Moments of Student’s t-distribution: a unified approach
Pub. online: 25 April 2025
Type: Research Article
Open Access
Received
1 August 2024
1 August 2024
Revised
31 March 2025
31 March 2025
Accepted
31 March 2025
31 March 2025
Published
25 April 2025
25 April 2025
Abstract
In this paper, new closed form formulae for moments of the (generalized) Student’s t-distribution are derived in the one dimensional case as well as in higher dimensions through a unified probability framework. Interestingly, the closed form expressions for the moments of the Student’s t-distribution can be written in terms of the familiar Gamma function, Kummer’s confluent hypergeometric function, and the hypergeometric function. This work aims to provide a concise and unified treatment of the moments for this important distribution.
References
Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables vol. 55. US Government printing office (1948) MR0415956
Bignozzi, V., Merlo, L., Petrella, L.: Inter-order relations between equivalence for ${L_{p}}$-quantiles of the Student’s t distribution. Insur. Math. Econ. 116, 44–50 (2024) MR4708514. https://doi.org/10.1016/j.insmatheco.2024.02.001
Bishop, C.M.: Pattern Recognition and Machine Learning. Springer (2006) MR2247587. https://doi.org/10.1007/978-0-387-45528-0
Finner, H., Dickhaus, T., Roters, M.: Asymptotic tail properties of Student’s t-distribution. Commun. Stat., Theory Methods 37(2), 175–179 (2008) MR2412618. https://doi.org/10.1080/03610920701649019
Jackman, S.: Bayesian Analysis for the Social Sciences. John Wiley and Sons (2009) MR2584520. https://doi.org/10.1002/9780470686621
Kan, R., Robotti, C.: On moments of folded and truncated multivariate normal distributions. J. Comput. Graph. Stat. 26(4), 930–934 (2017) MR3765356. https://doi.org/10.1080/10618600.2017.1322092
Kotz, S., Nadarajah, S.: Multivariate T-distributions and Their Applications. Cambridge University Press (2004) MR2038227. https://doi.org/10.1017/CBO9780511550683
Kwon, O.K., Satchell, S.: The distribution of cross sectional momentum returns when underlying asset returns are Student’s t-distributed. J. Financ. Risk Manag. 13(2), 27 (2020) MR3849785. https://doi.org/10.1016/j.jedc.2018.06.002
Lange, K.L., Little, R.J., Taylor, J.M.: Robust statistical modeling using the t distribution. J. Am. Stat. Assoc. 84(408), 881–896 (1989) MR1134486
Marchenko, Y.V., Genton, M.G.: A heckman selection-t model. J. Am. Stat. Assoc. 107(497), 304–317 (2012) MR2949361. https://doi.org/10.1080/01621459.2012.656011
McNeil, A.J., Frey, R., Embrechts, P.: Quantitative Risk Management: Concepts, Techniques, and Tools, 2nd edn. Princeton Series in Finance (2015) MR3445371
Nguyen, D.: A probabilistic approach to the moments of binomial random variables and application. Am. Stat. 75(1), 101–103 (2021) MR4203486. https://doi.org/10.1080/00031305.2019.1679257
Ogasawara, H.: Unified and non-recursive formulas for moments of the normal distribution with stripe truncation. Commun. Stat., Theory Methods 51(19), 1–38 (2020) MR4471422. https://doi.org/10.1080/03610926.2020.1867742
Pinheiro, J.C., Liu, C., Wu, Y.N.: Efficient algorithms for robust estimation in linear mixed-effects models using the multivariate t distribution. J. Comput. Graph. Stat. 10(2), 249–276 (2001) MR1939700. https://doi.org/10.1198/10618600152628059
Schlüter, S., Fischer, M.: A tail quantile approximation for the Student’s t distribution. Commun. Stat., Theory Methods 41(15), 2617–2625 (2012) MR2946636. https://doi.org/10.1080/03610926.2010.513784
Skorski, M.: Handy formulas for binomial moments. Mod. Stoch. Theory Appl., 1–15 (2024) MR4852561
Winkelbauer, A.: Moments and absolute moments of the normal distribution. arXiv preprint arXiv:1209.4340 (2014)