Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. To appear
  3. Exit times for some nonlinear autoregres ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • More
    Article info Full article

Exit times for some nonlinear autoregressive processes
Göran Högnäs   Brita Jung ORCID icon link to view author Brita Jung details  

Authors

 
Placeholder
https://doi.org/10.15559/25-VMSTA277
Pub. online: 25 March 2025      Type: Research Article      Open accessOpen Access

Received
29 August 2024
Revised
10 January 2025
Accepted
9 March 2025
Published
25 March 2025

Abstract

The expected exit time from the interval $[-1,1]$ is investigated for an autoregressive process defined recursively by
\[ {X_{n+1}^{\varepsilon }}=f\big({X_{n}^{\varepsilon }}\big)+\varepsilon {\xi _{n+1}},\hspace{1em}n=0,1,2,\dots ,\hspace{2.5pt}{X_{0}}=0.\]
Here, ε is a small positive parameter, $f:\mathbb{R}\mapsto \mathbb{R}$ is usually a contractive function and ${\{{\xi _{n}}\}_{n\ge 1}}$ is a sequence of i.i.d. random variables. In this paper, previous results for a linear function $f(x)=ax$ are extended to more general cases, with the main focus on piecewise linear functions.

References

[1] 
Anděl, J., Netuka, I., Zvára, K.: On threshold autoregressive processes. Kybernetika 20(2), 89–106 (1984). MR0747062
[2] 
Basak, G.K., Ho, K.-W.R.: Level-crossing probabilities and first-passage times for linear processes. Adv. Appl. Probab. 36, 643–666 (2004). MR2058153. https://doi.org/10.1239/aap/1086957589
[3] 
Baumgarten, C.: Survival probabilities of autoregressive processes. ESAIM Probab. Stat. 18, 145–170 (2014). MR3143737. https://doi.org/10.1051/ps/2013031
[4] 
Di Nardo, E.: On the first passage time for autoregressive processes. Sci. Math. Jpn. 21, 61–76 (2008). MR2399804
[5] 
Hamza, K., Jagers, P., Klebaner, F.C.: On the establishment, persistence and inevitable extinction of populations. J. Math. Biol. 72, 797–820 (2016). MR3459167. https://doi.org/10.1007/s00285-015-0903-2
[6] 
Högnäs, G.: On the lifetime of a size-dependent branching process. Stoch. Models 35, 119–131 (2019). MR3969510. https://doi.org/10.1080/15326349.2019.1578241
[7] 
Högnäs, G., Jung, B.: Analysis of a stochastic difference equation: Exit times and invariant distributions. Fasc. Math. 44, 69–74 (2010). MR2722632
[8] 
Högnäs, G., Jung, B.: Exit times for some autoregressive processes with non-Gaussian noise distributions. Contemp. Math. 668, 111–117 (2016). MR3536695. https://doi.org/10.1090/conm/668/13399
[9] 
Högnäs, G.: On the quasi-stationary distribution of a stochastic Ricker model. Stoch. Process. Appl. 70, 243–263 (1997). MR1475665. https://doi.org/10.1016/S0304-4149(97)00064-1
[10] 
Högnäs, G., Jung, B.: Exit times for some nonlinear autoregressive processes (2019). arXiv:1912.08514.
[11] 
Jung, B.: Exit times for multivariate autoregressive processes. Stoch. Process. Appl. 123, 3052–3063 (2013). MR3062436. https://doi.org/10.1016/j.spa.2013.03.003
[12] 
Klebaner, F., Liptser, R.: Large deviations for past-dependent recursions. Probl. Inf. Transm. 32, 23–34 (1996). MR1441520
[13] 
Klebaner, F., Liptser, R.: Large deviations for past-dependent recursions (2006). arXiv:math/0603407.
[14] 
Klebaner, F.C., Liptser, R.: Moderate deviations for randomly perturbed dynamical systems. Stoch. Process. Appl. 80(2), 157–176 (1999). MR1682255. https://doi.org/10.1016/S0304-4149(98)00075-1
[15] 
Koski, T., Jung, B., Högnäs, G.: Exit times for ARMA processes. Adv. Appl. Probab. 50(A), 191–195 (2018). MR3905100. https://doi.org/10.1017/apr.2018.79
[16] 
Novikov, A.A.: On the first passage time of an autoregressive process over a level and an application to a “disorder” problem. Theory Probab. Appl. 35(2), 269–279 (1991). https://doi.org/10.1137/1135035
[17] 
Novikov, A., Kordzakhia, N.: Martingales and first passage times of AR(1) sequences. Stochastics 80(2-3), 197–210 (2008). MR2402164. https://doi.org/10.1080/17442500701840885
[18] 
Ruths, B.: Exit times for past-dependent systems. Surv. Appl. Ind. Math. (Obozr. Prikl. Prom. Mat.) 15, 25–30 (2008)
[19] 
Varadhan, S.R.S.: Large Deviations and Applications. Society for Industrial and Applied Mathematics (1984). https://epubs.siam.org/doi/abs/10.1137/1.9781611970241. MR0758258. https://doi.org/10.1137/1.9781611970241.bm

Full article PDF XML
Full article PDF XML

Copyright
© 2025 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Exit time first passage time autoregressive process large deviation principle

MSC2020
60G17 60F10

Metrics
since March 2018
144

Article info
views

31

Full article
views

34

PDF
downloads

16

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy