Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. To appear
  3. Asymptotic normality of local linear reg ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • More
    Article info Full article Related articles

Asymptotic normality of local linear regression estimator for mixtures with varying concentrations
Daniel Horbunov ORCID icon link to view author Daniel Horbunov details   Rostyslav Maiboroda ORCID icon link to view author Rostyslav Maiboroda details  

Authors

 
Placeholder
https://doi.org/10.15559/25-VMSTA282
Pub. online: 2 September 2025      Type: Research Article      Open accessOpen Access

Received
27 June 2025
Revised
6 August 2025
Accepted
7 August 2025
Published
2 September 2025

Abstract

Finite mixtures with different regression models for different mixture components naturally arise in statistical analysis of biological and sociological data. In this paper a model of mixtures with varying concentrations is considered in which the mixing probabilities are different for different observations. The modified local linear regression estimator (mLLRE) is considered for nonparametric estimation of the unknown regression function for the given component of mixture. The asymptotic normality of the mLLRE is proved in the case when the regressor’s probability density function has jumps. Theoretically optimal bandwidth is derived. Simulations were made to estimate the accuracy of the normal approximation.

References

[1] 
Borovkov, A.A.: Probability Theory. Springer, London (2013) MR3086572. https://doi.org/10.1007/978-1-4471-5201-9
[2] 
Dychko, H., Maiboroda, R.: A generalized Nadaraya-Watson estimator for observations obtained from a mixture. Theory Probab. Math. Stat. 100, 61–76 (2020). MR3992993. https://doi.org/10.1090/tpms/1094
[3] 
Fan, J.: Local linear regression smoothers and their minimax efficiencies. Ann. Stat. 21(1), 196–216 (1993). MR1212173. https://doi.org/10.1214/aos/1176349022
[4] 
Fan, J., Gijbels, I.: Local Polynomial Modelling and Its Applications. Chapman & Hall, London (1996) MR1383587
[5] 
Horbunov, D., Maiboroda, R.: Cross-validation for local-linear regression by observations from mixture (in Ukrainian). Bull. Taras Shevchenko Natl. Univ. Kyiv., Ser. Phys. Math. 1, 37–43 (2023). https://doi.org/10.17721/1812-5409.2023/1.5
[6] 
Horbunov, D., Maiboroda, R.: Consistency of local linear regression estimator for mixtures with varying concentrations. Mod. Stoch. Theory Appl. 11(3), 359–372 (2024). MR4757725. https://doi.org/10.15559/24-VMSTA250
[7] 
Maiboroda, R., Sugakova, O.: Estimation and Classification by Observations from Mixture (in Ukrainian). Kyiv University Publishers, Kyiv (2008)
[8] 
Maiboroda, R., Sugakova, O.: Statistics of mixtures with varying concentrations with application to DNA microarray data analysis. J. Nonparametr. Stat. 24(I), 201–205 (2012). MR2885834. https://doi.org/10.1080/10485252.2011.630076
[9] 
McLachlan, G.J., Peel, D.: Finite Mixture Models. Wiley-Interscience, New York (2000). MR1789474. https://doi.org/10.1002/0471721182
[10] 
Pidnebesna, A., Fajnerová, I., Horáček, J., Hlinka, J.: Mixture components inference for sparse regression: introduction and application for estimation of neuronal signal from fMRI BOLD. Appl. Math. Model. 116, 735–748 (2023). MR4522959. https://doi.org/10.1016/j.apm.2022.11.034
[11] 
Titterington, D.M., Smith, A.F., Makov, U.E.: Analysis of Finite Mixture Distributions. Wiley, New York (1985) MR0838090
[12] 
Yao, W., Xiang, S.: Semiparametric mixtures of nonparametric regressions. Ann. Inst. Stat. Math. 70, 131–154 (2018). MR3742821. https://doi.org/10.1007/s10463-016-0584-7
[13] 
Yao, W., Xiang, S.: Semiparametric mixtures of regressions with single-index for model based clustering. Adv. Data Anal. Classif. April (2020). MR4118951. https://doi.org/10.1007/s11634-020-00392-w
[14] 
Yao, W., Xiang, S.: Mixture Models Parametric, Semiparametric, and New Directions. CRC Press, London (2024)
[15] 
Young, D.S., Hunter, D.R.: Mixtures of regressions with predictor-dependent mixing proportions. Comput. Stat. Data Anal. 54, 2253–2266 (2010). MR2720486. https://doi.org/10.1016/j.csda.2010.04.002

Full article Related articles PDF XML
Full article Related articles PDF XML

Copyright
© 2025 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Nonparametric regression mixture with varying concentrations local linear regression asymptotic normality bandwidth selection

MSC2020
62-04 62G05 62G08 62G20

Metrics
since March 2018
28

Article info
views

8

Full article
views

13

PDF
downloads

11

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

Journal

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy