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Abstract Finite mixtures with different regression models for different mixture components 
naturally arise in statistical analysis of biological and sociological data. In this paper a model 
of mixtures with varying concentrations is considered in which the mixing probabilities are 
different for different observations. The modified local linear regression estimator (mLLRE) 
is considered for nonparametric estimation of the unknown regression function for the given 
component of mixture. The asymptotic normality of the mLLRE is proved in the case when the 
regressor’s probability density function has jumps. Theoretically optimal bandwidth is derived. 
Simulations were made to estimate the accuracy of the normal approximation.

Keywords Nonparametric regression, mixture with varying concentrations, local linear 
regression, asymptotic normality, bandwidth selection
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1 Introduction

In medical, biological and sociological studies the investigated population is frequently 
a mixture of subpopulations (components of the mixture) with different distributions 
of observed variables. If the subpopulation which a subject belongs to is not known 
exactly, the distribution of its variables is a mixture of subpopulations’ distributions. 
In the classical finite mixture models (FMM) the concentrations of the components in 
the mixture (mixing probabilities) are the same for all observations. See [11, 9] and 
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[14] for results on parametric estimation under FMM. In a more flexible mixture with 
varying concentrations model (MVC) the concentrations are different for different 
observations. See [7, 8] for the theory of nonparametric estimation in these models 
and their application to a DNA-microchip data, and [10] for the application of MVC 
in the analysis of a neurological data.

Regression models are applied usually to describe dependency between different 
numerical variables of one subject. In the case of homogeneous sample there exist many 
nonparametric estimators of the regression function, such as the Nadaraya–Watson 
estimator (NWE) and local linear regression estimator (LLRE) [4]. A modification of 
NWE (mNWE) for the estimation of regression function of some MVC component is 
presented in [2] which also contains the derivation of asymptotic normality for mNWE.

It is well known that for homogeneous samples NWE demonstrates an inap
propriate bias in points where the regressor probability density function (PDF) has 
discontinuity (jump points). The bias of LLRE in this case is significantly smaller [3]. 
A modification of LLRE for MVC (mLLRE) was considered in [5]. The consistency of 
mLLRE was shown in [6] and the performance of mLLRE was compared to mNWE 
by simulations.

In this paper we continue the study of asymptotic mLLRE behavior in jump points 
and points of continuity of the regressor’s PDF. It is shown that under suitable as
sumptions mLLRE is asymptotically normal at jump points as well as in the continuity 
points of the regressor distribution. This result allows to calculate the theoretically 
optimal bandwidth for mLLRE which minimizes the asymptotic mean squared error.

Semiparametric models similar to the one considered in this paper were discussed 
in [15, 12] and [13]. In these papers some versions of EM-algorithm are used to estimate 
the regression functions of the mixture components. Since the EM-algorithm for 
mixtures is based on the iteratively reweighted likelihood maximization, to construct 
the estimators the authors need a parametric model for the error term in the regression 
model. In contrast to the EM technique the approach of this paper is nonparametric 
both by the regression function and the distribution of the errors.

The rest of the paper is organized as follows. In Section 2 the mixture of regression 
models is described, in terms of which the definition of the mLLRE is recalled. Section 
3 contains the main result on asymptotic normality of the estimator. In Section 4 an 
optimal bandwith parameter selection for the mLLRE is discussed. The proof of the 
main result is presented in Section 5. Simulations for the mLLRE are provided in 
Section 6. Conclusive remarks are placed in Section 7.

2 Mixture of regressions and the locally linear estimator

2.1 Mixture of regressions
Consider a sample with 𝑛 subjects {𝑂 𝑗}𝑛𝑗=1. Each subject 𝑂 𝑗 belongs to one of the 

𝑀 subpopulations (components of the mixture). For each 𝑗 = 1, 𝑛 the component 
which contains 𝑂 𝑗 is unknown. The numerical index of the containing component is 
denoted 𝜅 𝑗 = 𝜅(𝑂 𝑗 ), 1 ≤ 𝜅 𝑗 ≤ 𝑀; it is a latent (unobesrved) random variable, yet the 
distributions of 𝜅 𝑗 are assumed to be known. The probabilities

𝑝 (𝑘 )𝑗:𝑛 = P
(︁
𝜅 𝑗 = 𝑘

)︁
, 𝑗 = 1, 𝑛, 𝑘 = 1, 𝑀 (1)
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are called concentrations of components of the mixture or mixing probabilities.
For each subject 𝑂 𝑗 one observes a bivariate vector of numerical variables 

𝜉 𝑗 = (𝑋 𝑗 , 𝑌 𝑗 ) where 𝑋 𝑗 = 𝑋 (𝑂 𝑗 ) and 𝑌 𝑗 = 𝑌 (𝑂 𝑗 ) are the regressor and response 
respectively. The distribution of these variables is described by the regression model:

𝑌 𝑗 = 𝑔
(𝜅 𝑗 ) (𝑋 𝑗 ) + 𝜀 𝑗 , 𝑗 = 1, 𝑛,

where 𝑔 (𝑘 ) is an unknown regression function for 𝑘-th component of mixture, 𝜀 𝑗 =
𝜀(𝑂 𝑗 ) is a random error term. It is assumed that the vectors {(𝑋 𝑗 , 𝑌 𝑗 )}𝑛𝑗=1 are mutually 

independent for any fixed 𝑛 ≥ 1, and for all 𝑗 = 1, 𝑛, 𝑋 𝑗 and 𝜀 𝑗 are conditionally 
independent under the condition {𝜅 𝑗 = 𝑚}, 𝑚 = 1, 𝑀 .

For all 𝑘 = 1, 𝑀 the conditional distribution of 𝑋 𝑗 | {𝜅 𝑗 = 𝑘} has a Lebesgue 
density 𝑓 (𝑘 ) , which does not depend of 𝑗 . We assume that the distributions of errors 
𝜀 𝑗 satisfy the following conditions:

1. E
[︁
𝜀 𝑗 | 𝜅 𝑗 = 𝑘

]︁
= 0,

2. Var
[︁
𝜀 𝑗 | 𝜅 𝑗 = 𝑘

]︁
= 𝜎2

(𝑘 ) < ∞.

2.2 Minimax weights

In this paper we consider a modified locally linear estimator for 𝑔 (𝑚) at a fixed point 
𝑥0 ∈ R introduced in [5]. This estimator utilizes minimax weights for the estimation 
of component distributions (see [7]). Let us recall the construction of these weights.

In what follows the angle brackets mean averaging of a vector:

⟨v⟩𝑛 =
1 
𝑛

𝑛∑︂
𝑗=1 

𝑣 𝑗 , for any v = (𝑣1, . . . , 𝑣𝑛)𝑇 ∈ R
𝑛.

Arithmetic operations with vectors in the angle brackets are performed entry-wise:

⟨vu⟩𝑛 =
1 
𝑛

𝑛∑︂
𝑗=1 

𝑣 𝑗𝑢 𝑗 .

Consider a set of concentration vectors p(𝑚) = (𝑝 (𝑚)
1:𝑛 , . . . , 𝑝

(𝑚)
𝑛:𝑛 )𝑇 , 𝑚 = 1, 𝑀 . Observe 

that 
⟨︁
p(𝑚)p(𝑘 ) ⟩︁

𝑛
can be considered as an inner product on R𝑛. Assuming that the 

concentration vectors {p(𝑚)}𝑀𝑚=1 are linearly independent, the Gram matrix Γ𝑛 =(︁⟨︁
p(𝑘 )p(𝑙) ⟩︁

𝑛

)︁𝑀
𝑘,𝑙=1 is invertible. The weighting coefficients 𝑎 (𝑚)

𝑗:𝑛 defined by the formula

𝑎 (𝑚)
𝑗:𝑛 =

1 
det Γ𝑛

𝑀∑︂
𝑚=1

(−1)𝑚+𝑘𝛾𝑘𝑚𝑝
(𝑚)
𝑗:𝑛 , (2)

where 𝛾𝑘𝑚 is the (𝑘, 𝑚)-th minor of Γ𝑛, are called minimax weighting coefficients. 
These weights can also be obtained by the formula

(𝑎 (1)𝑗:𝑛, . . . , 𝑎
(𝑀 )
𝑗:𝑛 ) = (𝑝 (1)𝑗:𝑛 , . . . , 𝑝

(𝑀 )
𝑗:𝑛 )Γ−1

𝑛 .
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The vector of minimax coefficients for the 𝑚-th component will be denoted by a(𝑚) =
(𝑎 (𝑚)

1:𝑛 , . . . , 𝑎
(𝑚)
𝑛:𝑛 )𝑇 . Observe that

⟨︁
p(𝑘 )a(𝑚) ⟩︁

𝑛
=

{︄
1, 𝑘 = 𝑚,

0, 𝑘 ≠ 𝑚,
for all 𝑚 = 1, 𝑀. (3)

2.3 Construction of an estimator
The modified local linear regression estimator (mLLRE) for 𝑔 (𝑚) (𝑥0) was introduced 
in [5] as a generalization of local linear regression to the data described by the model of 
regression mixture (1). To define it one needs to choose a kernel function 𝐾 : R → R+
and a bandwidth ℎ > 0. For any 𝑝, 𝑞 ∈ Z+ let

𝑆 (𝑚)
𝑝,𝑞:𝑛 =

1 
𝑛ℎ

𝑛∑︂
𝑗=1 

𝑎 (𝑚)
𝑗:𝑛 𝐾

(︃
𝑥0 − 𝑋 𝑗

ℎ 

)︃(︃
𝑥0 − 𝑋 𝑗

ℎ 

)︃𝑝

𝑌
𝑞
𝑗 .

Then the mLLRE can be defined as

𝑔̂ (𝑚)
𝑛 (𝑥0) =

𝑆 (𝑚)
2,0:𝑛𝑆

(𝑚)
0,1:𝑛 − 𝑆

(𝑚)
1,1:𝑛𝑆

(𝑚)
1,0:𝑛

𝑆 (𝑚)
2,0:𝑛𝑆

(𝑚)
0,0:𝑛 − (𝑆 (𝑚)

1,0:𝑛)2
. (4)

3 Asymptotic normality of an estimator

To formulate the result on the asymptotic normality of mLLRE we need some notations 
and definitions.

The symbol W −→ means weak convergence.
In what follows, the one-sided limits of a function 𝑓 (𝑥) at a point 𝑥0 are denoted 

by
𝑓 (𝑥0−) = lim 

𝑥→𝑥0−0
𝑓 (𝑥), 𝑓 (𝑥0+) = lim 

𝑥→𝑥0+0
𝑓 (𝑥),

assuming that these limits exist. With this notation, we define

𝐼 (𝑘 ) ,−𝑑 = 𝑓 (𝑘 ) (𝑥0+)
∫ 0

−∞
𝑧𝑑 (𝐾 (𝑧))2𝑑𝑧, 𝐼 (𝑘 ) ,+𝑑 = 𝑓 (𝑘 ) (𝑥0−)

∫ +∞

0
𝑧𝑑 (𝐾 (𝑧))2𝑑𝑧.

𝐼 (𝑘 )𝑑 = 𝐼 (𝑘 ) ,+𝑑 + 𝐼 (𝑘 ) ,−𝑑 ,

𝐼 (𝑘 )𝑑𝑥 ,𝑑𝑦
=

⎧⎪⎨
⎪⎩
𝐼 (𝑘 )𝑑𝑥

, 𝑑𝑦 = 0,
(𝐼 (𝑘 ) ,+𝑑𝑥

𝑔 (𝑘 ) (𝑥0−) + 𝐼 (𝑘 ) ,−𝑑𝑥
𝑔 (𝑘 ) (𝑥0+)), 𝑑𝑦 = 1,

(𝐼 (𝑘 ) ,+𝑑𝑥
((𝑔 (𝑘 ) (𝑥0−))2 + 𝜎2

(𝑘 ) ) + 𝐼
(𝑘 ) ,−
𝑑𝑥

((𝑔 (𝑘 ) (𝑥0+))2 + 𝜎2
(𝑘 ) )), 𝑑𝑦 = 2,

Σ (𝑚)
𝑑𝑥 :𝑑𝑦

=
𝑀∑︂
𝑘=1 

⟨︁(a(𝑚) )2p(𝑘 ) ⟩︁ 𝐼 (𝑘 )
𝑑𝑥 ,𝑑𝑦

,

Σ (𝑚) =

⎛
⎜⎜⎜⎜⎜⎝

Σ (𝑚)
0:0 Σ (𝑚)

0:1 Σ (𝑚)
1:0 Σ (𝑚)

1:1 Σ (𝑚)
2:0

Σ (𝑚)
0:1 Σ (𝑚)

0:2 Σ (𝑚)
1:1 Σ (𝑚)

1:2 Σ (𝑚)
2:1

Σ (𝑚)
1:0 Σ (𝑚)

1:1 Σ (𝑚)
2:0 Σ (𝑚)

2:1 Σ (𝑚)
3:0

Σ (𝑚)
1:1 Σ (𝑚)

1:2 Σ (𝑚)
2:1 Σ (𝑚)

2:2 Σ (𝑚)
3:1

Σ (𝑚)
2:0 Σ (𝑚)

2:1 Σ (𝑚)
3:0 Σ (𝑚)

3:1 Σ (𝑚)
4:0

⎞
⎟⎟⎟⎟⎟⎠ ,
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𝑢−𝑝 =

0 ∫
−∞ 

𝑧𝑝𝐾 (𝑧)𝑑𝑧, 𝑢+𝑝 =

+∞ ∫

0 

𝑧𝑝𝐾 (𝑧)𝑑𝑧,

𝑢𝑝 = 𝑢−𝑝 + 𝑢+𝑝 ,
𝑒 (𝑚)
𝑝𝑥 , 𝑝𝑦

= (𝑔 (𝑚) (𝑥0)) 𝑝𝑦 · ( 𝑓 (𝑚) (𝑥0−)𝑢+𝑝𝑥
+ 𝑓 (𝑚) (𝑥0+)𝑢−𝑝𝑥

), 𝑝𝑦 ∈ {0, 1}.

Now we are ready to formulate our main result on the asymptotic behavior of 
mLLRE.

Theorem 1. Assume that the following conditions hold.

1. For all 𝑘 = 1, 𝑀 , there exist 𝑓 (𝑘 ) (𝑥0±), 𝑔 (𝑘 ) (𝑥0±).

2. 𝑔 (𝑚) is twice continuously differentiable in some neighbourhood 𝐵 of 𝑥0.

3. For all 𝑘, 𝑘1, 𝑘2 = 1, 𝑀 the limits
⟨︁(a(𝑚) )2p(𝑘 ) ⟩︁ := lim 

𝑛→+∞
⟨︁(a(𝑚) )2p(𝑘 ) ⟩︁

𝑛
,

⟨︁
a(𝑚)p(𝑘1 )p(𝑘2 ) ⟩︁ := lim 

𝑛→∞
⟨︁
a(𝑚)p(𝑘1 )p(𝑘2 ) ⟩︁

𝑛

exist and are finite.

4. There exists lim 
𝑛→∞ Γ𝑛 = Γ, where Γ𝑛 = (⟨︁p(𝑘1 )p(𝑘2 ) ⟩︁

𝑛
)𝑀𝑘1 ,𝑘2=1.

5. ℎ = ℎ𝑛 = 𝐻𝑛−1/5.

6. For some 𝐴 > 0 and all 𝑧 such that |𝑧 | > 𝐴, 𝐾 (𝑧) = 0.

7. Integrals 
∫ ∞
−∞ |𝑧 |𝐾 (𝑧)𝑑𝑧 and 

∫ ∞
−∞ 𝑧4(𝐾 (𝑧))2𝑑𝑧 are finite.

8. 𝑓 (𝑘 ) (𝑥), 𝑔 (𝑘 ) (𝑥) are bounded for 𝑥 ∈ 𝐵 for all 𝑘 = 1, 𝑀 .

9. 𝑒 (𝑚)
2,0 𝑒

(𝑚)
0,0 − (𝑒 (𝑚)

1,0 )2 ≠ 0.

10. E
[︂
𝜀4
𝑗 | 𝜅 𝑗 = 𝑘

]︂
< ∞ for all 𝑘 = 1, 𝑀 .

Then
𝑛2/5(𝑔̂ (𝑚)

𝑛 (𝑥0) − 𝑔 (𝑚) (𝑥0)) W −→ 𝑁 (𝜇 (𝑚) (𝑥0), 𝑆2
(𝑚) (𝑥0)), (5)

where 𝜇 (𝑚) (𝑥0) and 𝑆2
(𝑚) (𝑥0) are defined by

𝜇 (𝑚) (𝑥0) = 𝐻2 · 𝑔̈
(𝑚) (𝑥0)

2 
·
(𝑒 (𝑚)

2,0 )2 − 𝑒 (𝑚)
1,0 𝑒

(𝑚)
3,0

𝑒 (𝑚)
2,0 𝑒

(𝑚)
0,0 − (𝑒 (𝑚)

1,0 )2
,

𝑆2
(𝑚) (𝑥0) = 1 

𝐻
((𝑔 (𝑚) (𝑥0))2Σ̃ (𝑚)

0 − 2(𝑔 (𝑚) (𝑥0))Σ̃ (𝑚)
1 + Σ̃ (𝑚)

2 ),

Σ̃ (𝑚)
𝑘 = 𝑒 (𝑚)

2,2 Σ (𝑚)
0:𝑘 − 2𝑒 (𝑚)

1,2 Σ (𝑚)
1:𝑘 + 𝑒 (𝑚)

1,1 Σ (𝑚)
2:𝑘 ,
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𝑒 (𝑚)
𝑝,𝑞 =

𝑒 (𝑚)
𝑝,0 𝑒

(𝑚)
𝑞,0

(𝑒 (𝑚)
2,0 𝑒

(𝑚)
0,0 − (𝑒 (𝑚)

1,0 )2)2
,

where

𝑔̈ (𝑚) (𝑥) = 𝑑2𝑔 (𝑚) (𝑥)
𝑑𝑥2 .

4 Optimal bandwidth selection

The mLLRE 𝑔̂ (𝑚)
𝑛 (𝑥0) defined by (4) depends on the bandwidth ℎ, a tuning parameter 

that must be selected by the researcher to obtain an accurate estimator. The accuracy 
of 𝑔̂ (𝑚)

𝑛 (𝑥0) usually is measured by the mean squared error

MSE(𝑔̂ (𝑚)
𝑛 (𝑥0)) = E[(𝑔̂ (𝑚)

𝑛 (𝑥0) −𝑔 (𝑚) (𝑥0))2] = Var[𝑔̂ (𝑚)
𝑛 (𝑥0)] + (bias(𝑔̂ (𝑚)

𝑛 (𝑥0)))2,

where bias(𝑔̂ (𝑚)
𝑛 (𝑥0)) = E[𝑔̂ (𝑚)

𝑛 (𝑥0)] − 𝑔 (𝑚) (𝑥0) is the estimator’s bias. In Theorem 
1 we considered the choice ℎ = ℎ𝑛 = 𝐻𝑛−1/5, where 𝐻 is some fixed constant. This 
rate of convergence for the bandwidth as 𝑛 → ∞ is optimal, since if ℎ𝑛 vanishes 
slower, the estimator has inappropriately high bias, while for more rapid ℎ𝑛 decay 
the variance of the estimator would be inappropriate. So, we need to choose the 
best constant 𝐻. By Theorem 1, 𝑛2/5(𝑔̂ (𝑚)

𝑛 (𝑥0) − 𝑔 (𝑚) (𝑥0)) converges weakly to 
𝜂 ∼ 𝑁 (𝜇 (𝑚) (𝑥0), 𝑆2

(𝑚) (𝑥0)), so we will measure the asymptotic accuracy of 𝑔̂ (𝑚)
𝑛 (𝑥0)

by the asymptotic MSE (aMSE):

aMSE(𝐻) = E[𝜂2] =
(︂
𝜇 (𝑚) (𝑥0)

)︂2
+ 𝑆2

(𝑚) (𝑥0) = 𝐻4 · 𝐸2
(𝑚) +

1 
𝐻

· 𝑉(𝑚) ,

where

𝐸 (𝑚) =
𝑔̈ (𝑚) (𝑥0)

2 
·
(𝑒 (𝑚)

2,0 )2 − 𝑒 (𝑚)
1,0 𝑒

(𝑚)
3,0

𝑒 (𝑚)
2,0 𝑒

(𝑚)
0,0 − (𝑒 (𝑚)

1,0 )2
,

𝑉(𝑚) = (𝑔 (𝑚) (𝑥0))2Σ̃ (𝑚)
0 − 2(𝑔 (𝑚) (𝑥0))Σ̃ (𝑚)

1 + Σ̃ (𝑚)
2 .

An optimal bandwidth constant, which minimizes aMSE, is

𝐻 (𝑚)
∗ =

(︄
𝑉(𝑚)

4𝐸2
(𝑚)

)︄1/5

.

Observe that 𝐻 (𝑚)
∗ cannot be calculated by the data, since it depends on unknown 

distributions of the mixture components. So it is an infeasible theoretically optimal 
bandwidth constant which can be used in comparisons to some empirical bandwidth 
selection rules.
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5 Proofs

The proof of Theorem 1 is based on two lemmas.
Let

S(𝑚)
𝑛 = (𝑆 (𝑚)

0,0 , 𝑆
(𝑚)
0,1 , 𝑆

(𝑚)
0,2 , 𝑆

(𝑚)
1,0 , 𝑆

(𝑚)
2,0 )𝑇 , e𝑚𝑛 = E[S(𝑚)

𝑛 ] .
Δ(𝑚)
𝑛 =

√
𝑛ℎ(S(𝑚)

𝑛 − e(𝑚)
𝑛 ). (6)

Lemma 1. Under Assumptions 1--4 and 6--10 of Theorem 1, if ℎ = ℎ𝑛 → 0 and 
𝑛ℎ𝑛 → ∞ as 𝑛 → ∞, then

Δ(𝑚)
𝑛

W −→ Δ(𝑚)
∞ ∼ 𝑁 (0,Σ (𝑚) ). (7)

For any a = (𝑎0,0, 𝑎0,1, 𝑎1,0, 𝑎1,1, 𝑎2,0)𝑇 ∈ R
5 let

U(a) = 𝑎2,0𝑎0,1 − 𝑎1,1𝑎1,0

𝑎2,0𝑎0,0 − 𝑎2
1,0

, (8)

Lemma 2. Under the assumptions of Theorem 1

U(e(𝑚)
𝑛 ) − 𝑔 (𝑚) (𝑥0) = ℎ2

2 
· 𝑔̈ (𝑚) (𝑥0) ·

(𝑒 (𝑚)
2,0 )2 − 𝑒 (𝑚)

1,0 𝑒
(𝑚)
3,0

𝑒 (𝑚)
2,0 𝑒

(𝑚)
0,0 − (𝑒 (𝑚)

1,0 )2
+ 𝑜(ℎ2), 𝑛 → ∞,

Proof of Theorem 1. Consider

𝑛2/5(𝑔̂ (𝑚) (𝑥0) − 𝑔 (𝑚) (𝑥0)) = 𝑛2/5(U(S(𝑚)
𝑛 ) − U(e(𝑚)

𝑛 )) + 𝑛2/5(U(e(𝑚)
𝑛 ) − 𝑔 (𝑚) (𝑥0)).

(9)
Lemma 1 and the continuous mapping theorem (see Theorem 3.1 in [1]) yield

𝑛2/5(U(S(𝑚)
𝑛 ) − U(e(𝑚)

𝑛 )) W −→ 1 √
𝐻

U̇𝑇 (e(𝑚)
𝑛 )Δ(𝑚)

∞ ,

where

U̇(a) =
(︃

𝑑

𝑑𝑎0,0
U(a), 𝑑

𝑑𝑎0,1
U(a), 𝑑

𝑑𝑎1,0
U(a), 𝑑

𝑑𝑎1,1
U(a), 𝑑

𝑑𝑎2,0
U(a)

)︃𝑇

is the gradient of U. Tedious but straightforward algebra yields

Var
[︃

1 √
𝐻

U̇𝑇 (e(𝑚)
𝑛 )Δ(𝑚)

∞

]︃
=

1 
𝐻

U̇(e(𝑚)
𝑛 )𝑇Σ (𝑚) U̇(e(𝑚)

𝑛 ) = 𝑆2
(𝑚) (𝑥0). (10)

By Lemma 2 for ℎ = 𝐻𝑛−1/5,

𝑛2/5(U(e(𝑚)
𝑛 ) − 𝑔 (𝑚) (𝑥0)) → 𝐻2

2 
· 𝑔̈ (𝑚) (𝑥0) ·

(𝑒 (𝑚)
2,0 )2 − 𝑒 (𝑚)

1,0 𝑒
(𝑚)
3,0

𝑒 (𝑚)
2,0 𝑒

(𝑚)
0,0 − (𝑒 (𝑚)

1,0 )2
. (11)

Combining (9)--(11) one obtains the statement of Theorem 1. □
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To demonstrate Lemma 1 we need the Lindeberg–Feller central limit theorem.
Lemma 3. (Lindeberg’s CLT) Let {𝜂 𝑗:𝑛}𝑛𝑗=1, 𝑛 = 1, 2, . . . , be a set of random vectors 
in R𝑑 , satisfying the following assumptions.

1. For any fixed 𝑛 ≥ 1, vectors {𝜂 𝑗:𝑛}𝑛𝑗=1 are mutually independent.

2. For all 𝑗 = 1, 𝑛, 𝑛 ≥ 1, one has E[𝜂 𝑗:𝑛] = 0.

3. If 𝜎2
𝑗:𝑛 = Cov(𝜂 𝑗:𝑛), then for 𝜎2

𝑛 =
∑︁𝑛

𝑗=1 𝜎
2
𝑗:𝑛 there exists

𝜎2 = lim 
𝑛→∞𝜎

2
𝑛 ,

morover 𝜎2 is a positive semidefinite matrix.

4. For some 𝑠 > 2 the following convergence holds:

𝑀2(𝑠) =
𝑛∑︂
𝑗=1 

E[min(|𝜂 𝑗:𝑛 |2, |𝜂 𝑗:𝑛 |𝑠)] → 0.

Then
𝑛∑︂
𝑗=1 

𝜂 𝑗:𝑛
W −→ 𝑁 (0, 𝜎2).

For the proof, see [1], Theorem 8.4.1.

Proof of Lemma 1. To simplify notations, we introduce formally random vectors 
(𝑋(𝑚) , 𝑌(𝑚) , 𝜀 (𝑚) ) with the distribution of (𝑋 𝑗 , 𝑌 𝑗 , 𝜀 𝑗 ) given 𝜅 𝑗 = 𝑚.

Conditions of Lemma 3 will be verified for {𝜂 (𝑚)
𝑗:𝑛 }, where

𝜂 (𝑚)
𝑗:𝑛 = 𝑎 (𝑚)

𝑗:𝑛 · 𝜂′𝑗:𝑛, 𝜂′𝑗:𝑛 = (𝜂 𝑗:𝑛 − E[𝜂 𝑗:𝑛]),

𝜂 𝑗:𝑛 =
1 √
𝑛ℎ

· 𝐾
(︃
𝑥0 − 𝑋 𝑗

ℎ 

)︃(︃
1, 𝑌 𝑗 , 

(︃
𝑥0 − 𝑋 𝑗

ℎ 

)︃
, 
(︃
𝑥0 − 𝑋 𝑗

ℎ 

)︃
𝑌 𝑗 , 

(︃
𝑥0 − 𝑋 𝑗

ℎ 

)︃2)︃𝑇

.

Similarly we define random variables 𝜂 (𝑚):𝑛 (𝜂′(𝑚):𝑛) that have a distribution of 𝜂 𝑗:𝑛

(𝜂′𝑗:𝑛) given 𝜅 𝑗 = 𝑚. Obviously, Δ(𝑚)
𝑛 =

∑︁𝑛
𝑗=1 𝜂

(𝑚)
𝑗:𝑛 .

The first condition of Lemma 3 holds since (𝑋 𝑗 , 𝑌 𝑗 ) are independent for different 
𝑗 . The second condition follows from the construction of 𝜂 (𝑚)

𝑗:𝑛 .
From now, we will proceed to the third condition of Lemma 3. For some 𝑝𝑥, 𝑝𝑦 , 𝑞𝑥 ,

𝑞𝑦 , consider

Cov(𝑆 (𝑚)
𝑝𝑥 , 𝑝𝑦

, 𝑆 (𝑚)
𝑞𝑥 ,𝑞𝑦

) = Σ (𝑚)
𝑝𝑥 , 𝑝𝑦 :𝑞𝑥 ,𝑞𝑦

(𝑛) = 𝑄 (𝑚)
1 (𝑛, ℎ) −𝑄 (𝑚)

2 (𝑛, ℎ),

𝑄 (𝑚)
1 (𝑛, ℎ) = 1 

𝑛ℎ

𝑛∑︂
𝑗=1 

(𝑎 (𝑚)
𝑗:𝑛 )2E

[︄(︃
𝐾

(︃
𝑥0 − 𝑋 𝑗

ℎ 

)︃)︃2 (︃𝑥0 − 𝑋 𝑗

ℎ 

)︃𝑝𝑥+𝑞𝑥

𝑌
𝑝𝑦+𝑞𝑦

𝑗

]︄
,
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𝑄 (𝑚)
2 (𝑛, ℎ) = 1 

𝑛ℎ

𝑛∑︂
𝑗=1 

(𝑎 (𝑚)
𝑗:𝑛 )2E

[︃
𝐾

(︃
𝑥0 − 𝑋 𝑗

ℎ 

)︃(︃
𝑥0 − 𝑋 𝑗

ℎ 

)︃𝑝𝑥

𝑌
𝑝𝑦

𝑗

]︃

× E
[︃
𝐾

(︃
𝑥0 − 𝑋 𝑗

ℎ 

)︃(︃
𝑥0 − 𝑋 𝑗

ℎ 

)︃𝑞𝑥

𝑌
𝑞𝑦

𝑗

]︃
.

We will investigate 𝑄 (𝑚)
1 (𝑛, ℎ) and 𝑄 (𝑚)

2 (𝑛, ℎ) separately. First of all, note that

𝑄 (𝑚)
1 (𝑛, ℎ)

=
1 
ℎ

𝑀∑︂
𝑘=1 

⟨︁(a(𝑚) )2p(𝑘 ) ⟩︁
𝑛

E

[︄(︃
𝐾

(︃
𝑥0 − 𝑋(𝑘 )

ℎ 

)︃)︃2 (︃𝑥0 − 𝑋(𝑘 )
ℎ 

)︃𝑝𝑥+𝑞𝑥

𝑌
𝑝𝑦+𝑞𝑦

(𝑘 )

]︄
.

Consider the expectations in the sum and denote 𝑑𝑥 = 𝑝𝑥 + 𝑞𝑥 and 𝑑𝑦 = 𝑝𝑦 + 𝑞𝑦 ≤ 4. 
Then, for all 𝑘 = 1, 𝑀 ,

1 
ℎ

E

[︄(︃
𝐾

(︃
𝑥0 − 𝑋(𝑘 )

ℎ 

)︃)︃2 (︃𝑥0 − 𝑋(𝑘 )
ℎ 

)︃𝑝𝑥+𝑞𝑥

𝑌
𝑝𝑦+𝑞𝑦

(𝑘 )

]︄

=
𝑑𝑦∑︂
𝑙=0 

(︃
𝑑𝑦
𝑙

)︃
· E
[︂
𝜀
𝑑𝑦−𝑙
(𝑘 )

]︂
·

+∞ ∫
−∞ 

(𝐾 (𝑧))2𝑧𝑑𝑥 (𝑔 (𝑘 ) (𝑥0 − ℎ𝑧))𝑙 𝑓 (𝑘 ) (𝑥0 − ℎ𝑧)𝑑𝑧,

where 
(︁
𝑛
𝑘

)︁
= 𝑛!/(𝑘!(𝑛 − 𝑘)!) is the binomial coefficient. By Assumptions 1, 6 and 7 

we obtain
+∞ ∫

−∞ 

(𝐾 (𝑧))2𝑧𝑑𝑥 (𝑔 (𝑘 ) (𝑥0 − ℎ𝑧))𝑙 𝑓 (𝑘 ) (𝑥0 − ℎ𝑧)𝑑𝑧

→ (𝑔 (𝑘 ) (𝑥0−))𝑙 𝐼 (𝑘 ) ,+𝑑𝑥
+ (𝑔 (𝑘 ) (𝑥0+))𝑙 𝐼 (𝑘 ) ,−𝑑𝑥

as 𝑛 → ∞. So, for 𝑑𝑥 ∈ {0, 1, 2, 3, 4} and 𝑑𝑦 ∈ {0, 1, 2},

1 
ℎ

E

[︄(︃
𝐾

(︃
𝑥0 − 𝑋(𝑘 )

ℎ 

)︃)︃2 (︃𝑥0 − 𝑋(𝑘 )
ℎ 

)︃𝑑𝑥

𝑌
𝑑𝑦

(𝑘 )

]︄
→ 𝐼 (𝑘 )𝑑𝑥 ,𝑑𝑦

, 𝑛 → ∞.

From the assumption E[𝜀 (𝑘 ) ] = 0 and Assumption 4, we obtain

𝑄 (𝑚)
1 (𝑛, ℎ) →

𝑀∑︂
𝑘=1 

⟨︁(a(𝑚) )2p(𝑘 ) ⟩︁ 𝐼 (𝑘 )
𝑑𝑥 ,𝑑𝑦

, 𝑛 → ∞.

Now we will show that 𝑄 (𝑚)
2 (𝑛, ℎ) → 0 as 𝑛 → ∞. Note that

𝑄 (𝑚)
2 (𝑛, ℎ) = ℎ

𝑀∑︂
𝑘1 ,𝑘2=1

⟨︁(a(𝑚) )2𝑝 (𝑘1 ) 𝑝 (𝑘2 ) ⟩︁
𝑛
𝑄 (𝑘1 )

𝑝𝑥 , 𝑝𝑦
(𝑛, ℎ)𝑄 (𝑘2 )

𝑞𝑥 ,𝑞𝑦
(𝑛, ℎ),

𝑄 (𝑘 )
𝑝𝑥 , 𝑝𝑦

(𝑛, ℎ) =
+∞ ∫

−∞ 

+∞ ∫
−∞ 

𝐾 (𝑧)𝑧𝑝𝑥 (𝑔 (𝑘 ) (𝑥0 − ℎ𝑧) + 𝑢)𝑝𝑦 𝑓 (𝑘 ) (𝑥0 − ℎ𝑧)𝑑𝑧𝑑𝐹 (𝑘 )
𝜀 (𝑢),
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where 𝐹 (𝑘 )
𝜀 (𝑢) = P

(︁
𝜀 (𝑘 ) < 𝑢

)︁
is the cumulative distribution function of 𝜀 (𝑘 ) . The 

multiple integrals 𝑄 (𝑘 )
𝑝𝑥 , 𝑝𝑦

(𝑛, ℎ) are bounded for 𝑛 ≥ 1, thus from Assumption 3 we 

obtain 𝑄 (𝑚)
2 (𝑛, ℎ) → 0 as 𝑛 → ∞.

Combining the asymptotics of 𝑄 (𝑚)
1 (𝑛, ℎ) and 𝑄 (𝑚)

2 (𝑛, ℎ) as 𝑛 → ∞, we obtain 

the asymptotics of covariances for Δ(𝑚)
𝑛 :

Σ (𝑚)
𝑝𝑥 , 𝑝𝑦 :𝑞𝑥 ,𝑞𝑦

(𝑛) →
𝑀∑︂
𝑘=1 

⟨︁(a(𝑚) )2p(𝑘 ) ⟩︁ 𝐼 (𝑘 )𝑝𝑥+𝑞𝑥 , 𝑝𝑦+𝑞𝑦
= Σ (𝑚)

𝑝𝑥+𝑞𝑥 :𝑝𝑦+𝑞𝑦
, 𝑛 → ∞.

The third condition of Lemma 3 holds.
Finally we will show that the fourth condition of Lemma 3 holds. For some 𝑠 > 2, 

note that

𝑀2 (𝑠) =
𝑛∑︂
𝑗=1 

E
[︁
min(|𝜂 𝑗:𝑛 |2, |𝜂 𝑗:𝑛 |𝑠)

]︁

=
𝑛∑︂
𝑗=1 

𝑀∑︂
𝑘=1 

𝑝 (𝑘 )𝑗:𝑛E
[︂
min(|𝑎 (𝑚)

𝑗:𝑛 |2 · |𝜂′(𝑘 ):𝑛 |2, |𝑎 (𝑚)
𝑗:𝑛 |𝑠 · |𝜂′(𝑘 ):𝑛 |𝑠)

]︂

≤ 𝐶Γ ·
𝑛∑︂
𝑗=1 

𝑀∑︂
𝑘=1 

E
[︂
min(|𝜂′(𝑘 ):𝑛 |2, |𝜂′(𝑘 ):𝑛 |𝑠)

]︂
,

since 𝑝 (𝑚)
𝑗:𝑛 ≤ 1, |𝑎 (𝑚)

𝑗:𝑛 |2 ≤ max(1, sup 𝑗=1,𝑛 |𝑎
(𝑚)
𝑗:𝑛 |𝑠) = 𝐶Γ < ∞. By the inequality

|a + b|𝑠 ≤ 2𝑠−1 (|a|𝑠 + |b|𝑠), for any a, b ∈ R
𝑑 , (12)

we obtain
𝑛∑︂
𝑗=1 

𝑀∑︂
𝑘=1 

E
[︂
min(|𝜂′(𝑘 ):𝑛 |2, |𝜂′(𝑘 ):𝑛 |𝑠)

]︂

≤ 2𝑠−1 ·
𝑀∑︂
𝑘=1 

𝑛 · (︁E [︁min
(︁|𝜂 (𝑘 ):𝑛 |2, |𝜂 (𝑘 ):𝑛 |𝑠)︁]︁ + max

(︁|E [︁𝜂 (𝑘 ):𝑛]︁ |2, |E [︁𝜂 (𝑘 ):𝑛]︁ |𝑠)︁)︁ .
We will show that, as 𝑛 → ∞,

𝑛 · E
[︁
min

(︁|𝜂 (𝑘 ):𝑛 |2, |𝜂 (𝑘 ):𝑛 |𝑠)︁]︁→ 0, (13)
𝑛 · max

(︁|E[𝜂 (𝑘 ):𝑛] |2, |E[𝜂 (𝑘 ):𝑛] |𝑠
)︁→ 0. (14)

Let us show (14). Observe that for any 𝑝 ≥ 2

𝑛 · |E[𝜂 (𝑘 ):𝑛] |𝑝 → 0, 𝑛 → ∞. (15)

Really, the left-hand side of (15) can be expressed as follows:

𝑛 · |E[𝜂 (𝑘 ):𝑛] |𝑝 = 𝑛 ·
(︂
𝐸 (𝑘 )

0,0 + 𝐸 (𝑘 )
0,1 + 𝐸 (𝑘 )

1,0 + 𝐸 (𝑘 )
1,1 + 𝐸 (𝑘 )

2,0

)︂𝑝/2
,
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where 𝐸 (𝑘 )
𝑝𝑥 , 𝑝𝑦

= ((𝑛ℎ)−1/2 · E[𝐾 ((𝑥0 − 𝑋(𝑘 ) )/ℎ)((𝑥0 − 𝑋(𝑘 ) )/ℎ)𝑝𝑥𝑌
𝑝𝑦

(𝑘 ) ])2.
For instance,

𝐸 (𝑘 )
2,0 ≤ ℎ

𝑛 
·
⎛
⎝ +∞ ∫
−∞ 

𝑧2𝐾 (𝑧) 𝑓 (𝑘 ) (𝑥0 − ℎ𝑧)𝑑𝑧
⎞
⎠

2

∼ ℎ

𝑛 
· 𝐶 (𝑚)

2,0 ,

as 𝑛 → ∞, where

𝐶 (𝑚)
2,0 =

(︂
𝑓 (𝑘 ) (𝑥0+)𝑢−2 + 𝑓 (𝑘 ) (𝑥0−)𝑢+2

)︂2
.

By similar reasoning for the other terms we obtain

𝑛 · |E[𝜂 (𝑘 ):𝑛] |𝑝 ≤ 𝑛 ·
(︃
ℎ

𝑛 

)︃𝑝/2
· 𝐶 (𝑘 ) , (16)

for some 𝐶 (𝑘 ) < ∞.
By Assumption 4,

𝑛1−𝑝/2 · ℎ𝑝/2 → 0, 𝑛 → ∞, (17)

since 𝑝/2 ≥ 1. Then (16) and (17) yield (14).
To show (13), observe that for any 𝜏 > 0

E
[︁
min

(︁|𝜂 (𝑘 ):𝑛 |2, |𝜂 (𝑘 ):𝑛 |𝑠)︁]︁ ≤ 𝑍𝑛 (𝜏) + 𝜏𝑠−2𝑍𝑛 (0), (18)

where
𝑍𝑛 (𝜏) = E

[︁|𝜂 (𝑘 ):𝑛 |21{|𝜂 (𝑘 ):𝑛 | ≥ 𝜏}]︁ . (19)

We will show that 𝑍𝑛 (0) is bounded and 𝑍𝑛 (𝜏) → 0 as 𝑛 → ∞ for any 𝜏 > 0. So, 
taking 𝜏 small enough we can make the right-hand side of (18) as small as desired.

Let

𝑉 (𝑧, 𝑥, 𝑢) = 𝐾2 (𝑧)(1 + (𝑔 (𝑘 ) (𝑥) + 𝑢)2 + 𝑧2 + 𝑧2 (𝑔 (𝑘 ) (𝑥) + 𝑢)2 + 𝑧4).
Then

𝑍𝑛 (𝜏) = 1 
ℎ

E
[︃
𝑉

(︃
𝑥0 − 𝑋(𝑘 )

ℎ 
, 𝑋(𝑘 ) , 𝜀 (𝑘 )

)︃
1
{︃
𝑉

(︃
𝑥0 − 𝑋(𝑘 )

ℎ 
, 𝑋(𝑘 ) , 𝜀 (𝑘 )

)︃
> 𝜏2𝑛ℎ

}︃]︃

=
1 
ℎ

∫ 𝐴

−𝐴
E
[︂
𝑉
(︂𝑥0 − 𝑥

ℎ 
, 𝑥, 𝜀 (𝑘 )

)︂
1
{︂
𝑉
(︂𝑥0 − 𝑥

ℎ 
, 𝑥, 𝜀 (𝑘 )

)︂
> 𝜏2𝑛ℎ

}︂]︂
𝑓 (𝑘 ) (𝑥)𝑑𝑥

=
∫ 𝐴

−𝐴
E
[︁
𝑉
(︁
𝑧, 𝑥0 − ℎ𝑧), 𝜀 (𝑘 )

)︁
1
{︁
𝑉
(︁
𝑧, 𝑥0 − ℎ𝑧, 𝜀 (𝑘 )

)︁
> 𝜏2𝑛ℎ

}︁]︁
𝑓 (𝑘 ) (𝑥0 − ℎ𝑧)𝑑𝑧.

By Assumption 8, 𝑔 (𝑘 ) and 𝑓 (𝑘 ) are bounded in a neighborhood 𝐵 of 𝑥0. For 𝑛 large 
enough [𝑥0 − ℎ𝐴, 𝑥0 + ℎ𝐴] ∈ 𝐵, so for −𝐴 ≤ 𝑧 ≤ 𝐴,

𝑉 (𝑧, 𝑥0 − ℎ𝑧, 𝑢) 𝑓 (𝑘 ) (𝑥0 − ℎ𝑧) ≤ 𝑉 (𝑧, 𝑢), (20)

where

𝑉 (𝑧, 𝑢) = 𝑓 𝐾2 (𝑧)(1 + (𝑔 + |𝑢 |)2 + 𝑧2 + 𝑧2(𝑔 + |𝑢 |)2 + 𝑧4),
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𝑓 = sup 
𝑥∈𝐵

𝑓 (𝑘 ) (𝑥), 𝑔 = sup 
𝑥∈𝐵

|𝑔 (𝑘 ) (𝑥) |.

By Assumptions 7 and 10,
∫ 𝐴

−𝐴
E
[︁
𝑉 (𝑧, 𝜀 (𝑘 ) )

]︁
𝑑𝑧 = 𝑉∗ < ∞. (21)

So, by (20), 𝑍𝑛 (0) < 𝑉∗.
Observe that

1
{︂
𝑉
(︂𝑥0 − 𝑥

ℎ 
, 𝑥, 𝑢

)︂
> 𝜏2𝑛ℎ

}︂
→ 0

as 𝑛 → ∞, since 𝑛ℎ → ∞ by Assumption 5. So, with (20) and (21) in mind, by the 
Lebesgue dominated convergence theorem we obtain 𝑍𝑛(𝜏) → 0 as 𝑛 → ∞ for any 
𝜏 > 0.

Thus, for any 𝛿 > 0 we can take 𝜏 > 0 so small that 𝜏𝑠−2𝑍𝑛 (0) < 𝜏𝑠−2𝑉∗ < 𝛿/2
and then 𝑛0 so large that 𝑍𝑛 (𝜏) < 𝛿/2 for 𝑛 > 𝑛0. By (18) this yields 𝑀2(𝑠) → 0 as 
𝑛 → ∞. So Assumption 4 of Lemma 3 holds.

Applying Lemma 3 to 𝜂 (𝑚)
𝑗:𝑛 we obtain the statement of Lemma 1. □

Proof of Lemma 2. Consider 𝑐 (𝑚)
𝑛 = 𝑒 (𝑚)

2,0:𝑛𝑒
(𝑚)
0,1:𝑛−𝑒

(𝑚)
1,1:𝑛𝑒

(𝑚)
1,0:𝑛 and 𝑑 (𝑚)

𝑛 = 𝑒 (𝑚)
2,0:𝑛𝑒

(𝑚)
0,0:𝑛−

(𝑒 (𝑚)
1,0:𝑛)2, where

𝑒 (𝑚)
𝑝𝑥 , 𝑝𝑦 :𝑛 = E[𝑆 (𝑚)

𝑝𝑥 , 𝑝𝑦
] =

+∞ ∫
−∞ 

𝐾 (𝑧)𝑧𝑝𝑥𝑔 (𝑚) (𝑥0 − ℎ𝑧) 𝑓 (𝑚) (𝑥0 − ℎ𝑧)𝑑𝑧. (22)

By continuity of U and convergence e(𝑚)
𝑛 → e(𝑚) , we get U(e(𝑚)

𝑛 ) → U(e(𝑚) ) =
𝑔 (𝑚) (𝑥0).

We will examine the rate of convergence to zero for the difference

U(e(𝑚)
𝑛 ) − 𝑔 (𝑚) (𝑥0) = 𝑐 (𝑚)

𝑛 − 𝑑 (𝑚)
𝑛 𝑔 (𝑚) (𝑥0)
𝑑 (𝑚)
𝑛

. (23)

From (22) one obtains

𝑐 (𝑚)
𝑛 =

+∞ ∫
−∞ 

𝑔 (𝑚) (𝑥0 − ℎ𝑧)𝐾 (𝑧)(𝑒 (𝑚)
2,0:𝑛 − 𝑧𝑒

(𝑚)
1,0:𝑛) 𝑓 (𝑚) (𝑥0 − ℎ𝑧)𝑑𝑧 (24)

and

𝑑 (𝑚)
𝑛 =

+∞ ∫
−∞ 

𝐾 (𝑧)(𝑒 (𝑚)
2,0:𝑛 − 𝑧𝑒

(𝑚)
1,0:𝑛) 𝑓 (𝑚) (𝑥0 − ℎ𝑧)𝑑𝑧. (25)

By Taylor’s expansion for 𝑔 (𝑚) in the neighborhood of 𝑥0, we obtain, as 𝑛 → ∞,

𝑐 (𝑚)
𝑛 − 𝑑 (𝑚)

𝑛 𝑔 (𝑚) (𝑥0)
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=

+∞ ∫
−∞ 

(𝑔 (𝑚) (𝑥0 − ℎ𝑧) − 𝑔 (𝑚) (𝑥0))𝐾 (𝑧)(𝑒 (𝑚)
2,0:𝑛 − 𝑧𝑒

(𝑚)
1,0:𝑛) 𝑓 (𝑚) (𝑥0 − ℎ𝑧)𝑑𝑧

= 𝑔̇ (𝑚) (𝑥0)(−ℎ)
𝐴∫

−𝐴 

𝑧𝐾 (𝑧)(𝑒 (𝑚)
2,0:𝑛 − 𝑧𝑒

(𝑚)
1,0:𝑛) 𝑓 (𝑚) (𝑥0 − ℎ𝑧)𝑑𝑧

+ ℎ2

2 
· 𝑔̈ (𝑚) (𝑥0)

𝐴∫

−𝐴 

𝑧2𝐾 (𝑧)(𝑒 (𝑚)
2,0:𝑛 − 𝑧𝑒

(𝑚)
1,0:𝑛) 𝑓 (𝑚) (𝑥0 − ℎ𝑧)𝑑𝑧

+
𝐴∫

−𝐴 

𝑅(ℎ𝑧)𝐾 (𝑧)(𝑒 (𝑚)
2,0:𝑛 − 𝑧𝑒

(𝑚)
1,0:𝑛) 𝑓 (𝑚) (𝑥0 − ℎ𝑧)𝑑𝑧 =: 𝐽 (𝑚)

1:𝑛 + 𝐽 (𝑚)
2:𝑛 + 𝐽 (𝑚)

3:𝑛 ,

where 𝑅(𝑡) is some function, such that |𝑅(𝑡) |/𝑡2 → 0 as 𝑡 → 0. By (22),

𝐽 (𝑚)
1:𝑛 = 0 (26)

and
𝐽 (𝑚)

2:𝑛 =
ℎ2

2 
· 𝑔̈ (𝑚) (𝑥0)((𝑒 (𝑚)

2,0:𝑛)2 − 𝑒 (𝑚)
1,0:𝑛𝑒

(𝑚)
3,0:𝑛). (27)

The asymptotics of
𝐽 (𝑚)

3:𝑛 = 𝑒 (𝑚)
2,0:𝑛𝐽

(𝑚)
𝑅,0:𝑛 − 𝑒

(𝑚)
2,0:𝑛𝐽

(𝑚)
𝑅,1:𝑛 (28)

remains to be examined as 𝑛→ ∞, where

𝐽 (𝑚)
𝑅,𝑝:𝑛 =

∫ 𝐴

−𝐴
𝑅(ℎ𝑧)𝑧𝑝𝐾 (𝑧) 𝑓 (𝑚) (𝑥0 − ℎ𝑧)𝑑𝑧.

where 𝑝 ∈ {0, 1}. Since 𝑒 (𝑚)
𝑝,𝑞:𝑛 → 𝑒 (𝑚)

𝑝,𝑞 , it suffices to investigate the asymptotics of 
𝐽 (𝑚)
𝑅,𝑝:𝑛.

Note that for 𝐽 (𝑚) ,+
𝑅,𝑝:𝑛 =

∫ 𝐴

0 𝑅(ℎ𝑧)𝑧𝑝𝐾 (𝑧) 𝑓 (𝑚) (𝑥0 − ℎ𝑧)𝑑𝑧,

𝐽 (𝑚) ,+
𝑅,𝑝:𝑛 ∼ 𝑓 (𝑚) (𝑥0−)

∫ 𝐴

0
𝑅(ℎ𝑧)𝑧𝑝𝐾 (𝑧)𝑑𝑧, 𝑛 → ∞,

For any 𝜀 ∈ (0, 1), there exists such 𝑁 (𝜀) that |𝑅(𝑡) | ≤ 𝜀𝑡2, 𝑛 ≥ 𝑁 (𝜀). For 
𝑛 ≥ 𝑁 (𝜀),

⃓⃓
⃓⃓ ∫ 𝐴

0
𝑅(ℎ𝑧)𝑧𝑝𝐾 (𝑧)𝑑𝑧

⃓⃓
⃓⃓ ≤ 𝜀ℎ2

∫ 𝐴

0
𝑧2+𝑝𝐾 (𝑧)𝑑𝑧 = 𝑜(ℎ2), 𝑛 → ∞. (29)

Similarly

𝐽 (𝑚) ,−
𝑅,𝑝:𝑛 =

∫ 0

−𝐴
𝑅(ℎ𝑧)𝑧𝑝𝐾 (𝑧) 𝑓 (𝑚) (𝑥0 − ℎ𝑧)𝑑𝑧 = 𝑜(ℎ2), 𝑛 → ∞.

Thus,
𝐽 (𝑚)
𝑅,𝑝:𝑛 = 𝐽 (𝑚) ,+

𝑅,𝑝:𝑛 + 𝐽 (𝑚) ,−
𝑅,𝑝:𝑛 = 𝑜(ℎ2), 𝑛 → ∞. (30)
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From (28) and (30), we get

𝐽 (𝑚)
3:𝑛 = 𝑜(ℎ2), 𝑛 → ∞ (31)

From (26), (27) and (31), we obtain the statement of Lemma 2. □

6 Simulations

6.1 Description of simulations

For simulations we considered a mixture of regressions with 𝑀 = 2 components. The 
concentrations {𝑝 (𝑚)

𝑗:𝑛 } were defined by

𝑝 (1)𝑗:𝑛 =
𝑗

𝑛
, 𝑝 (2)𝑗:𝑛 = 1 − 𝑗

𝑛
, 𝑗 = 1, 𝑛.

The distribution of regressor 𝑋 𝑗 was the same for both components. Its PDF was

𝑓 (𝑡) = 3
2
· 1(0,1/2] (𝑡) +

1
2
· 1(1/2,1) (𝑡), 𝑡 ∈ R.

The distribution of 𝜀 𝑗 was different for different experiments. Regression functions 
were defined as

𝑔 (𝑚) (𝑡) =
{︄

sin(2𝜋𝑡), 𝑚 = 1,
cos(2𝜋𝑡), 𝑚 = 2.

Estimation was performed at 𝑥0 = 1/2, which is a discontinuity point of 𝑓 (𝑡). The 
simulation procedure was as follows:

1. For each sample size 𝑛 ∈ {100, 500, 1000, 5000, 10000}, we generate 𝐵 = 1000
copies of {(𝑋 𝑗 , 𝑌 𝑗 )} 𝑗=1,𝑛 from the described model.

2. In each copy, the modified local linear regression estimator 𝑔̂ (𝑚)
𝑛 (𝑥0) is computed 

at 𝑥0 for each 𝑚 = 1, 𝑀 .

3. Having an array with 𝐵 values of 𝑔̂ (𝑚)
𝑛 (𝑥0), we compute sample bias and standard 

deviation

Bias(𝑚)
𝑛 = 𝑛2/5(E∗ [𝑔̂ (𝑚) (𝑥0)] − 𝑔 (𝑚) (𝑥0)),

Std(𝑚)
𝑛 = 𝑛2/5 ·

√︂
Var∗ [𝑔̂ (𝑚) (𝑥0)] .

For 𝑔̂ (𝑚)
𝑛 (𝑥0) we select an optimal bandwidth ℎ = 𝐻 (𝑚)

∗ 𝑛−1/5 and the Epanechnikov 
kernel

𝐾 (𝑡) = 1{|𝑡 | < 1} · 3
4
· (1 − 𝑡2).

In this scenario, 𝐻 (1)
∗ does not exist since 𝐸 (𝑚) = 0. So, in the experiments, we let 

𝐻 (1) = 𝐻 (2)
∗ .
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Table 1. Computed values of sample bias and standard deviation for each 𝑛 and 𝑚

𝑛 𝑚 = 1 𝑚 = 2

Bias(𝑚)
𝑛 Std(𝑚)

𝑛 Bias(𝑚)
𝑛 Std(𝑚)

𝑛

100 0.7239 13.021 −3.5882 149.4207 
500 0.2935 2.6544 1.0857 2.692 

1000 0.0979 2.5753 1.3031 2.6607 
5000 0.1256 2.6908 1.3599 2.6578 

10000 −0.0103 2.5745 1.2657 2.5809 
∞ 0 2.6547 1.3274 2.6547 

Table 2. Computed values of sample bias and standard deviation for each 𝑛 and 𝑚

𝑛 𝑚 = 1 𝑚 = 2

Bias(𝑚)
𝑛 Std(𝑚)

𝑛 Bias(𝑚)
𝑛 Std(𝑚)

𝑛

100 0.1082 4.4768 0.6359 6.724 
500 0.1659 3.059 0.9511 3.0376 

1000 0.1577 3.0195 1.1993 3.0792 
5000 0.1386 2.9185 1.1616 3.012 

10000 0.2131 2.8123 1.2613 2.9326 
∞ 0 2.9282 1.4641 2.9282 

Table 3. Computed values of sample bias and standard deviation for each 𝑛 and 𝑚

𝑛 𝑚 = 1 𝑚 = 2

Bias(𝑚)
𝑛 Std(𝑚)

𝑛 Bias(𝑚)
𝑛 Std(𝑚)

𝑛

100 0.0616 4.5498 0.9148 5.3876 
500 0.2661 2.8404 1.1379 2.9482 

1000 0.2239 2.7614 1.1546 2.9566 
5000 −0.0964 2.6225 1.4349 2.8296 

10000 0.0435 2.626 1.3573 2.9192 
∞ 0 2.6938 1.4317 2.8635 

6.2 Performance of mLLE
Experiment 1. In this experiment,, we consider 𝜀 𝑗 ∼ 𝑁 (0, 1.25). The results of 
Experiment 1 for mLLE are presented in Table 1.

Here 𝐻 (2)
∗ ≈ 0.6261. The simulation results show the agreement with the asymp

totic considerations for large 𝑛.

Experiment 2. In this experiment, we consider 𝜀 𝑗 ∼ 𝑇5, where 𝑇5 is the Student T 
distribution with 5 degrees of freedom. The results of Experiment 2 for mLLE are 
presented in Table 2.

Here 𝐻 (2)
∗ ≈ 0.6575. These results are also in accordance with the asymptotic 

calculations.

Experiment 3. In this experiment, we consider

𝜀 𝑗 | {𝜅 𝑗 = 𝑚} ∼
{︄
𝑁 (0, 1.25), 𝑚 = 1,
𝑇5, 𝑚 = 2.

The results of Experiment 3 for mLLE are presented in Table 3.
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Here 𝐻 (2)
∗ ≈ 0.6502. The simulations results inherit the pattern similar to the 

observed in the previous experiments.

7 Conclusions

We examined the asymptotic behavior of the modified local linear regression estimator 
for a mixture of regressions model. We proved that the modified estimator is asymp
totically normal. The obtained rate of convergence of this estimator to the unknown 
value of the regression function at a given point is the same, regardless of whether the 
density function of a regressor has a jump at this point or not.

Based on the proven asymptotic theory, the optimal bandwidth parameter was 
derived that minimizes the asymptotic standard deviation of the estimator. The derived 
asymptotic theory was tested using a simulation experiment. The results obtained in 
this experiment are consistent with the theoretical results.

The subject of a further research is the development of the theory of optimal choice 
of parameters for the modified local linear regression estimator, that is, the bandwidth 
parameter and the kernel function.
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