Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. To appear
  3. Simulation of supOU processes with speci ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • More
    Article info Full article Related articles

Simulation of supOU processes with specified marginal distribution and correlation function
Nikolai N. Leonenko ORCID icon link to view author Nikolai N. Leonenko details   Andrey Pepelyshev ORCID icon link to view author Andrey Pepelyshev details  

Authors

 
Placeholder
https://doi.org/10.15559/25-VMSTA291
Pub. online: 15 January 2026      Type: Research Article      Open accessOpen Access

Received
18 September 2025
Revised
8 December 2025
Accepted
29 December 2025
Published
15 January 2026

Abstract

An algorithm is proposed for simulation of superpositions of Ornstein–Uhlenbeck processes which may have short- or long-range dependencies and specified marginal distributions. The algorithm is based on the Bondesson–Rosinski representation of the supOU process as a shot-noise process and enables a clear constructive view on the structure of supOU processes. The use of the proposed algorithm is demonstrated for eight positive marginal distributions and eight entire real line marginal distributions when the explicit formulae for the Lévy density are available or not.

References

[1] 
Arras, B., Houdré, C.: On Stein’s Method for Infinitely Divisible Laws with Finite First Moment. Springer (2019) MR3931309
[2] 
Asmussen, S., Jensen, J.L., Rojas-Nandayapa, L.: On the Laplace transform of the lognormal distribution. Methodol. Comput. Appl. Probab. 18, 441–458 (2016) MR3488586. https://doi.org/10.1007/s11009-014-9430-7
[3] 
Bakeerathan, G., Leonenko, N.N.: Linnik processes. Random Oper. Stoch. Equ. 16, 109–130 (2008) MR2446434. https://doi.org/10.1515/ROSE.2008.007
[4] 
Barndorff-Nielsen, O.E.: Processes of normal inverse Gaussian type. Finance Stoch. 2, 41–68 (1997) MR1804664. https://doi.org/10.1007/s007800050032
[5] 
Barndorff-Nielsen, O.E.: Superposition of Ornstein–Uhlenbeck type processes. Theory Probab. Appl. 45(2), 175–194 (2001) MR1967758. https://doi.org/10.1137/S0040585X97978166
[6] 
Barndorff-Nielsen, O.E., Hubalek, F.: Probability measures, Lévy measures and analyticity in time. Bernoulli 14(3), 764–790 (2008) MR2537811. https://doi.org/10.3150/07-BEJ6114
[7] 
Barndorff-Nielsen, O.E., Leonenko, N.N.: Spectral properties of superpositions of Ornstein-Uhlenbeck type processes. Methodol. Comput. Appl. Probab. 7(3), 335–352 (2005) MR2210585. https://doi.org/10.1007/s11009-005-4521-0
[8] 
Barndorff-Nielsen, O.E., Shephard, N.: Non-Gaussian Ornstein–Uhlenbeck-based models and some of their uses in financial economics. J. R. Stat. Soc., Ser. B Stat. Methodol. 63(2), 167–241 (2001) MR1841412. https://doi.org/10.1111/1467-9868.00282
[9] 
Barndorff-Nielsen, O.E., Shephard, N.: Integrated OU processes and non-Gaussian OU-based stochastic volatility models. Scandinavian Journal of Statistics 30 (2003) MR1983126. https://doi.org/10.1111/1467-9469.00331
[10] 
Barndorff-Nielsen, O.E., Stelzer, R.: Multivariate supOU processes. Ann. Appl. Probab. 21(1), 140–182 (2011) MR2759198. https://doi.org/10.1214/10-AAP690
[11] 
Barndorff-Nielsen, O.E., Benth, F.E., Veraart, A.E.D.: Ambit Stochastics. Probability Theory and Stochastic Modelling. Springer, Gewerbestrasse 11 6330 Cham. Switzerland (2018) MR3839270. https://doi.org/10.1007/978-3-319-94129-5
[12] 
Barndorff-Nielsen, O.E.: Probability Densities and Lévy Densities. University of Aarhus. Centre for Mathematical Physics and Stochastics (2000)
[13] 
Barndorff-Nielsen, O.E., Shephard, N.: Normal modified stable processes. Theory Probab. Math. Stat. 65, 1–20 (2002) MR1936123
[14] 
Barndorff-Nielsen, O.E., Stelzer, R.: Absolute moments of generalized hyperbolic distributions and approximate scaling of normal inverse Gaussian Lévy processes. Scand. J. Stat. 32(4), 617–637 (2005) MR2232346. https://doi.org/10.1111/j.1467-9469.2005.00466.x
[15] 
Bibby, B.M., Sørensen, M.: Hyperbolic processes in finance. In: Handbook of Heavy Tailed Distributions in Finance, pp. 211–248. Elsevier (2003)
[16] 
Bondesson, L.: On simulation from infinitely divisible distributions. Adv. Appl. Probab. 14(4), 855–869 (1982) MR0677560. https://doi.org/10.2307/1427027
[17] 
Bondesson, L.: Generalized Gamma Convolutions and Related Classes of Distributions and Densities vol. 76. Springer (1992) MR1224674. https://doi.org/10.1007/978-1-4612-2948-3
[18] 
Bondesson, L.: On the Lévy measure of the lognormal and the logCauchy distributions. Methodol. Comput. Appl. Probab. 4, 243–256 (2002) MR1965407. https://doi.org/10.1023/A:1022533817579
[19] 
Burnaev, E.: Inversion formula for infinitely divisible distributions. Russ. Math. Surv. 61(4), 772–774 (2006) MR2278841. https://doi.org/10.1070/RM2006v061n04ABEH004346
[20] 
Cont, R., Tankov, P.: Financial Modelling with Jump Processes. Chapman and Hall/CRC (2003) MR2042661
[21] 
Coqueret, G.: Approximation of probabilistic Laplace transforms and their inverses. Commun. Appl. Math. Comput. Sci. 7(2), 231–246 (2013) MR3020215. https://doi.org/10.2140/camcos.2012.7.231
[22] 
Corless, R.M., Gonnet, G.H., Hare, D.E., Jeffrey, D.J., Knuth, D.E.: On the Lambert W function. Adv. Comput. Math. 5, 329–359 (1996) MR1414285. https://doi.org/10.1007/BF02124750
[23] 
Cox, D.R.: Long-range dependence, non-linearity and time irreversibility. J. Time Ser. Anal. 12(4), 329–335 (1991) MR1131005. https://doi.org/10.1111/j.1467-9892.1991.tb00087.x
[24] 
Dytso, A., Bustin, R., Poor, H.V., Shamai, S.: Analytical properties of generalized Gaussian distributions. J. Stat. Distrib. Appl. 5, 1–40 (2018)
[25] 
Erdogan, M.B., Ostrovskii, I.: Analytic and asymptotic properties of generalized Linnik probability densities. J. Math. Anal. Appl. 217(2), 555–578 (1998) MR1492105. https://doi.org/10.1006/jmaa.1997.5734
[26] 
Fasen, V., Klüppelberg, C.: Extremes of supOU processes. Stochastic Analysis and Applications: The Abel Symposium 2005, 339–359 (2005). Springer MR2397794. https://doi.org/10.1007/978-3-540-70847-6{_14
[27] 
Finlay, R., Seneta, E.: Option pricing with vg–like models. Int. J. Theor. Appl. Finance 11(08), 943–955 (2008) MR2492088. https://doi.org/10.1142/S0219024908005093
[28] 
Finlay, R., Seneta, E.: A generalized hyperbolic model for a risky asset with dependence. Stat. Probab. Lett. 82(12), 2164–2169 (2012) MR2979752. https://doi.org/10.1016/j.spl.2012.07.006
[29] 
Godsill, S., Kontoyiannis, I., Costa, M.T.: Generalised shot-noise representations of stochastic systems driven by non-Gaussian Lévy processes. Adv. Appl. Probab. 56(4), 1215–1250 (2024) MR4819719. https://doi.org/10.1017/apr.2023.63
[30] 
Grahovac, D., Leonenko, N.N., Taqqu, M.S.: Limit theorems, scaling of moments and intermittency for integrated finite variance supOU processes. Stoch. Process. Appl. 129(12), 5113–5150 (2019) MR4025701. https://doi.org/10.1016/j.spa.2019.01.010
[31] 
Grahovac, D., Leonenko, N.N., Sikorskii, A., Taqqu, M.S.: The unusual properties of aggregated superpositions of Ornstein–Uhlenbeck type processes. Bernoulli 25(3), 2029–2050 (2019) MR3961239. https://doi.org/10.3150/18-BEJ1044
[32] 
Grahovac, D., Kovtun, A., Leonenko, N.N., Pepelyshev, A.: Dickman type stochastic processes with short- and long-range dependence. Stochastics, in press (2025) MR4960371. https://doi.org/10.1080/17442508.2025.2522789
[33] 
Gubner, J.A.: A new formula for lognormal characteristic functions. IEEE Trans. Veh. Technol. 55(5), 1668–1671 (2006)
[34] 
Halgreen, C.: Self-decomposability of the generalized inverse Gaussian and hyperbolic distributions. Z. Wahrscheinlichk.theor. Verw. Geb. 47(1), 13–17 (1979) MR0521527. https://doi.org/10.1007/BF00533246
[35] 
Heyde, C.C., Leonenko, N.N.: Student processes. Adv. Appl. Probab. 37(2), 342–365 (2005) MR2144557. https://doi.org/10.1239/aap/1118858629
[36] 
Hui, X., Sun, B., Jiang, H., SenGupta, I.: Analysis of stock index with a generalized BN-S model: an approach based on machine learning and fuzzy parameters. Stoch. Anal. Appl. 41(5), 938–957 (2023) MR4627140. https://doi.org/10.1080/07362994.2022.2094960
[37] 
Jing, B.-Y., Kong, X.-B., Liu, Z.: Modeling high-frequency financial data by pure jump processses. Ann. Stat. 40(2), 759–784 (2012) MR2933665. https://doi.org/10.1214/12-AOS977
[38] 
Jurek, Z.J.: Selfdecomposability: an exception or a rule. Annales Univer. M. Curie-Sklodowska, Lublin-Polonia, LI, Sectio A, 93–107 (1997) MR1610228
[39] 
Jurek, Z.J.: Remarks on the selfdecomposability and new examples. Demonstr. Math. 34(2), 29–38 (2001) MR1833180
[40] 
Jurek, Z.J.: On background driving distribution functions (bddf) for some selfdecomposable variables. Mathematica Applicanda 49(2) (2021) MR4395688
[41] 
Jurek, Z.J., Mason, J.D., Hudson, W.: Operator-limit Distributions in Probability Theory. Wiley New York (1993) MR1243181
[42] 
Kelly, B.C., Treu, T., Malkan, M., Pancoast, A., Woo, J.-H.: Active galactic nucleus black hole mass estimates in the era of time domain astronomy. Astrophys. J. 779(2), 187 (2013)
[43] 
Kumar, A., Maheshwari, A., Wyłomańska, A.: Linnik Lévy process and some extensions. Phys. A 529, 121539 (2019) MR3958567. https://doi.org/10.1016/j.physa.2019.121539
[44] 
Kumar, A., Upadhye, N., Wyłomańska, A., Gajda, J.: Tempered Mittag-Leffler Lévy processes. Commun. Stat., Theory Methods 48(2), 396–411 (2019) MR3945978. https://doi.org/10.1080/03610926.2017.1410719
[45] 
Leonenko, N., Pepelyshev, A.: R-scripts for “Simulation of supOU Processes with Specified Marginal Distribution and Correlation Function”. https://doi.org/10.5281/zenodo.18095707
[46] 
Leonenko, N., Pepelyshev, A.: Numerical computation of the Rosenblatt distribution and applications. Stat 14(4), 70107 (2025) MR4978987. https://doi.org/10.1002/sta4.70107
[47] 
Leonenko, N., Taufer, E.: Convergence of integrated superpositions of Ornstein-Uhlenbeck processes to fractional Brownian motion. Stoch. Int. J. Probab. Stoch. Process. 77(6), 477–499 (2005) MR2190797. https://doi.org/10.1080/17442500500409460
[48] 
Leonenko, N., Liu, A., Shchestyuk, N.: Student models for a risky asset with dependence: Option pricing and Greeks. Austrian J. Stat. 54(1), 138–165 (2024)
[49] 
Maejima, M., Tudor, C.A.: On the distribution of the Rosenblatt process. Stat. Probab. Lett. 83(6), 1490–1495 (2013) MR3048314. https://doi.org/10.1016/j.spl.2013.02.019
[50] 
Mehta, S., Veraart, A.E.: Statistical inference for Levy-driven graph supOU processes: From short- to long-memory in high-dimensional time series. arXiv preprint arXiv:2502.08838 (2025)
[51] 
Nguyen, M., Veraart, A.E.: Bridging between short-range and long-range dependence with mixed spatio-temporal Ornstein–Uhlenbeck processes. Stochastics 90(7), 1023–1052 (2018) MR3854526. https://doi.org/10.1080/17442508.2018.1466886
[52] 
Nicolato, E., Venardos, E.: Option pricing in stochastic volatility models of the Ornstein-Uhlenbeck type. Math. Finance 13(4), 445–466 (2003) MR2003131. https://doi.org/10.1111/1467-9965.t01-1-00175
[53] 
Rajput, B.S., Rosinski, J.: Spectral representations of infinitely divisible processes. Probab. Theory Relat. Fields 82(3), 451–487 (1989) MR1001524. https://doi.org/10.1007/BF00339998
[54] 
Rocha-Arteaga, A., Sato, K.-I.: Topics in Infinitely Divisible Distributions and Lévy Processes. Springer, Cham (2019) MR3971266. https://doi.org/10.1007/978-3-030-22700-5
[55] 
Rosenblatt, M.: Independence and dependence. In: Proc. 4th Berkeley Sympos. Math. Statist. and Prob, vol. 2, pp. 431–443 (1961) MR0133863
[56] 
Rosiński, J.: Series representations of Lévy processes from the perspective of point processes. In: Lévy Processes: Theory and Applications, pp. 401–415. Springer (2001) MR1833707
[57] 
Rosinski, J.: Simulation of Lévy processes. Encyclopedia of Statistics in Quality and Reliability: Computationally Intensive Methods and Simulation. Wiley, New York (2008)
[58] 
Sato, K.-I.: Lévy Processes and Infinitely Divisible Distributions vol. 68. Cambridge university press (1999) MR1739520
[59] 
Shchestyuk, N., Tyshchenko, S.: Subdiffusive option price model with inverse Gaussian subordinator. Mod. Stoch. Theory Appl. 12(2), 135–152 (2024) MR4874642
[60] 
Veillette, M.S., Taqqu, M.S.: Properties and numerical evaluation of the Rosenblatt distribution. Bernoulli 19, 982–1005 (2013) MR3079303. https://doi.org/10.3150/12-BEJ421
[61] 
Wu, Y., Liang, X.: Vasicek model with mixed-exponential jumps and its applications in finance and insurance. Adv. Differ. Equ. 2018, 1–15 (2018) MR3787903. https://doi.org/10.1186/s13662-018-1593-z
[62] 
Yoshioka, H.: CIR bridge for modeling of fish migration on sub-hourly scale. arXiv preprint arXiv:2506.07094 (2025)
[63] 
Yoshioka, H., Yoshioka, Y.: Generalized divergences for statistical evaluation of uncertainty in long-memory processes. Chaos Solitons Fractals 182, 114627 (2024) MR4722282. https://doi.org/10.1016/j.chaos.2024.114627
[64] 
Yoshioka, H., Yoshioka, Y.: Stochastic volatility model with long memory for water quantity-quality dynamics. arXiv preprint arXiv:2501.03725 (2025)
[65] 
Yoshioka, H., Tsujimura, M., Tanaka, T., Yoshioka, Y., Hashiguchi, A.: Modeling and computation of an integral operator Riccati equation for an infinite-dimensional stochastic differential equation governing streamflow discharge. Comput. Math. Appl. 126, 115–148 (2022) MR4486108. https://doi.org/10.1016/j.camwa.2022.09.009
[66] 
Zhang, S.: Transition law-based simulation of generalized inverse Gaussian Ornstein–Uhlenbeck processes. Methodol. Comput. Appl. Probab. 13, 619–656 (2011) MR2822399. https://doi.org/10.1007/s11009-010-9179-6
[67] 
Zhang, S., Sheng, Z., Deng, W.: On the transition law of O–U compound Poisson processes. In: 2011 Fourth International Conference on Information and Computing, pp. 260–263 (2011). IEEE

Full article Related articles PDF XML
Full article Related articles PDF XML

Copyright
© 2026 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Ornstein–Uhlenbeck process self-decomposable distribution long-range dependence Lévy basis shot-noise process

MSC2020
60G10 65C05

Funding
Nikolai Leonenko (NL) would like to thank for support and hospitality during the programmes “Fractional Differential Equations” (FDE2), “Uncertainly Quantification and Modelling of Materials” (USM), both supported by EPSRC grant EP/R014604/1, and the programme “Stochastic systems for anomalous diffusion” (SSD), supported by EPSRC grant EP/Z000580/1, at Isaac Newton Institute for Mathematical Sciences, Cambridge. Also, NL was partially supported under the ARC Discovery Grant DP220101680 (Australia), Croatian Scientific Foundation (HRZZ) grant “Scaling in Stochastic Models” (IP-2022-10-8081), grant FAPESP 22/09201-8 (Brazil) and the Taith Research Mobility grant (Wales, Cardiff University).

Metrics
since March 2018
12

Article info
views

3

Full article
views

4

PDF
downloads

0

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

Journal

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy