Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. To appear
  3. A change of measures technique for compo ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • More
    Article info Full article Related articles

A change of measures technique for compound mixed renewal processes with applications in Risk Theory
Spyridon M. Tzaninis ORCID icon link to view author Spyridon M. Tzaninis details   Nikolaos D. Macheras  

Authors

 
Placeholder
https://doi.org/10.15559/25-VMSTA281
Pub. online: 12 August 2025      Type: Research Article      Open accessOpen Access

Received
4 April 2025
Accepted
30 June 2025
Published
12 August 2025

Abstract

Given a compound mixed renewal process S under a probability measure P, we provide a characterization of all progressively equivalent martingale probability measures Q on the domain of P, that convert S into a compound mixed Poisson process. This result extends earlier works of Delbaen and Haezendonck, Lyberopoulos and Macheras, and the authors, and enables us to find a wide class of price processes satisfying the condition of no free lunch with vanishing risk. Implications to the ruin problem and to the computation of premium calculation principles in an arbitrage-free insurance market are also discussed.

References

[1] 
Albrecher, H., Constantinescu, C., Loisel, S.: Explicit ruin formulas for models with dependence among risks. Insur. Math. Econ. 48, 265–270 (2011). MR2799308. https://doi.org/10.1016/j.insmatheco.2010.11.007
[2] 
Asmussen, S., Albrecher, H.: Ruin Probabilities, 2nd edn. World Scientific, Singapore (2010). MR2766220. https://doi.org/10.1142/9789814282536
[3] 
Bauer, H.: Probability Theory. De Gruyter Studies in Mathematics 23. Walter de Gruyter (1996). MR1385460. https://doi.org/10.1515/9783110814668
[4] 
Cohn, D.L.: Measure Theory, 2nd edn. Birkhäuser/Springer, New York (2013). MR3098996. https://doi.org/10.1007/978-1-4614-6956-8
[5] 
Constantinescu, C., Samorodnitsky, G., Zhu, W.: Ruin probabilities in classical risk models with gamma claims. Scand. Actuar. J. 2018, 555–575 (2018). MR3836389. https://doi.org/10.1080/03461238.2017.1402817
[6] 
Dassios, A.: Insurance, storage and point processes: an approach via piecewise deterministic Markov processes. Ph.D. Thesis, Imperial College, London (1987)
[7] 
Dassios, A., Embrechts, P.: Martingales and insurance risk. Commun. Stat., Stoch. Models 5, 181–217 (1989). MR1000630. https://doi.org/10.1080/15326348908807105
[8] 
Delbaen, F., Haezendonck, J.: A martingale approach to premium calculation principles in an arbitrage free market. Insur. Math. Econ. 4, 269–277 (1989). MR1029895. https://doi.org/10.1016/0167-6687(89)90002-4
[9] 
Delbaen, F., Schachermayer, W.: The Mathematics of Arbitrage. Springer, Berlin Heidelberg (2006). MR2200584
[10] 
Embrechts, P.: Actuarial versus financial pricing of insurance. J. Risk Finance 1, 17–26 (2000)
[11] 
Embrechts, P., Meister, S.: Pricing insurance derivatives: The case of Cat-futures. In: Securitization of Insurance Risk: The 1995 Bowles Symposium, pp. 15–26. SOA Monograph M-FI97-1 (1997)
[12] 
Embrechts, P., Schmidli, H., Grandell, J.: Finite-time Lundberg inequalities in the Cox case. Scand. Actuar. J. 1993, 17–41 (1993). MR1241568. https://doi.org/10.1080/03461238.1993.10413911
[13] 
Grandell, J.: Mixed Poisson Processes. Chapman & Hall/CRC (1997). MR1463943. https://doi.org/10.1007/978-1-4899-3117-7
[14] 
Gut, A.: Stopped Random Walks: Limit Theorems and Applications, 2nd edn. Springer, New York (2009). MR2489436. https://doi.org/10.1007/978-0-387-87835-5
[15] 
Harrison, J.M., Kreps, D.M.: Martingales and arbitrage in multiperiod securities markets. J. Econ. Theory 20, 381–408 (1979). MR0540823. https://doi.org/10.1016/0022-0531(79)90043-7
[16] 
Jacod, J.: Calcul Stochastique et Problèmes de Martingales. Springer, Berlin Heidelberg (1979). MR0542115
[17] 
Landriault, D., Willmot, G.: On the Gerber–Shiu discounted penalty function in the Sparre Andersen model with an arbitrary interclaim time distribution. Insur. Math. Econ. 42, 600–608 (2008). MR2404316. https://doi.org/10.1016/j.insmatheco.2007.06.004
[18] 
Lyberopoulos, D.P., Macheras, N.D.: Some characterizations of mixed Poisson processes. Sankhya, Ser. A 74, 57–79 (2012). MR3010292. https://doi.org/10.1007/s13171-012-0011-y
[19] 
Lyberopoulos, D.P., Macheras, N.D.: A characterization of martingale-equivalent compound mixed Poisson processes. arXiv:1905.07629, 1–28 (2019). MR4254495. https://doi.org/10.1214/20-aap1604
[20] 
Lyberopoulos, D.P., Macheras, N.D.: A characterization of martingale-equivalent mixed compound Poisson processes. Ann. Appl. Probab. 31, 778–805 (2021). MR4254495. https://doi.org/10.1214/20-aap1604
[21] 
Lyberopoulos, D.P., Macheras, N.D.: Some characterizations of mixed renewal processes. Math. Slovaca 72, 197–216 (2022). MR4382740. https://doi.org/10.1515/ms-2022-0014
[22] 
Macheras, N.D., Tzaninis, S.M.: A characterization of equivalent martingale measures in a renewal risk model with applications to premium calculation principles. Mod. Stoch. Theory Appl. 7, 43–60 (2020). MR4085675. https://doi.org/10.15559/20-vmsta148
[23] 
Ng, A.C.Y., Yang, H.: Lundberg-type bounds for the joint distribution of surplus immediately before and at ruin under the Sparre Andersen model. N. Am. Actuar. J. 9, 85–100 (2005). MR2160109. https://doi.org/10.1080/10920277.2005.10596203
[24] 
Protter, P.E.: Stochastic Integration and Differential Equations, 2nd edn. Springer, Berlin Heidelberg (2005)
[25] 
Rolski, T., Schmidli, H., Schmidt, V., Teugels, J.L.: Stochastic Processes for Insurance and Finance. Wiley, Chichester (1999). MR1680267. https://doi.org/10.1002/9780470317044
[26] 
Schmidli, H.: Cramér-Lundberg approximations for ruin probabilities of risk processes perturbed by diffusion. Insur. Math. Econ. 16, 135–149 (1995). MR1347857. https://doi.org/10.1016/0167-6687(95)00003-B
[27] 
Schmidli, H.: On the Gerber–Shiu function and change of measure. Insur. Math. Econ. 46, 3–11 (2010). MR2586151. https://doi.org/10.1016/j.insmatheco.2009.04.004
[28] 
Schmidli, H.: Risk Theory. Springer (2017). MR3753610. https://doi.org/10.1007/978-3-319-72005-0
[29] 
Schmidt, K.D.: On inequalities for moments and the covariance of monotone functions. Insur. Math. Econ. 55, 91–95 (2014). MR3179802. https://doi.org/10.1016/j.insmatheco.2013.12.006
[30] 
Schmidt, K.D.: Lectures on Risk Theory. B. G. Teubner, Stuttgart (1996). MR1402016. https://doi.org/10.1007/978-3-322-90570-3
[31] 
Sondermann, D.: Reinsurance in arbitrage-free markets. Insur. Math. Econ. 10, 191–202 (1991). MR1160672. https://doi.org/10.1016/0167-6687(91)90049-4
[32] 
Tzaninis, S.M.: Applications of a change of measures technique for compound mixed renewal processes to the ruin problem. Mod. Stoch. Theory Appl. 9, 45–64 (2022). MR4388709. https://doi.org/10.15559/21-vmsta192
[33] 
Tzaninis, S.M., Macheras, N.D.: A characterization of progressively equivalent probability measures preserving the structure of a compound mixed renewal process. ALEA Lat. Am. J. Probab. Math. Stat. 20, 225–247 (2023). MR4554230. https://doi.org/10.30757/alea.v20-09
[34] 
von Weizsäcker, H., Winkler, G.: Stochastic Integrals: An Introduction. Vieweg+Teubner Verlag Wiesbaden (1990)
[35] 
Wang, S.: Insurance pricing and increased limits ratemaking by proportional hazards transforms. Insur. Math. Econ. 17, 43–54 (1995). MR1363642. https://doi.org/10.1016/0167-6687(95)91054-P

Full article Related articles PDF XML
Full article Related articles PDF XML

Copyright
© 2025 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Compound mixed renewal processes change of measures martingales premium calculation principles ruin probability

MSC2020
91G05 60G55 28A35 60A10 60G44 60K05

Metrics
since March 2018
1

Article info
views

0

Full article
views

2

PDF
downloads

0

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

Journal

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy