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Abstract Finite mixtures with different regression models for different mixture components
naturally arise in statistical analysis of biological and sociological data. In this paper a model
of mixtures with varying concentrations is considered in which the mixing probabilities are
different for different observations. The modified local linear regression estimator (mLLRE)
is considered for nonparametric estimation of the unknown regression function for the given
component of mixture. The asymptotic normality of the mLLRE is proved in the case when the
regressor’s probability density function has jumps. Theoretically optimal bandwidth is derived.
Simulations were made to estimate the accuracy of the normal approximation.

Keywords Nonparametric regression, mixture with varying concentrations, local linear
regression, asymptotic normality, bandwidth selection
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1 Introduction

In medical, biological and sociological studies the investigated population is frequently
a mixture of subpopulations (components of the mixture) with different distributions
of observed variables. If the subpopulation which a subject belongs to is not known
exactly, the distribution of its variables is a mixture of subpopulations’ distributions.
In the classical finite mixture models (FMM) the concentrations of the components in
the mixture (mixing probabilities) are the same for all observations. See [11, 9] and
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[14] for results on parametric estimation under FMM. In a more flexible mixture with
varying concentrations model (MVC) the concentrations are different for different
observations. See [7, 8] for the theory of nonparametric estimation in these models
and their application to a DNA-microchip data, and [10] for the application of MVC
in the analysis of a neurological data.

Regression models are applied usually to describe dependency between different
numerical variables of one subject. In the case of homogeneous sample there exist many
nonparametric estimators of the regression function, such as the Nadaraya—Watson
estimator (NWE) and local linear regression estimator (LLRE) [4]. A modification of
NWE (mNWE) for the estimation of regression function of some MVC component is
presented in [2] which also contains the derivation of asymptotic normality for mNWE.

It is well known that for homogeneous samples NWE demonstrates an inap-
propriate bias in points where the regressor probability density function (PDF) has
discontinuity (jump points). The bias of LLRE in this case is significantly smaller [3].
A modification of LLRE for MVC (mLLRE) was considered in [5]. The consistency of
mLLRE was shown in [6] and the performance of mLLRE was compared to mNWE
by simulations.

In this paper we continue the study of asymptotic mLLRE behavior in jump points
and points of continuity of the regressor’s PDF. It is shown that under suitable as-
sumptions mLLRE is asymptotically normal at jump points as well as in the continuity
points of the regressor distribution. This result allows to calculate the theoretically
optimal bandwidth for mLLRE which minimizes the asymptotic mean squared error.

Semiparametric models similar to the one considered in this paper were discussed
in[15, 12] and [13]. In these papers some versions of EM-algorithm are used to estimate
the regression functions of the mixture components. Since the EM-algorithm for
mixtures is based on the iteratively reweighted likelihood maximization, to construct
the estimators the authors need a parametric model for the error term in the regression
model. In contrast to the EM technique the approach of this paper is nonparametric
both by the regression function and the distribution of the errors.

The rest of the paper is organized as follows. In Section 2 the mixture of regression
models is described, in terms of which the definition of the mLLRE is recalled. Section
3 contains the main result on asymptotic normality of the estimator. In Section 4 an
optimal bandwith parameter selection for the mLLRE is discussed. The proof of the
main result is presented in Section 5. Simulations for the mLLRE are provided in
Section 6. Conclusive remarks are placed in Section 7.

2 Mixture of regressions and the locally linear estimator

2.1 Mixture of regressions
Consider a sample with n subjects {O; };f:l. Each subject O; belongs to one of the

M subpopulations (components of the mixture). For each j = 1,n the component
which contains O is unknown. The numerical index of the containing component is
denoted k; = k(0), 1 < k; < M; it is a latent (unobesrved) random variable, yet the
distributions of «; are assumed to be known. The probabilities

Pl =P(kj=k), j=Tn k=TM (1
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are called concentrations of components of the mixture or mixing probabilities.

For each subject O; one observes a bivariate vector of numerical variables
& = (X;,Y;) where X; = X(Oj) and Y; = Y(0Oj) are the regressor and response
respectively. The distribution of these variables is described by the regression model:

Y, =g (X)) +e;, j=1Ln,

where g(%) is an unknown regression function for k-th component of mixture, &; =
£(0) is arandom error term. It is assumed that the vectors { (X;,Y;) };f:l are mutually
independent for any fixed n > 1, and for all j = 1,_n, X; and g; are conditionally
independent under the condition {x; =m}, m =1, M.

For all k = 1, M the conditional distribution of X i | {«xj = k} has a Lebesgue
density f*), which does not depend of j. We assume that the distributions of errors
& satisfy the following conditions:

1. E[8j|Kj=k]=0,

2. Var[g; | k; = k] =0'(2k) < o0

2.2 Minimax weights

In this paper we consider a modified locally linear estimator for g at a fixed point

xo € R introduced in [5]. This estimator utilizes minimax weights for the estimation

of component distributions (see [7]). Let us recall the construction of these weights.
In what follows the angle brackets mean averaging of a vector:

n

1
V), = ;Zlvj, for any v = (V1,..-,Vn)T € R".
=

Arithmetic operations with vectors in the angle brackets are performed entry-wise:

n

1
(va), = ZZVJMJ'

J=1

Consider a set of concentration vectors p™) = (p(m) eeesDn ,,))T =1, M. Observe
that (p(”’) p(k)> can be considered as an inner product on R”. Assuming that the
concentration vectors {p<m)}M , are linearly independent, the Gram matrix I, =

((p(k )p®) ) ) , is invertible. The weighting coefficients a; (m) defined by the formula

(m) _ m+k (m)
afy) = detr Z( D" imp @)

where Y, is the (k, m)-th minor of I, are called minimax weighting coefficients.
These weights can also be obtained by the formula

(1) (M) (1) (M)\p-1
(a. ceslgy, )—(pjn,...,p].:n ).

jn’



4 D. Horbunov, R. Maiboroda

The vector of minimax coefficients for the m-th component will be denoted by a(™ =
(@™, ..., a"™"T. Observe that

1in 2

1, k=m
(Kglm)y - J = > forallm=1,M. 3
<p >" {0, k+m, )

2.3 Construction of an estimator

The modified local linear regression estimator (mLLRE) for g™ (xo) was introduced
in [5] as a generalization of local linear regression to the data described by the model of
regression mixture (1). To define it one needs to choose a kernel function K : R — R,
and a bandwidth 4 > 0. For any p, g € Z; let

=X;\ [(x0—-X;\”
(m) _ }‘ (m) J 0 J q

Then the mLLRE can be defined as
gim) glm) _ g(m) o(m)

A(m) 2,0:n~0,1:n 1,1:n~1,0:n
En 30 = = Gy (s 2 )
2,0:n~0,0:n 1,0:n

3 Asymptotic normality of an estimator

To formulate the result on the asymptotic normality of mLLRE we need some notations
and definitions.
The symbol Y, means weak convergence.
In what follows, the one-sided limits of a function f(x) at a point x are denoted
by
fo-) = lim f(x), f(xo+)= lim f(x),
x—x0—0 x—x0+0

assuming that these limits exist. With this notation, we define

0 +00
107 = W) [ @R 1= o) [ k@) e

(k) _ g+ k).~
1% = (O 4 0
1, dy =0,
k k
19, = at 9% 60 (xg=) + 189 g1 (xg4)), dy=1,

(I(k)+((g(k)(xo >>2+a(k)>+1<") (8™ (xo)? + 0. dy =2,

M
(m) (m)y2 (k) (k)
de:dy - Z @"™)%p 1 .dy’
=1

0:1 1:0 :1 :0
<m> ) glim ylm) s lm)
Z0:2 2“1:] 2]:2 Z%:1
sl gln gln g gin
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0 +00

u;=/z”K(z)dz, u;=/z”K(z)dz,

—0 0

Up = U, +u,,
ey, = (8 (xo))P> - (f ™ (o=, + ) (xob)uy ). py € {01},

Now we are ready to formulate our main result on the asymptotic behavior of
mLLRE.

Theorem 1. Assume that the following conditions hold.
1. Forallk =1, M, there exist f® (xox), g¥) (xo+).
2. g™ js twice continuously differentiable in some neighbourhood B of x.
3. Forall k,ky, ko =1, M the limits

(@™)p®) = 1im ((@™)2p®)) |

n—-+o0o n
<a(m)p(k1)p(k2)> = lim <a(m)p(k‘)p(k2)>
n—oo n

exist and are finite.

4. There exists lim I',, =T, where T',, = ((p(kl) <k2)>

n—oo

ki, kp=1"
5. h=h,=Hn '
6. Forsome A > 0 and all z such that |z| > A, K(z) =

7. Integrals f |z|K(z)dz and foo 24 (K (2))*dz are finite.

8. fPW)(x), g™ (x) are bounded for x € B for all k =

9. egn(;)e(()':’)) (e%))2 0.

10. E |:8j~ | kj = k] < oo forallk =1,M.

Then
238" (x0) — 8 (x0)) — N(u™ (x0). 52, (x0)). 5)

where 1™ (xo) and S%m) (x0) are defined by

(m))z (M) elm

5 (m) (e
mypoy _ g2 & (x0) €30
p (xo) = H 2 (m) () (m) 2’
2,0 €0,0 (e )

1 - - -
St @0) = 7 (8" (x0)) "™ = 2(¢™ (xo»zi"’) + 2,

S(m) _ s(m)§(m) ~(m) (m) ~(m) (m)
Ly =8, Ny —28 X ve Ty
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o) ()

é.(m) p.0 "q.0
pq m m m
éo) (()0) (e( ))2)2
where
i d*g™ (x)
§" (0 = =5

4 Optimal bandwidth selection

The mLLRE g,(,’“) (xo) defined by (4) depends on the bandwidth #, a tuning parameter
that must be selected by the researcher to obtain an accurate estimator. The accuracy
of gﬁ,’"’ (x0) usually is measured by the mean squared error

MSE(" (x0)) = E[(2\™ (x0) — g™ (x0))?] = Var[g\"™ (x0)]+ (bias(8\™ (x)))?,

where bias(2\™ (x0)) = E[2 (x0)] — 2™ (xo) is the estimator’s bias. In Theorem
1 we considered the choice i = h,, = Hn~'/°, where H is some fixed constant. This
rate of convergence for the bandwidth as n — oo is optimal, since if /4, vanishes
slower, the estimator has inappropriately high bias, while for more rapid h,, decay
the variance of the estimator would be inappropriate. So, we need to choose the
best constant H. By Theorem 1, n*/° (§<m) (x0) — g™ (x0)) converges Weakly to
7~ N(u™ (xp),S? (m) (x0)), so we will measure the asymptotic accuracy of g g,, )(xo)
by the asymptotic MSE (aMSE):

2 (m) 2 @ 2 1
aMSE(H) = E[r] = (1™ (x0)) +82,,,(v0) = H* - 3, + == - Vi,

where
(m)\2 (m) (m)
Efm = g(m)(xo) (e30)" =€ €39
m) = (m) (m) (m)\2’
2 €30 €0 ~(€10)

Vim = (8" (x0))Z"™ = 2(g"™ (xo)) £ + £5™.

An optimal bandwidth constant, which minimizes aMSE, is

v 1/5
Him) _ <4 (;n) ) _
E(m)

Observe that H,Sm) cannot be calculated by the data, since it depends on unknown
distributions of the mixture components. So it is an infeasible theoretically optimal
bandwidth constant which can be used in comparisons to some empirical bandwidth
selection rules.
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5 Proofs

The proof of Theorem 1 is based on two lemmas.
Let

i = (80, Son . So ) 1L SYT L el = IS

A = (S - e™). (6)

Lemma 1. Under Assumptions 1-4 and 6-10 of Theorem 1, if h = h, — 0 and
nh, — oo asn — oo, then

T
Forany a = (Clo’o, aop,1,4a1,0,4i,1, az,()) e R let

az,0do,1 —d1,141,0
Ua) = 20—, ®)

2
az,0d0,0 — al,O

Lemma 2. Under the assumptions of Theorem 1

( g )2 (m) (m)

- - _E g €10 €30
U(e, ') — g™ (x0) = (x0) - (m) (m) — (e (m))2
2 0 0 0

o(hz), n— oo,

Proof of Theorem 1. Consider

(2 (x0) = g™ (x0)) = n*(U(S™) = Uley™)) +n* (U(e}™) = g™ (x0)).
)
Lemma | and the continuous mapping theorem (see Theorem 3.1 in [1]) yield

2/5(U(S(m)) U(e(m))) \/_UT(e(m))A(m)

where

, d d d d d ’
U(a) = U(a), U(a), U(a), U(a), U
(a) ( das (a) daoy (a) darg (a) dary (a) dirg (a))
is the gradient of U. Tedious but straightforward algebra yields
T oA | — LM\ Ts(m) g7 em)y —
Var [\/_U (ep ')A ]— HU(e" yIzimy(e,™) = S(m)(xo)- (10)

By Lemma 2 for h = Hn™'/5,

m)y2 (m) (m)
(20) €10 %0
()() (m)
ey ety = (et

2
P (U(E™) = g™ () = - -8 () an

Combining (9)—(11) one obtains the statement of Theorem 1. O
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To demonstrate Lemma 1 we need the Lindeberg—Feller central limit theorem.

Lemma 3. (Lindeberg’s CLT) Let {1 n}j pn=12,..., beasetof random vectors

in R4, satisfying the following assumptions.

1. Forany fixedn > 1, vectors {n fin}l}=1 are mutually independent.

2. Forall j = n > 1, one has E[n;.,] = 0.

3. Ifo-jz.:n Cov(1:n), then for o2 Z;‘ 1 0'2 there exists

o? = lim 0',3,

n—oo

morover o is a positive semidefinite matrix.

4. For some s > 2 the following convergence holds:
n
M(s) = > E[min(|njal?, 101 = 0.
j=1
Then
> i — N(0,0).
j=1

For the proof, see [1], Theorem 8.4.1.

Proof of Lemma 1. To simplify notations, we introduce formally random vectors
(X(m)> Y(m), €(m)) With the distribution of (X}, Y], s]) given k; =m
Conditions of Lemma 3 will be verified for {17 } where

)7;";) - a(m) ﬁJ n’ T]J n (ﬁ]l‘l - E[ﬁ]n])’

T
1 xo—Xj)( xo—X; X0 —X; x0—X;:\?
ijm=—"K 1, Y; ! Iy, (— )
T].] /—nh ( h s _/’( h )’( h ) j’( h

Similarly we define random variables 7 ()., (ﬁzm):n) that have a distribution of 7j.,,

(i7}.,) given «; = m. Obviously, A = 2 r]ﬁ.:r:’l).

The first condition of Lemma 3 holds since (X;,Y;) are independent for different
Jj. The second condition follows from the construction of 77 m)

From now, we will proceed to the third condition of Lemma 3 Forsome py, py,qx,
qy, consider

Cov(Sp ) SGM0) = s i ay (1) = O (n, 1) = Q5™ (n, ),

1 & x0— X 2 XO—X Pxtdx !
Qfm)(”’h)z%z;(“%))zlzl([(( i ]>) ( ; ) e
J:
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n Px
(m) _ 1 (m)\2 Xo = Xj\ (%0 =X Py
2 (”’h)‘nh;(af”)E[K( h )( h Y
x0— X X0 — X 2x a
E |K Yo,
< e (57) (%57) v

We will investigate ng) (n, h) and ng) (n, h) separately. First of all, note that
0\" (n, h)

M 2 +
1 2 (k) x0 = X(k) x0 = Xy \ " pytq
:z;«a(m)p WEI K ) T ) W

Consider the expectations in the sum and denote dy = px +¢gx and dy = py,+q, < 4.
Then, forall k =1, M,

K (%= X \\° (%0 = X \ P yPytas
h h (k)

d +00
:Z< ) [(;;) l] /(K(Z))zzd (g™ (xo — h2)) f® (xo — hz)dz,

1
—E
h

where (7)) = n!/(k!(n - k)!) is the binomial coefficient. By Assumptions 1, 6 and 7
we obtain

+00

/ (K ()22 (60 (o — h2)) F ¥ (xo — h2)dz

—00

, k),—
— (" (o)1 + (g™ (ot 13

asn — oo. So, ford, € {0,1,2,3,4} and d,, € {0, 1,2},

2 d
x0 — X(k) xo = X \ ™ (k)
(K(T)) (T Y(k) Id d’ n — o0,

From the assumption E[g )] = 0 and Assumption 4, we obtain

1
—E
h

M

m k
Q% )(n, h) — Z <(a(m))2p(k)>1((1x?dy, n — oo.

k=1

Now we will show that Qém) (n,h) — 0 as n — oo. Note that

M
m k k
0y (mhy=h Y (@my2ploptly ot (n, )04y (n,h),
ky,ky=1

+00 +00

gj()p) (}’l h) / / K(Z)pr (8(k) (XO - I’lZ) + Ll)py f(k) (XO hZ)dZdF(k)(u)

—00 —&0
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where F (u) = P (8(ky < u) is the cumulative distribution function of &x). The
multiple integrals Qg?, Py (n, h) are bounded for n > 1, thus from Assumption 3 we
obtain ng) (n,h) > 0asn — oo.

Combining the asymptotics of ng) (n, h) and ng) (n, h) as n — oo, we obtain

the asymptotics of covariances for Aflm):
) N (k) (m)
(m 2. (k k m
pr Pyidx.9qy (n) - Z <(a(m)) p( )> I]’x"“[x Pytqy — pr'*'qx:py*"[v’ n — oo.
k=1

The third condition of Lemma 3 holds.
Finally we will show that the fourth condition of Lemma 3 holds. For some s > 2,
note that

Mo(s) = D E [min(innl, 1:])]

M

k ~/ ~/ K
> pIE [minlal) - P bl 1 - gyl
k=1

.
M= I
[

I
—

J

n
CFZ

Jj=1

E [min(lﬁ'(k):n|2, |ﬁ,(k):n|s):| ’

IA
EME

since p( m o<, |a(m)|2 < max(L,sup, i |a(m)| ) = Cr < co. By the inequality

la+b|* <2°7!(Ja]* +|b|*), foranya,beR?, (12)

we obtain

n

E mm(ln(k) U(k);nls)]

Ms

~
Il
—_

J=1

M
<257 b Zn (E [min (i)l 7 )nl*)] + max (IE [fkya] 1% E [fa)a] IF)) -

T
n

We will show that, as n — oo,

n - E [min (|l [ aml*)] — 0, (13)
n-max (|E[fxyn]* [E[fx)a]l*) — 0. (14)

Let us show (14). Observe that for any p > 2
n- |E[ﬁ(k):n]|p —0, n-— oo (15)

Really, the left-hand side of (15) can be expressed as follows:

s k k k k 0\ "?
ne B Lall” =n- (B + ES) + B[ + B + B
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where EfY, = ((nh) ™12 - E[K ((x0 = X)) /1) ((x0 = Xeao)) [ I)P=Y () 1)2.
For instance,

+00 2
h h .
Eé’i)) < —. /ZzK(Z)f(k)(Xo - hz)dz o n. Cz( 0)’
’ n n 5

as n — oo, where
2
Cz(fﬁ) = (f(k) (xo+)uy +f(k)(x0—)u§> )

By similar reasoning for the other terms we obtain

h /2
n- [Elfuall” <n- (—) -c, (16)
n
for some CK) < oo,
By Assumption 4,
n' =P P2 50, n— oo, 17)
since p/2 > 1. Then (16) and (17) yield (14).
To show (13), observe that for any 7 > 0
E [min ([5k):nl® [ k):nl*)] < Zn(7) + 75722, (0), (18)
where
Z(7) = E [[t):n " 1| (k):n] = 73] - (19)

We will show that Z,(0) is bounded and Z,,(t) — 0 as n — oo for any 7 > 0. So,
taking 7 small enough we can make the right-hand side of (18) as small as desired.
Let

Viz,x,u) = K2(2)(1+ (g0 () +u)? + 22 + 22 (P (x) + u)? + 2%).
Then

1 X0 — X k X0 — X k
Zn(7) = ZE |:V (T()’X(k)’s(k)> 1 {V (T(),X(k),s(k)) > Tznh}:|

A

) % /—A B[V (% wew ) 1V (B xew) > 2] 50 o

A
- / E [V (z,x0 — hz),&(x)) 1{V (2. x0 — hz,8x)) > ‘rznh}] £ (xo = hz)dz.
-A

By Assumption 8, g(¥) and f¥) are bounded in a neighborhood B of x. For n large
enough [xg — hA,xo + hA] € B,so for —A < 7 < A,

V (z,x0 — hz,u) %) (xo = hz) < V(z,u), (20)
where

V(zu) = FRA(2)(1+ (g + lul)* + 22 + 22 (g + [u])* + 24,
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f=sup fPx), g=suplg™ ).

xeB xeB

By Assumptions 7 and 10,

A
/ E [V(z,e)] dz=V* < e. 21
-A

So, by (20), Z,(0) < V*.
Observe that

I{V (xoh_x,x,u) > Tznh} -0

as n — oo, since nh — oo by Assumption 5. So, with (20) and (21) in mind, by the
Lebesgue dominated convergence theorem we obtain Z,,(t) — 0 as n — oo for any
T>0.

Thus, for any § > 0 we can take 7 > 0 so small that 75727, (0) < 7°72V* < §/2
and then ng so large that Z,, (1) < 6/2 for n > ng. By (18) this yields M»(s) — 0 as

n — oo. So Assumption 4 of Lemma 3 holds.

(m)

Applying Lemma 3 to Ny We obtain the statement of Lemma 1. O

)2 plm) m) _ m) () o) m) )
n

(m) _ _ _
Proof of Lemma 2. Considerc,, =€) 0:0€0.1:0 €1, 1:0C1.0im €5.0:n€0.0m ™

(e(m)

) O'n)2’ where

+00

e =E[SS7, 1= / K(2)2P g™ (xo - h2) f (x0 — h2)dz. (22

—00

By continuity of U and convergence e( " elm) | we get U(e(m)) — U(e™) =

g™ (xo).
We will examine the rate of convergence to zero for the difference

e —di™ g™ (xp)

(m)y _ (m) _
V(e g ) =

(23)

From (22) one obtains

+00

e = / 8" (xo = h)K(2)(ey'y), = 2ey0, ) f " (vo —ha)dz - (24)

—00

and

+00

)" = / K(2)(eg'y), = ze{'sh ) £ (x0 = h2)dz. (25)

—00

By Taylor’s expansion for g in the neighborhood of x(, we obtain, as n — oo,

" - d" g™ (xo)
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+00
= / (8™ (x0 — hz) — g™ (x0)) K (2)(e})y), — zel") ) f ™ (xo — hz)dz
A
= ¢ (x0) (=h) / <K (2)(eg'g), = zey0) " (0 — ha)dz
-A

A
h2
+ 5 g™ (xo) / zzK(z)(e%:)n - ze%:)n)f(m) (xo — hz)dz
“A

A

N / R(hz)K(z)(e%?n _ Zeif’&)n)f(m) (xo = hz)dz = I + 1™ + g™,

-A

where R(t) is some function, such that |R(¢)|/t> — 0 as t — 0. By (22),

I =0 (26)
and ,
L = h? < (x0) ((e3'h)” = e o e on)- 27)
The asymptotics of
T’ = &S onT R om = omT i 28)

remains to be examined as n — oo, where

A
1= [ R K @5 (50 e
=

(m) (m)

where p € {0, 1}. Since e, 5., — €p.4>

it suffices to investigate the asymptotics of

R,p:n’
Note that for JI(?mIZ;: = foA R(hz)zP K (2) f "™ (xo — hz)dz,

A
B~ 1 o) [T RODZK@dz, o
0

For any & € (0, 1), there exists such N(g) that |R(t)| < £t?, n > N(g). For
n > N(g),

A A
‘/ R(hz)zPK(z)dz| < shZ/ 2*PK(2)dz = o0(h?), n— . (29)
0 0

Similarly

0
Jl(emlz-’r: = / R(hZ)ZpK(Z)f(m) (xo — hz)dz = O(hz), n — oo,
.p: A

Thus,

Ty =Tk * I ipin = 007, 0= oo, (30)
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From (28) and (30), we get
1™ =o(h?), n— e 31)

From (26), (27) and (31), we obtain the statement of Lemma 2. O

6 Simulations

6.1 Description of simulations

For simulations we considered a mixture of regressions with M = 2 components. The
: (m)
concentrations {p i } were defined by

m_4 oy I

Pjn n jn n j=1Ln.

The distribution of regressor X; was the same for both components. Its PDF was

3 1
f() = 7 L(0,1/2(2) + 5 Lapn(), teR.

The distribution of &; was different for different experiments. Regression functions
were defined as

sin(2rt), m =1,
g™ () =
cos(2nt), m=2.

Estimation was performed at xo = 1/2, which is a discontinuity point of f(¢). The
simulation procedure was as follows:

1. For each sample size n € {100, 500, 1000, 5000, 10000}, we generate B = 1000
copies of {(X;,Y J')}jzl,_n from the described model.

2. Ineach copy, the modified local linear regression estimator g,(l’") (x0) is computed

at xo foreachm =1, M.
3. Having an array with B values of gi,’”) (x0), we compute sample bias and standard
deviation

Bias\" = n**(E.[2™ (x0)] - g™ (x0))

Std{™ = n?/5 . \[Var, [30™ (xo)].

For 2™ (xo) we select an optimal bandwidth 7 = H"™ n=1/5 and the Epanechnikov
kernel

K(1) =1{|t| < 1} - % S(1-17%).

In this scenario, H,El) does not exist since E ;) = 0. So, in the experiments, we let
HO =HP.
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Table 1. Computed values of sample bias and standard deviation for each n and m

n m=1 m=2

Bias"”  std!™  Bias!™  Std(™

100 07239 13.021 35882  149.4207
500 02935  2.6544  1.0857 2.692
1000 0.0979 25753  1.3031 2.6607
5000 01256 2.6908  1.3599 2.6578
10000 —0.0103  2.5745  1.2657 2.5809
P 0 26547 13274 2.6547

Table 2. Computed values of sample bias and standard deviation for each n and m

n m=1 m=2

Bias(™  sd(™  Bias™ = sd™

100 0.1082 44768 0.6359 6.724
500 0.1659 3.059 0.9511 3.0376
1000 0.1577 3.0195 1.1993 3.0792
5000 0.1386 2.9185 1.1616 3.012
10000 0.2131 2.8123 1.2613 2.9326
o 0 2.9282 14641 2.9282

Table 3. Computed values of sample bias and standard deviation for each n and m

n m=1 m=2

Bias(™  Std!™  Bias"™ st

100 00616 45498 09148 53876
500 0.2661 2.8404 L1379 2.9482
1000 0.2239 27614 11546 2.9566
5000  -0.0964  2.6225 14349 2.8296
10000 0.0435 2.626 13573 29192
> 0 2.6938 14317 2.8635

6.2 Performance of mLLE
Experiment 1. In this experiment,, we consider &; ~ N(0,1.25). The results of
Experiment 1 for mLLE are presented in Table 1.

Here H,Ez) ~ 0.6261. The simulation results show the agreement with the asymp-
totic considerations for large n.

Experiment 2. In this experiment, we consider &; ~ Ts, where T5 is the Student T
distribution with 5 degrees of freedom. The results of Experiment 2 for mLLE are
presented in Table 2.

Here HiZ) ~ 0.6575. These results are also in accordance with the asymptotic
calculations.

Experiment 3. In this experiment, we consider

N(0,1.25), m=1,
T5, m=2.

gj | {kj=m} ~

The results of Experiment 3 for mLLE are presented in Table 3.
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Here H,Ez) ~ 0.6502. The simulations results inherit the pattern similar to the
observed in the previous experiments.

7 Conclusions

‘We examined the asymptotic behavior of the modified local linear regression estimator
for a mixture of regressions model. We proved that the modified estimator is asymp-
totically normal. The obtained rate of convergence of this estimator to the unknown
value of the regression function at a given point is the same, regardless of whether the
density function of a regressor has a jump at this point or not.

Based on the proven asymptotic theory, the optimal bandwidth parameter was
derived that minimizes the asymptotic standard deviation of the estimator. The derived
asymptotic theory was tested using a simulation experiment. The results obtained in
this experiment are consistent with the theoretical results.

The subject of a further research is the development of the theory of optimal choice
of parameters for the modified local linear regression estimator, that is, the bandwidth
parameter and the kernel function.

References

[1] Borovkov, A.A.: Probability Theory. Springer, London (2013) MR3086572. https://doi.
org/10.1007/978-1-4471-5201-9

[2] Dychko, H., Maiboroda, R.: A generalized Nadaraya-Watson estimator for observations
obtained from a mixture. Theory Probab. Math. Stat. 100, 61-76 (2020). MR3992993.
https://doi.org/10.1090/tpms/1094

[3] Fan, J.: Local linear regression smoothers and their minimax efficiencies. Ann. Stat. 21(1),
196-216 (1993). MR 1212173. https://doi.org/10.1214/a0s/1176349022

[4] Fan, J., Gijbels, L.: Local Polynomial Modelling and Its Applications. Chapman & Hall,
London (1996) MR 1383587

[5] Horbunov, D., Maiboroda, R.: Cross-validation for local-linear regression by observations
from mixture (in Ukrainian). Bull. Taras Shevchenko Natl. Univ. Kyiv., Ser. Phys. Math.
1, 37-43 (2023). https://doi.org/10.17721/1812-5409.2023/1.5

[6] Horbunov, D., Maiboroda, R.: Consistency of local linear regression estimator for mix-
tures with varying concentrations. Mod. Stoch. Theory Appl. 11(3), 359-372 (2024).
MR4757725. https://doi.org/10.15559/24-VMSTA250

[7] Maiboroda, R., Sugakova, O.: Estimation and Classification by Observations from Mixture
(in Ukrainian). Kyiv University Publishers, Kyiv (2008)

[8] Maiboroda, R., Sugakova, O.: Statistics of mixtures with varying concentrations with
application to DNA microarray data analysis. J. Nonparametr. Stat. 24(I), 201-205 (2012).
MR2885834. https://doi.org/10.1080/10485252.2011.630076

[9] McLachlan, G.J., Peel, D.: Finite Mixture Models. Wiley-Interscience, New York (2000).
MR 1789474. https://doi.org/10.1002/0471721182

[10] Pidnebesna, A., Fajnerové, 1., Hor4cek, J., Hlinka, J.: Mixture components inference for
sparse regression: introduction and application for estimation of neuronal signal from
fMRI BOLD. Appl. Math. Model. 116, 735-748 (2023). MR4522959. https://doi.org/10.
1016/j.apm.2022.11.034


http://www.ams.org/mathscinet-getitem?mr=3086572
https://doi.org/10.1007/978-1-4471-5201-9
https://doi.org/10.1007/978-1-4471-5201-9
http://www.ams.org/mathscinet-getitem?mr=3992993
https://doi.org/10.1090/tpms/1094
http://www.ams.org/mathscinet-getitem?mr=1212173
https://doi.org/10.1214/aos/1176349022
http://www.ams.org/mathscinet-getitem?mr=1383587
https://doi.org/10.17721/1812-5409.2023/1.5
http://www.ams.org/mathscinet-getitem?mr=4757725
https://doi.org/10.15559/24-VMSTA250
http://www.ams.org/mathscinet-getitem?mr=2885834
https://doi.org/10.1080/10485252.2011.630076
http://www.ams.org/mathscinet-getitem?mr=1789474
https://doi.org/10.1002/0471721182
http://www.ams.org/mathscinet-getitem?mr=4522959
https://doi.org/10.1016/j.apm.2022.11.034
https://doi.org/10.1016/j.apm.2022.11.034

Asymptotic normality of local linear regression estimator for mixture of regressions 17

[11] Titterington, D.M., Smith, A.F., Makov, U.E.: Analysis of Finite Mixture Distributions.
Wiley, New York (1985) MR0838090

[12] Yao, W., Xiang, S.: Semiparametric mixtures of nonparametric regressions. Ann. Inst. Stat.
Math. 70, 131-154 (2018). MR3742821. https://doi.org/10.1007/s10463-016-0584-7

[13] Yao, W., Xiang, S.: Semiparametric mixtures of regressions with single-index for model
based clustering. Adv. Data Anal. Classif. April (2020). MR4118951. https://doi.org/10.
1007/s11634-020-00392-w

[14] Yao, W., Xiang, S.: Mixture Models Parametric, Semiparametric, and New Directions.
CRC Press, London (2024)

[15] Young, D.S., Hunter, D.R.: Mixtures of regressions with predictor-dependent mixing
proportions. Comput. Stat. Data Anal. 54, 2253-2266 (2010). MR2720486. https://doi.
org/10.1016/j.csda.2010.04.002


http://www.ams.org/mathscinet-getitem?mr=0838090
http://www.ams.org/mathscinet-getitem?mr=3742821
https://doi.org/10.1007/s10463-016-0584-7
http://www.ams.org/mathscinet-getitem?mr=4118951
https://doi.org/10.1007/s11634-020-00392-w
https://doi.org/10.1007/s11634-020-00392-w
http://www.ams.org/mathscinet-getitem?mr=2720486
https://doi.org/10.1016/j.csda.2010.04.002
https://doi.org/10.1016/j.csda.2010.04.002

	Introduction
	Mixture of regressions and the locally linear estimator
	Mixture of regressions
	Minimax weights
	Construction of an estimator

	Asymptotic normality of an estimator
	Optimal bandwidth selection
	Proofs
	Simulations
	Description of simulations
	Performance of mLLE

	Conclusions

