Simulation of supOU processes with specified marginal distribution and correlation function
Pub. online: 15 January 2026
Type: Research Article
Open Access
Received
18 September 2025
18 September 2025
Revised
8 December 2025
8 December 2025
Accepted
29 December 2025
29 December 2025
Published
15 January 2026
15 January 2026
Abstract
An algorithm is proposed for simulation of superpositions of Ornstein–Uhlenbeck processes which may have short- or long-range dependencies and specified marginal distributions. The algorithm is based on the Bondesson–Rosinski representation of the supOU process as a shot-noise process and enables a clear constructive view on the structure of supOU processes. The use of the proposed algorithm is demonstrated for eight positive marginal distributions and eight entire real line marginal distributions when the explicit formulae for the Lévy density are available or not.
References
Arras, B., Houdré, C.: On Stein’s Method for Infinitely Divisible Laws with Finite First Moment. Springer (2019) MR3931309
Asmussen, S., Jensen, J.L., Rojas-Nandayapa, L.: On the Laplace transform of the lognormal distribution. Methodol. Comput. Appl. Probab. 18, 441–458 (2016) MR3488586. https://doi.org/10.1007/s11009-014-9430-7
Bakeerathan, G., Leonenko, N.N.: Linnik processes. Random Oper. Stoch. Equ. 16, 109–130 (2008) MR2446434. https://doi.org/10.1515/ROSE.2008.007
Barndorff-Nielsen, O.E.: Processes of normal inverse Gaussian type. Finance Stoch. 2, 41–68 (1997) MR1804664. https://doi.org/10.1007/s007800050032
Barndorff-Nielsen, O.E.: Superposition of Ornstein–Uhlenbeck type processes. Theory Probab. Appl. 45(2), 175–194 (2001) MR1967758. https://doi.org/10.1137/S0040585X97978166
Barndorff-Nielsen, O.E., Hubalek, F.: Probability measures, Lévy measures and analyticity in time. Bernoulli 14(3), 764–790 (2008) MR2537811. https://doi.org/10.3150/07-BEJ6114
Barndorff-Nielsen, O.E., Leonenko, N.N.: Spectral properties of superpositions of Ornstein-Uhlenbeck type processes. Methodol. Comput. Appl. Probab. 7(3), 335–352 (2005) MR2210585. https://doi.org/10.1007/s11009-005-4521-0
Barndorff-Nielsen, O.E., Shephard, N.: Non-Gaussian Ornstein–Uhlenbeck-based models and some of their uses in financial economics. J. R. Stat. Soc., Ser. B Stat. Methodol. 63(2), 167–241 (2001) MR1841412. https://doi.org/10.1111/1467-9868.00282
Barndorff-Nielsen, O.E., Shephard, N.: Integrated OU processes and non-Gaussian OU-based stochastic volatility models. Scandinavian Journal of Statistics 30 (2003) MR1983126. https://doi.org/10.1111/1467-9469.00331
Barndorff-Nielsen, O.E., Stelzer, R.: Multivariate supOU processes. Ann. Appl. Probab. 21(1), 140–182 (2011) MR2759198. https://doi.org/10.1214/10-AAP690
Barndorff-Nielsen, O.E., Benth, F.E., Veraart, A.E.D.: Ambit Stochastics. Probability Theory and Stochastic Modelling. Springer, Gewerbestrasse 11 6330 Cham. Switzerland (2018) MR3839270. https://doi.org/10.1007/978-3-319-94129-5
Barndorff-Nielsen, O.E., Shephard, N.: Normal modified stable processes. Theory Probab. Math. Stat. 65, 1–20 (2002) MR1936123
Barndorff-Nielsen, O.E., Stelzer, R.: Absolute moments of generalized hyperbolic distributions and approximate scaling of normal inverse Gaussian Lévy processes. Scand. J. Stat. 32(4), 617–637 (2005) MR2232346. https://doi.org/10.1111/j.1467-9469.2005.00466.x
Bondesson, L.: On simulation from infinitely divisible distributions. Adv. Appl. Probab. 14(4), 855–869 (1982) MR0677560. https://doi.org/10.2307/1427027
Bondesson, L.: Generalized Gamma Convolutions and Related Classes of Distributions and Densities vol. 76. Springer (1992) MR1224674. https://doi.org/10.1007/978-1-4612-2948-3
Bondesson, L.: On the Lévy measure of the lognormal and the logCauchy distributions. Methodol. Comput. Appl. Probab. 4, 243–256 (2002) MR1965407. https://doi.org/10.1023/A:1022533817579
Burnaev, E.: Inversion formula for infinitely divisible distributions. Russ. Math. Surv. 61(4), 772–774 (2006) MR2278841. https://doi.org/10.1070/RM2006v061n04ABEH004346
Cont, R., Tankov, P.: Financial Modelling with Jump Processes. Chapman and Hall/CRC (2003) MR2042661
Coqueret, G.: Approximation of probabilistic Laplace transforms and their inverses. Commun. Appl. Math. Comput. Sci. 7(2), 231–246 (2013) MR3020215. https://doi.org/10.2140/camcos.2012.7.231
Corless, R.M., Gonnet, G.H., Hare, D.E., Jeffrey, D.J., Knuth, D.E.: On the Lambert W function. Adv. Comput. Math. 5, 329–359 (1996) MR1414285. https://doi.org/10.1007/BF02124750
Cox, D.R.: Long-range dependence, non-linearity and time irreversibility. J. Time Ser. Anal. 12(4), 329–335 (1991) MR1131005. https://doi.org/10.1111/j.1467-9892.1991.tb00087.x
Erdogan, M.B., Ostrovskii, I.: Analytic and asymptotic properties of generalized Linnik probability densities. J. Math. Anal. Appl. 217(2), 555–578 (1998) MR1492105. https://doi.org/10.1006/jmaa.1997.5734
Fasen, V., Klüppelberg, C.: Extremes of supOU processes. Stochastic Analysis and Applications: The Abel Symposium 2005, 339–359 (2005). Springer MR2397794. https://doi.org/10.1007/978-3-540-70847-6{_14
Finlay, R., Seneta, E.: Option pricing with vg–like models. Int. J. Theor. Appl. Finance 11(08), 943–955 (2008) MR2492088. https://doi.org/10.1142/S0219024908005093
Finlay, R., Seneta, E.: A generalized hyperbolic model for a risky asset with dependence. Stat. Probab. Lett. 82(12), 2164–2169 (2012) MR2979752. https://doi.org/10.1016/j.spl.2012.07.006
Godsill, S., Kontoyiannis, I., Costa, M.T.: Generalised shot-noise representations of stochastic systems driven by non-Gaussian Lévy processes. Adv. Appl. Probab. 56(4), 1215–1250 (2024) MR4819719. https://doi.org/10.1017/apr.2023.63
Grahovac, D., Leonenko, N.N., Taqqu, M.S.: Limit theorems, scaling of moments and intermittency for integrated finite variance supOU processes. Stoch. Process. Appl. 129(12), 5113–5150 (2019) MR4025701. https://doi.org/10.1016/j.spa.2019.01.010
Grahovac, D., Leonenko, N.N., Sikorskii, A., Taqqu, M.S.: The unusual properties of aggregated superpositions of Ornstein–Uhlenbeck type processes. Bernoulli 25(3), 2029–2050 (2019) MR3961239. https://doi.org/10.3150/18-BEJ1044
Grahovac, D., Kovtun, A., Leonenko, N.N., Pepelyshev, A.: Dickman type stochastic processes with short- and long-range dependence. Stochastics, in press (2025) MR4960371. https://doi.org/10.1080/17442508.2025.2522789
Halgreen, C.: Self-decomposability of the generalized inverse Gaussian and hyperbolic distributions. Z. Wahrscheinlichk.theor. Verw. Geb. 47(1), 13–17 (1979) MR0521527. https://doi.org/10.1007/BF00533246
Heyde, C.C., Leonenko, N.N.: Student processes. Adv. Appl. Probab. 37(2), 342–365 (2005) MR2144557. https://doi.org/10.1239/aap/1118858629
Hui, X., Sun, B., Jiang, H., SenGupta, I.: Analysis of stock index with a generalized BN-S model: an approach based on machine learning and fuzzy parameters. Stoch. Anal. Appl. 41(5), 938–957 (2023) MR4627140. https://doi.org/10.1080/07362994.2022.2094960
Jing, B.-Y., Kong, X.-B., Liu, Z.: Modeling high-frequency financial data by pure jump processses. Ann. Stat. 40(2), 759–784 (2012) MR2933665. https://doi.org/10.1214/12-AOS977
Jurek, Z.J.: Selfdecomposability: an exception or a rule. Annales Univer. M. Curie-Sklodowska, Lublin-Polonia, LI, Sectio A, 93–107 (1997) MR1610228
Jurek, Z.J.: Remarks on the selfdecomposability and new examples. Demonstr. Math. 34(2), 29–38 (2001) MR1833180
Jurek, Z.J.: On background driving distribution functions (bddf) for some selfdecomposable variables. Mathematica Applicanda 49(2) (2021) MR4395688
Jurek, Z.J., Mason, J.D., Hudson, W.: Operator-limit Distributions in Probability Theory. Wiley New York (1993) MR1243181
Kumar, A., Maheshwari, A., Wyłomańska, A.: Linnik Lévy process and some extensions. Phys. A 529, 121539 (2019) MR3958567. https://doi.org/10.1016/j.physa.2019.121539
Kumar, A., Upadhye, N., Wyłomańska, A., Gajda, J.: Tempered Mittag-Leffler Lévy processes. Commun. Stat., Theory Methods 48(2), 396–411 (2019) MR3945978. https://doi.org/10.1080/03610926.2017.1410719
Leonenko, N., Pepelyshev, A.: R-scripts for “Simulation of supOU Processes with Specified Marginal Distribution and Correlation Function”. https://doi.org/10.5281/zenodo.18095707
Leonenko, N., Pepelyshev, A.: Numerical computation of the Rosenblatt distribution and applications. Stat 14(4), 70107 (2025) MR4978987. https://doi.org/10.1002/sta4.70107
Leonenko, N., Taufer, E.: Convergence of integrated superpositions of Ornstein-Uhlenbeck processes to fractional Brownian motion. Stoch. Int. J. Probab. Stoch. Process. 77(6), 477–499 (2005) MR2190797. https://doi.org/10.1080/17442500500409460
Maejima, M., Tudor, C.A.: On the distribution of the Rosenblatt process. Stat. Probab. Lett. 83(6), 1490–1495 (2013) MR3048314. https://doi.org/10.1016/j.spl.2013.02.019
Mehta, S., Veraart, A.E.: Statistical inference for Levy-driven graph supOU processes: From short- to long-memory in high-dimensional time series. arXiv preprint arXiv:2502.08838 (2025)
Nguyen, M., Veraart, A.E.: Bridging between short-range and long-range dependence with mixed spatio-temporal Ornstein–Uhlenbeck processes. Stochastics 90(7), 1023–1052 (2018) MR3854526. https://doi.org/10.1080/17442508.2018.1466886
Nicolato, E., Venardos, E.: Option pricing in stochastic volatility models of the Ornstein-Uhlenbeck type. Math. Finance 13(4), 445–466 (2003) MR2003131. https://doi.org/10.1111/1467-9965.t01-1-00175
Rajput, B.S., Rosinski, J.: Spectral representations of infinitely divisible processes. Probab. Theory Relat. Fields 82(3), 451–487 (1989) MR1001524. https://doi.org/10.1007/BF00339998
Rocha-Arteaga, A., Sato, K.-I.: Topics in Infinitely Divisible Distributions and Lévy Processes. Springer, Cham (2019) MR3971266. https://doi.org/10.1007/978-3-030-22700-5
Rosenblatt, M.: Independence and dependence. In: Proc. 4th Berkeley Sympos. Math. Statist. and Prob, vol. 2, pp. 431–443 (1961) MR0133863
Rosiński, J.: Series representations of Lévy processes from the perspective of point processes. In: Lévy Processes: Theory and Applications, pp. 401–415. Springer (2001) MR1833707
Sato, K.-I.: Lévy Processes and Infinitely Divisible Distributions vol. 68. Cambridge university press (1999) MR1739520
Shchestyuk, N., Tyshchenko, S.: Subdiffusive option price model with inverse Gaussian subordinator. Mod. Stoch. Theory Appl. 12(2), 135–152 (2024) MR4874642
Veillette, M.S., Taqqu, M.S.: Properties and numerical evaluation of the Rosenblatt distribution. Bernoulli 19, 982–1005 (2013) MR3079303. https://doi.org/10.3150/12-BEJ421
Wu, Y., Liang, X.: Vasicek model with mixed-exponential jumps and its applications in finance and insurance. Adv. Differ. Equ. 2018, 1–15 (2018) MR3787903. https://doi.org/10.1186/s13662-018-1593-z
Yoshioka, H.: CIR bridge for modeling of fish migration on sub-hourly scale. arXiv preprint arXiv:2506.07094 (2025)
Yoshioka, H., Yoshioka, Y.: Generalized divergences for statistical evaluation of uncertainty in long-memory processes. Chaos Solitons Fractals 182, 114627 (2024) MR4722282. https://doi.org/10.1016/j.chaos.2024.114627
Yoshioka, H., Yoshioka, Y.: Stochastic volatility model with long memory for water quantity-quality dynamics. arXiv preprint arXiv:2501.03725 (2025)
Yoshioka, H., Tsujimura, M., Tanaka, T., Yoshioka, Y., Hashiguchi, A.: Modeling and computation of an integral operator Riccati equation for an infinite-dimensional stochastic differential equation governing streamflow discharge. Comput. Math. Appl. 126, 115–148 (2022) MR4486108. https://doi.org/10.1016/j.camwa.2022.09.009
Zhang, S.: Transition law-based simulation of generalized inverse Gaussian Ornstein–Uhlenbeck processes. Methodol. Comput. Appl. Probab. 13, 619–656 (2011) MR2822399. https://doi.org/10.1007/s11009-010-9179-6