is equal to infinity too. It follows that

dimP(unc)(Wm,δ,Φ) � α − δ

and
dimP(unc)(Wm,δ,Φ) � dimP (Wm,δ) − δ.

Using the definition of Wm,δ , we get

E =
∞⋃

m=1

Wm,δ.

Now, by packing dimension countable stability,

dimP(unc)(E,Φ) � dimP (E) − δ.

Since δ can be arbitrarily small,

dimP(unc)(E,Φ) � dimP (E).

To complete the proof, it remains to note that E is any subset of [0; 1]. Thus, Φ is
faithful.

Lemma 6.2. Let Φ be a family of Q̃-expansion cylinders under the condition
inf qij > 0. Let Fξ be a distribution function of a random variable ξ with independent
Q̃-digits. Assume that the following condition holds:
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lim
n→∞

ln λ(F (Δn(x)))

ln λ(Δn(x))
= 1, ∀x ∈ [0; 1], (2)

where Δn(x) is the n-rank cylinder that contains x.
Then Φ ′ = F(Φ) is faithful for packing dimension calculation.

Proof. Φ ′ is the family of cylinders for some Q̃-expansion. Denote this expansion
by Q̃′ and the corresponding numbers qij by q ′

ij .
It is not clear that condition inf q ′

ij > 0 holds, so we cannot Theorem 5.1.
Let us show that the conditions of Lemma 6.1 hold for this expansion. We have

F
(
ΔQ̃

a1a2...an
(x)

) = ΔQ̃′
a1a2...an

(x)

and
ln λ

(
F

(
Δn(x)

)) = ln
(
q ′

1a1
q ′

2a2
. . . q ′

nan

)
.

Denote

M = lim sup
i→∞

ln q ′
iji

ln(q ′
1j1

q ′
2j2

. . . q ′
(i−1)ji−1

)
.

To estimate M , we need the following equation:

lim
n→0

ln λ(F (Δn(x)))

ln λ(Δn(x))
= lim

n→0

ln(q ′
1j1

q ′
2j2

. . . q ′
(i−1)ji−1

) + ln q ′
iji

ln(q1j1q2j2 . . . q(i−1)ji−1) + ln qiji

.

Dividing the nominator and denominator of the last fraction by
ln(q1j1q2j2 . . . q(i−1)ji−1), we obtain

lim
n→0

1 + ln q ′
iji

ln(q ′
1j1

q ′
2j2

...q ′
(i−1)ji−1

)

ln(q1j1q2j2 ...q(i−1)ji−1 )

ln(q ′
1j1

q ′
2j2

...q ′
(i−1)ji−1

)
+ ln qiji

ln(q ′
1j1

q ′
2j2

...q ′
(i−1)ji−1

)

= 1 + M

1 + 0
= 1 ⇒ M = 0.

It follows that Q̃′ satisfies the conditions of Lemma 6.1, and therefore Φ ′ is faithful.

Proof of the main result. Let us show that if Fξ is PDP, then dimP (μξ ) = 1.
Assume the converse. Then there exists a set Eα such that μξ(Eα) = 1 and

dimP (Eα) = α. Consider Fξ (Eα). Since μξ(Eα) = 1, we have λ(Eα) = 1, and thus
dimP (Fξ (Eα)) = 1.

We obtain the following inequality:

dimP

(
Fξ (Eα)

) = 1 	= α = dimP (Eα),

and this contradicts the assumption that Fξ is PDP. Therefore, we will show that if
Fξ is PDP, then dimP (μξ ) = 1.

The next part of the proof consists of two steps:

1. If dimP (μξ ) = 1 and B = 0, then Fξ is PDP;

2. If dimP (μξ ) = 1 and B 	= 0, then Fξ is not PDP.
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Let ε be some positive number such that ε < 1
2qmin. Consider the following sets:

T +
ε,k = {

j : j ∈ N, j � k, |pij − qij | � ε, i ∈ {0, 1, . . . , s − 1}},
T −

ε,k = {1, 2, . . . , k} \ T +
ε,k,

T =
{
k : k ∈ N, pk <

1

2
qmin

}
,

Tk = T ∩ {1, 2, . . . , k},
Tε,k = T −

ε,k \ Tk.

Step 1. Let us show that if dimP (μξ ) = 1 and B = 0, then Fξ is PDP. Since
B = 0, we see that

lim
k→∞

∑
j∈Tk

ln pj

k ln qmin
= 0.

Consider the fraction
ln μξ(Δa1a2...ak(x))

ln λ(Δa1a2...ak(x))

=
∑

j∈T +
ε,k

ln paj (x)j + ∑
j∈Tε,k

ln paj (x)j + ∑
j∈Tk

ln paj (x)j∑
j ln qaj (x)j

.

Split this fraction into three terms. Consider the first term∑
j∈T +

ε,k
ln paj (x)j∑

j ln qaj (x)j

.

It is easy to prove that∑
j∈T +

ε,k

ln paj (x)j �
∑

j∈T +
ε,k

ln(qaj (x)j − ε)

=
∑

j∈T +
ε,k

(
ln qaj (x)j + ln

(
qaj (x)j − ε

qaj (x)j

))

�
∑

j∈T +
ε,k

(ln qaj (x)j ) + |T +
ε,k| · 2ε

qmin
,

where |T +
ε,k| is the number of elements in T +

ε,k . On the other hand,

∑
j∈T +

ε,k

ln paj (x)j �
∑

j∈T +
ε,k

(ln qaj (x)j ) − |T +
ε,k| · 2ε

qmin
.

Also,

1 + |T +
ε,k| · 2ε

qmin · ∑k
j=0 ln qaj (x)j

� lim
k→∞

∑
j∈T +

ε,k
ln paj (x)j∑k

j=0 ln qaj (x)j

� 1 − |T +
ε,k| · 2ε

qmin · ∑k
j=0 ln qaj (x)j

(note that
|T +

ε,k |·2ε

qmin·∑k
j=0 ln qaj (x)j

< 0).
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Since qmin � qij � qmax and |T +
ε,k| � k, we have

1 + k · 2ε

qmin · k ln qmax
� lim

k→∞

∑
j∈T +

ε,k
ln paj (x)j∑k

j=0 ln qaj (x)j

� 1 − k · 2ε

qmin · k ln qmax

and

1 + 2ε

qmin · ln qmax
� lim

k→∞

∑
j∈T +

ε,k
ln paj (x)j∑k

j=0 ln qaj (x)j

� 1 − 2ε

qmin · ln qmax
.

Since ε can be arbitrarily small, it follows that

lim
k→∞

∑
j∈T +

ε,k
ln paj (x)j∑k

j=0 ln qaj (x)j

= 1.

Similarly,

|Tε,k| ln

(
qmin

2

)
�

∑
j∈Tε,k

ln paj (x)j � |Tε,k| ln

(
2 − qmin

2

)
.

Therefore,∑
j∈Tε,k

ln paj (x)j

k ln qmin
�

|Tε,k| ln(
qmin

2 )

k ln qmin
� |Tε,k|(ln(qmin) + ln(1/2))

k ln qmin
,

and the second term tends to zero as k → ∞.
Consider the third term ∑

j∈Tk
ln paj (x)j∑

j ln qaj (x)j

.

It can be estimated by ∑
j∈Tk

ln pj

k ln qmin
,

and this value tends to zero as k → ∞ because B = 0.
We obtain that

lim
k→∞

μξ (Δa1a2...ak(x))

λ(Δa1a2...ak(x))
= 1.

Denote by Φ the cylinder family of given Q̃-expansion. Denote the image of Φ

by Φ ′ = Fξ (Φ).
Using the Billingsley theorem for packing dimension [12], we have

dimP (E,Φ) = 1 · dimP

(
Fξ (E),Φ ′) ∀E ⊂ [0; 1].

To prove that dimP (E) = dimP (Fξ (E)), it suffices to prove that Φ and Φ ′ are
faithful.

Faithfulness of Φ is already proved. Faithfulness of Φ ′ was proved in Lemma 1
and Lemma 2. So, we have that dimP (E) = dimP (Fξ (E)) and Fξ is a PDP-trans-
formation.
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Step 2. Let us show that if dimP (μξ ) = 1 and B > 0, then Fξ is not PDP.
Similarly to step 1, consider the fraction

μ(Δa1a2...ak(x))

λ(Δa1a2...ak(x))

=
∑

j∈T +
ε,k

ln paj (x)j + ∑
j∈Tε,k

ln paj (x)j + ∑
j∈Tk

ln paj (x)j∑
j ln qaj (x)j

and split it into three terms. It is easy to see that the first term tends to 1 and the
second term tends to 0 (as k → ∞). Consider the third term.

Since B > 0, there exists a subsequence (km) such that

lim
m→∞

∑
j∈Tkm

ln 1
pj

km

= B.

Consider the set

L =
{

x : x = Δa1a2...ak...;
{ ak ∈ {0, 1, . . . , s − 1} if k /∈ T

ak = nk, if k ∈ T , where pnkk = min
i

pik

}
.

Since the digits are in infinitely many places, it follows that λ(L) = 0. But combining

lim
m→∞

|Tkm |
km

= 0

and the formula for dimP (μξ ), we have dimP (L) = 1. It follows that

∀x ∈ L lim
m→∞

ln μ(Δa1a2...akm (x))

ln λ(Δa1a2...akm (x))
= 1 + B.

Thus, for any δ > 0, there exists m(δ) such that for all m > m(δ), we have

1 + B − δ �
ln μ(Δa1a2...akm (x))

ln λ(Δa1a2...akm (x))
� 1 + B + δ.

Thus, we have

lim inf
k→∞

ln μ(Δa1a2...ak(x))

ln λ(Δa1a2...ak(x))
� 1 + B − δ,

and (using the Billingsley theorem for dimP )

dimP−μ(L) · (1 + B − δ) � dimP (L),

that is,

dimP

(
Fξ (L)

)
� 1

1 + B − δ
.

Since the last inequality holds for any δ, it follows that

dimP

(
Fξ (L)

)
� 1

1 + B
,

and Fξ is not a PDP-transformation.
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Corollary 6.1. Let infi,j qij := qmin. Suppose that qmin > 0. Let

T :=
{
k : k ∈ N, pk <

qmin

2

}
;

Tk := T ∩ {1, 2, . . . , k};

B := lim sup
k→∞

∑
j∈Tk

ln 1
pj

k
.

Let Fξ be the distribution function of a random variable ξ with independent Q∗-
representation. Then Fξ preserves the packing dimension if and only if{

dimP μξ = 1;
B = 0.

Corollary 6.2. Let s ∈ N, s � 2;

T :=
{
k : k ∈ N, pk <

1

2s

}
;

Tk := T ∩ {1, 2, . . . , k};

B := lim sup
k→∞

∑
j∈Tk

ln 1
pj

k
.

Let Fξ be the distribution function of a random variable ξ with independent s-adic
digits. Then Fξ preserves the packing dimension if and only if{

dimP μξ = 1;
B = 0.
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