Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. To appear
  3. Moments of Student’s t-distribution: a u ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • More
    Article info Full article

Moments of Student’s t-distribution: a unified approach
Justin Lars Kirkby   Dang H. Nguyen   Duy Nguyen ORCID icon link to view author Duy Nguyen details  

Authors

 
Placeholder
https://doi.org/10.15559/25-VMSTA278
Pub. online: 25 April 2025      Type: Research Article      Open accessOpen Access

Received
1 August 2024
Revised
31 March 2025
Accepted
31 March 2025
Published
25 April 2025

Abstract

In this paper, new closed form formulae for moments of the (generalized) Student’s t-distribution are derived in the one dimensional case as well as in higher dimensions through a unified probability framework. Interestingly, the closed form expressions for the moments of the Student’s t-distribution can be written in terms of the familiar Gamma function, Kummer’s confluent hypergeometric function, and the hypergeometric function. This work aims to provide a concise and unified treatment of the moments for this important distribution.

References

[1] 
Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables vol. 55. US Government printing office (1948) MR0415956
[2] 
Bignozzi, V., Merlo, L., Petrella, L.: Inter-order relations between equivalence for ${L_{p}}$-quantiles of the Student’s t distribution. Insur. Math. Econ. 116, 44–50 (2024) MR4708514. https://doi.org/10.1016/j.insmatheco.2024.02.001
[3] 
Bishop, C.M.: Pattern Recognition and Machine Learning. Springer (2006) MR2247587. https://doi.org/10.1007/978-0-387-45528-0
[4] 
Finner, H., Dickhaus, T., Roters, M.: Asymptotic tail properties of Student’s t-distribution. Commun. Stat., Theory Methods 37(2), 175–179 (2008) MR2412618. https://doi.org/10.1080/03610920701649019
[5] 
Jackman, S.: Bayesian Analysis for the Social Sciences. John Wiley and Sons (2009) MR2584520. https://doi.org/10.1002/9780470686621
[6] 
Kan, R., Robotti, C.: On moments of folded and truncated multivariate normal distributions. J. Comput. Graph. Stat. 26(4), 930–934 (2017) MR3765356. https://doi.org/10.1080/10618600.2017.1322092
[7] 
Kotz, S., Nadarajah, S.: Multivariate T-distributions and Their Applications. Cambridge University Press (2004) MR2038227. https://doi.org/10.1017/CBO9780511550683
[8] 
Kwon, O.K., Satchell, S.: The distribution of cross sectional momentum returns when underlying asset returns are Student’s t-distributed. J. Financ. Risk Manag. 13(2), 27 (2020) MR3849785. https://doi.org/10.1016/j.jedc.2018.06.002
[9] 
Lange, K.L., Little, R.J., Taylor, J.M.: Robust statistical modeling using the t distribution. J. Am. Stat. Assoc. 84(408), 881–896 (1989) MR1134486
[10] 
Marchenko, Y.V., Genton, M.G.: A heckman selection-t model. J. Am. Stat. Assoc. 107(497), 304–317 (2012) MR2949361. https://doi.org/10.1080/01621459.2012.656011
[11] 
McNeil, A.J., Frey, R., Embrechts, P.: Quantitative Risk Management: Concepts, Techniques, and Tools, 2nd edn. Princeton Series in Finance (2015) MR3445371
[12] 
Nguyen, D.: A probabilistic approach to the moments of binomial random variables and application. Am. Stat. 75(1), 101–103 (2021) MR4203486. https://doi.org/10.1080/00031305.2019.1679257
[13] 
Ogasawara, H.: Unified and non-recursive formulas for moments of the normal distribution with stripe truncation. Commun. Stat., Theory Methods 51(19), 1–38 (2020) MR4471422. https://doi.org/10.1080/03610926.2020.1867742
[14] 
Pinheiro, J.C., Liu, C., Wu, Y.N.: Efficient algorithms for robust estimation in linear mixed-effects models using the multivariate t distribution. J. Comput. Graph. Stat. 10(2), 249–276 (2001) MR1939700. https://doi.org/10.1198/10618600152628059
[15] 
Schlüter, S., Fischer, M.: A tail quantile approximation for the Student’s t distribution. Commun. Stat., Theory Methods 41(15), 2617–2625 (2012) MR2946636. https://doi.org/10.1080/03610926.2010.513784
[16] 
Shaw, W.T.: Sampling Student’s t distribution—use of the inverse cumulative distribution function. J. Comput. Finance 9, 37–73 (2006)
[17] 
Skorski, M.: Handy formulas for binomial moments. Mod. Stoch. Theory Appl., 1–15 (2024) MR4852561
[18] 
Winkelbauer, A.: Moments and absolute moments of the normal distribution. arXiv preprint arXiv:1209.4340 (2014)

Full article PDF XML
Full article PDF XML

Copyright
© 2025 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Normal distribution Student’s t-distribution moment raw moment absolute moment multivariate

MSC2020
92D25 37H15 60H10 60J60

Metrics
since March 2018
97

Article info
views

40

Full article
views

28

PDF
downloads

11

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy