Finite mixtures with different regression models for different mixture components naturally arise in statistical analysis of biological and sociological data. In this paper a model of mixtures with varying concentrations is considered in which the mixing probabilities are different for different observations. A modified local linear estimation (mLLE) technique is developed to estimate the regression functions of the mixture component nonparametrically. Consistency of the mLLE is demonstrated. Performance of mLLE and a modified Nadaraya–Watson estimator (mNWE) is assessed via simulations. The results confirm that the mLLE technique overcomes the boundary effect typical to the NWE.
Principal Component Analysis (PCA) is a classical technique of dimension reduction for multivariate data. When the data are a mixture of subjects from different subpopulations one can be interested in PCA of some (or each) subpopulation separately. In this paper estimators are considered for PC directions and corresponding eigenvectors of subpopulations in the nonparametric model of mixture with varying concentrations. Consistency and asymptotic normality of obtained estimators are proved. These results allow one to construct confidence sets for the PC model parameters. Performance of such confidence intervals for the leading eigenvalues is investigated via simulations.
We consider a multivariate functional measurement error model $AX\approx B$. The errors in $[A,B]$ are uncorrelated, row-wise independent, and have equal (unknown) variances. We study the total least squares estimator of X, which, in the case of normal errors, coincides with the maximum likelihood one. We give conditions for asymptotic normality of the estimator when the number of rows in A is increasing. Under mild assumptions, the covariance structure of the limit Gaussian random matrix is nonsingular. For normal errors, the results can be used to construct an asymptotic confidence interval for a linear functional of X.
We consider a finite mixture model with varying mixing probabilities. Linear regression models are assumed for observed variables with coefficients depending on the mixture component the observed subject belongs to. A modification of the least-squares estimator is proposed for estimation of the regression coefficients. Consistency and asymptotic normality of the estimates is demonstrated.
We present large sample properties and conditions for asymptotic normality of linear functionals of powers of the periodogram constructed with the use of tapered data.