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Abstract The expected exit time from the interval [−1, 1] is investigated for an autoregres-
sive process defined recursively by

Xε
n+1 = f

(
Xε

n

) + εξn+1, n = 0, 1, 2, . . . , X0 = 0.

Here, ε is a small positive parameter, f : R �→ R is usually a contractive function and {ξn}n≥1
is a sequence of i.i.d. random variables. In this paper, previous results for a linear function
f (x) = ax are extended to more general cases, with the main focus on piecewise linear func-
tions.

Keywords Exit time, first passage time, autoregressive process, large deviation principle
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1 Introduction

Consider a stochastic process {Xε
n}∞n=0 of autoregressive type, defined by

Xε
n+1 = f

(
Xε

n

) + εξn+1, X0 = 0, (1)

where f is a continuous mapping from R to itself with a fixed point at the origin,
{ξn}∞n=1 is a sequence of i.i.d. random variables and ε is a small positive parameter. It
is a Markov chain, and under suitable assumptions on {ξn}∞n=1 and f , it is interesting
to investigate how long it takes for the process to leave a neighbourhood of the origin.

The original motivation behind our work is to study the time until extinction of a
population. A stochastic process that models a population may be positive recurrent
and stay at a certain level (or carrying capacity) for a very long time, and when extinc-
tion happens, the process first leaves a neighbourhood around that level. Populations
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can be modeled by, for example, branching processes (such as those treated in [5] and
[6]) or models such as the Ricker model which we will use as an example at the end
of the paper; it has been studied in [9].

In [12] and the updated version [13], Klebaner and Liptser used the large deviation
principle to get an upper bound on the exit time from a set for a process. As an
example, they considered the linear autoregressive process, defined as in (1) with
f (x) = ax, |a| < 1, and normally distributed innovations. For this example, they
showed that the exit time τε from the interval (−1, 1) satisfies

lim sup
ε→0

ε2 log Ex0(τε) ≤ 1 − a2

2
. (2)

The corresponding lower bound has been found by other methods [18]. This means
that the upper bound on the right-hand side above is the best possible one.

We have studied a corresponding multivariate case [11], and the results were ex-
tended to the ARMA model in [15]. Exit times for autoregressive processes with
other noise distributions have also been studied, in [8]. Different aspects of the exit
time problem for linear autoregressive processes are treated in, for example, [2–4]
and [17]. A related exit problem in a different setting was treated in [14]. A case with
piecewise linear function f (x) was studied by Anděl et al. in [1].

In this paper we extend the previous results from the linear case to some cases
with piecewise linear functions. We will show that the large deviation principle gives
explicit (asymptotic) upper bounds on the expectation of the exit time also in these
cases. We also apply the methods used to other nonlinear functions, such as quadratic
functions and the Ricker model.

In Section 2, we summarize how the large deviation method results in a sum that
should be minimized for an upper bound of the exit time. This is based on the methods
used in the proofs of Theorems 2.2 and 3.1 in [13]. In Section 3 we study how the
minimization can be done over more restricted sets. In Section 4, which contains the
main results of this paper, we get the explicit upper bounds in several piecewise linear
cases. In Section 5 we explore some other nonlinear cases. In Section 6 we point out
a connection between the results and the stationary distribution of the process.

2 Large deviation tools and bounds for exit times

In this section, which is based on work by Klebaner and Liptser in [12] and Jung
in [11], we summarize how the large deviation principle (LDP) can be used to get an
upper bound of the asymptotics of an exit time from a set for a process. The definition
of the LDP used in [12] is as follows (this follows Varadhan’s definition in [19], with
the addition that the rate of speed q(ε) is a function of ε such that q(ε) → 0 as
ε → 0).

Let {Pε} be a family of probability measures on the Borel subsets of a complete
separable metric space Z. The family {Pε} satisfies the large deviation principle with
a rate function I if there is a function I from Z into [0,∞] that satisfies the following
conditions: 0 ≤ I (z) ≤ ∞ ∀z ∈ Z, I is lower semicontinuous, the set {z : I (z) ≤ l}
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is a compact set in Z for all l < ∞ and

lim sup
ε→0

q(ε) log Pε(C) ≤ − inf
z∈C

I (z) for every closed set C ⊂ Z and

lim inf
ε→0

q(ε) log Pε(G) ≥ − inf
z∈G

I (z) for every open set G ⊂ Z.

In [12] and [13], Klebaner and Liptser considered a family of processes of the type

Xε
n+1 = g

(
Xε

n, . . . , X
ε
n−m+1, εξn+1

)
, (3)

where g is a continuous function on R
m, {ξn}∞n=m is a sequence of i.i.d. random vari-

ables and x0, . . . , xm−1 are given starting values. They gave conditions under which
the LDP holds for the family εξ (where ξ is a copy of ξm) and proved that when εξ

obeys an LDP with rate function I (z), it follows that (Xε
n) obeys an LDP with a rate

function J (ȳ) that can be written explicitly using I (z):

J (ȳ) =
∞∑

k=m

inf
vk :yk=f (yk−1,...yk−m,vk)

I (yk) when u0 = x0, . . . , um−1 = xm−1, (4)

and J (ȳ) = ∞ otherwise.
Klebaner and Liptser also showed in [12] and [13] how the LDP can be used to

get bounds of the asymptotics of the expected exit time of the process. Let the exit
time τε of the process be defined as

τε := min
{
t ≥ m : Xε

n /∈ �
}

(5)

for a set �. For the expected exit time it holds that

Ex0,...,xm−1(τε) ≤ 2M

infx0,...,xm−1∈� Px0,...,xm−1(τε ≤ M)

for any set of starting points x0, . . . , xm−1 ∈ � and any integer M ≥ m (for de-
tails, see [11]). If the infimum in the denominator is attained for the starting points
x∗

0 , . . . , x∗
m−1 ∈ �, the inequality above implies that

lim sup
ε→0

q(ε) log Ex0,...,xm−1(τε) ≤ − lim
ε→0

q(ε) log Px∗
0 ,...,x∗

m−1
(τε ≤ M), (6)

if the right-hand side limit exists. Since

Px∗
0 ,...,x∗

m−1
(τε ≤ M) = Px∗

0 ,...,x∗
m−1

(
Xε

t /∈ � for some t ∈ {m, . . . , M}),
the limit on the right-hand side in (6) may be calculated if we have a large devia-
tion principle for the family of probability measures induced by {Xε

t }t≥0 and if the
function f and the set � are suitable.

From this point onward in the paper, we consider a process of autoregressive type,
where

Xε
n+1 = f

(
Xε

n

) + εξn+1, n = 0, 1, 2, . . . , (7)
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and X0 = 0. Here f is a continuous function on R and {ξn}n≥1 is a sequence of

i.i.d. standard normal random variables. Then I (z) = z2

2 and the function g in (3) is
reduced to

g(yn−1, . . . , yn−m+1, zn) = f (yn−1) + zn.

We consider exit times from the interval (−1, 1), so � = (−1, 1).
Klebaner and Liptser considered this case as an example in [12] and [13] (other

examples were Poisson distributed noise, and sums of normally distributed and Pois-
son distributed random variables), and showed that this family of processes obeys the
large deviation principle with q(ε) = ε2 and

I (y0, y1, y2, . . .) = 1

2

∞∑
n=1

(
yn − f (yn−1)

)2
. (8)

For the exit time
τε = min

{
n ≥ 1 : |Xε

n| ≥ 1
}
, (9)

we then have

lim sup
ε→0

ε2 log Ex0τε ≤ − lim
ε→0

ε2 log Px∗
0
(τε ≤ M)

= inf
max1≤n≤M |yn|≥1

y0=x∗
0

I (y0, y1, y2, . . .) = inf
max1≤n≤M |yn|≥1

y0=x∗
0

1

2

∞∑
n=1

(
yn − f (yn−1)

)2

= inf
1≤N≤M

⎛
⎜⎜⎜⎜⎝ inf|yN |≥1

y0=x∗
0|yn|<1,n=1,...,N

1

2

N∑
n=1

(
yn − f (yn−1)

)2

⎞
⎟⎟⎟⎟⎠ , (10)

where the last equality holds because one can choose yn = f (yn−1) for all n ≥ N +1
and get the same infimum.

For the autoregressive case with a linear function f (x) = ax, |a| < 1, and τε as
above, Klebaner and Liptser showed that

lim sup
ε→0

ε2 log Ex0(τε) ≤ 1 − a2

2
(11)

by minimizing the sum. This was done by considering the telescoping sum

N∑
n=1

aN−n(yn − ayn−1) = yN

when y0 = x0 = 0 and applying the Cauchy–Schwarz inequality to get

N∑
n=1

(yn − ayn−1)
2 ≥ y2

N∑N
n=1 aN−n

. (12)
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Here, |yN | = 1, and the result in (11) follows since M can be arbitrarily large. Note
that if we instead were to study exits from a scaled interval (−c, c), c > 0, so that
τ c
ε = min{n ≥ 1 : |Xε

n| ≥ c}, then |yN | = c and the upper bound would be

lim sup
ε→0

ε2 log Ex0

(
τ c
ε

) ≤ (1 − a2)c2

2
. (13)

3 Minimizing the sum

In the previous section we saw that the asymptotics for the exit times of processes of
the type defined in (7) with N(0, 1)-normal white noise is determined by the function
f through the infimum of the sum of squares in (10). In this section we study some
properties of these sums for particular classes of autoregression functions f . Since
the infimum of the sum is attained for |yN | = 1, it does not matter how the function
f is defined outside of the interval [−1, 1], and we only focus on how it is defined on
[−1, 1].
Lemma 1. If f is increasing on [−1, 1] and f (0) = 0, the sum can be minimized
separately over positive and negative values:

inf|yN |≥1
y0=0

1

2

N∑
n=1

(
yn − f (yn−1)

)2 (14)

= min

⎛
⎜⎝ inf

yN=1,y0=0
yn≥0,n=1,...,N−1

1

2

N∑
n=1

(
yn − f (yn−1)

)2
,

inf
yN=−1,y0=0

yn≤0,n=1,...,N−1

1

2

N∑
n=1

(
yn − f (yn−1)

)2

⎞
⎟⎠ . (15)

Proof. Assume that the infimum of the sum is attained for {y∗
n}Nn=0, where y∗

0 = 0
and y∗

N = 1, and let

S∗ =
N∑

n=1

(
y∗
n − f

(
y∗
n−1

))2
.

Then S∗ ≤ 1. We will show by induction that y∗
n ≥ 0 for n = 1, . . . , N −1. We show

first that y∗
N−1 ≥ 0. If y∗

N−1 < 0, then f (y∗
N−1) ≤ 0 and (1 − f (yN−1))

2 ≥ 1. Also,

S∗ ≥ (
1 − f

(
y∗
N−1

))2 + (
y∗
L

)2
,

where L = min{i|yi �= 0}. It follows that S∗ > 1, which is a contradiction. Thus,
y∗
N−1 ≥ 0.

Now, assume that y∗
N, y∗

N−1, . . . , y
∗
N−K+1 ≥ 0 for some K < N . Make the con-

trary assumption that y∗
N−K < 0. Then f (y∗

N−K) ≤ 0 and

S∗ = (
1 − f

(
y∗
N−1

))2 + · · · + (
y∗
N−K+2 − f

(
y∗
N−K+1

))2
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+ (
y∗
N−K+1 − f

(
y∗
N−K

))2 + (
y∗
N−K − f

(
y∗
N−K−1

))2 + · · · + y2
1

≥ (
1 − f

(
y∗
N−1

))2 + · · · + (
y∗
N−K+2 − f

(
y∗
N−K+1

))2

+ (
y∗
N−K+1 − 0

)
)2 + 0 + · · · + 0.

In fact, the inequality above is strict, since

S∗ ≥ (
1 − f

(
y∗
N−1

))2 + · · · + (
y∗
N−K+2 − f

(
y∗
N−K+1

))2

+ (
y∗
N−K+1 − 0

)
)2 + (

y∗
L

)2

where L = min{i ≤ N − K|y∗
i �= 0}. Thus, S∗ is not the minimal sum, which is a

contradiction. It follows that y∗
N−K ≥ 0.

If we assume instead that the infimum on the left-hand side in (14) is attained for
a sequence {y′

n}Nn=0, where y′
0 = 0 and y′

N = −1, one can show that y′
n ≤ 0 for

n = 1, . . . , N in a similar way.

Lemma 2. If f is increasing on [−1, 1], f (0) = 0 and f is odd, so that f (−x) =
−f (x) on [−1, 1], we can minimize over only positive values:

inf|yN |≥1
y0=0

1

2

N∑
n=1

(
yn − f (yn−1)

)2 = inf
yN=1,y0=0

yn≥0,n=1,...,N−1

1

2

N∑
n=1

(
yn − f (yn−1)

)2
. (16)

Proof. This follows immediately from Lemma 1, since the two infima on the right-
hand side in (14) have the same value.

Lemma 3. If f is increasing, f (0) = 0 and |f (x)| < |x| on (−1, 1)\{0}, the sum
should be minimized separately over positive values and increasing sequences or
negative values and decreasing sequences:

inf
yN=1,y0=0

yn≥0,n=1,...,N−1

1

2

N∑
n=1

(
yn − f (yn−1)

)2 = inf
yN=1,y0=0

y0≤y1≤y2≤···≤yN

1

2

N∑
n=1

(
yn − f (yn−1)

)2

(17)
and

inf
yN=−1,y0=0

yn≤0,n=1,...,N−1

1

2

N∑
n=1

(
yn − f (yn−1)

)2 = inf
yN=−1,y0=0

y0≥y1≥y2≥···≥yN

1

2

N∑
n=1

(
yn − f (yn−1)

)2
.

(18)

Proof. We prove equality (17). Assume that the sum
∑N

n=1(yn − f (yn−1))
2 is min-

imized by the sequence {y∗
n}Nn=0, where y∗

0 = 0, y∗
N = 1 and y∗

n ∈ [0, 1] for
n = 1, . . . , N − 1. We show by induction that y∗

N ≥ y∗
N−1 ≥ · · · ≥ y∗

1 ≥ y∗
0 . It

is given that y∗
N ≥ y∗

N−1. Assume that y∗
N ≥ y∗

N−1 ≥ · · · ≥ y∗
N−k+1 for some k. We

show that y∗
N−k+1 ≥ y∗

N−k .
If y∗

N−k+1 = 0, it is clear that the minimum of the sum is attained for y∗
N−k =

y∗
N−k−1 = · · · = y∗

1 = y∗
0 = 0. Then y∗

N−k+1 ≥ y∗
N−k .
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If y∗
N−k+1 > 0, make the contrary assumption that y∗

N−k+1 < y∗
N−k . Then

y∗
N−k ∈ (y∗

N−m, y∗
N−m+1] for some m ∈ {1, . . . , k − 1}. It follows that

N∑
n=1

(
y∗
n − f

(
y∗
n−1

))2 = (
1 − f

(
y∗
N−1

))2 + · · · + (
y∗
N−m+2 − f

(
y∗
N−m+1

))2

+ (
y∗
N−m+1 − f

(
y∗
N−m

))2 + (
y∗
N−m − f

(
y∗
N−m−1

))2

+ · · · + (
y∗
N−k+1 − f

(
y∗
N−k

))2 + (
y∗
N−k − f

(
y∗
N−k−1

))2

+ · · · + (
y∗

2 − f
(
y∗

1

))2 + (
y∗

1

)2

≥ (
1 − f

(
y∗
N−1

))2 + · · · + (
y∗
N−m+2 − f

(
y∗
N−m+1

))2 (19)

+ (
y∗
N−m+1 − f

(
y∗
N−k

))2 + 0 + · · · + 0

+ (
y∗
N−k − f

(
y∗
N−k−1

))2 + · · · + (
y∗

1

)2
,

because y∗
N−m+1 − f (y∗

N−m) ≥ y∗
N−m+1 − f (y∗

N−k). Equality is attained if

f
(
y∗
N−m

) = f
(
y∗
N−k

)
and y∗

N−m = f
(
y∗
N−m−1

)
, . . . , y∗

N−k+1 = f
(
y∗
N−k

)
.

(20)
If this is true, f is constant on the interval [y∗

N−m, y∗
N−k], and f (y∗

N−m) = y∗
N−k+1.

Also,

f
(
y∗
N−m

) = f
(
f

(
y∗
N−m−1

)) = · · · = f
(
f

(
. . .

(
f

(
y∗
N−k+1

))))
< y∗

N−k+1,

because y∗
N−k+1 > 0. Thus, (20) does not hold, which implies that equality is not at-

tained in (19). Then, the sum
∑N

n=1(yn−f (yn−1))
2 is not minimized by the sequence

{y∗
n}Nn=0, which is a contradiction. Thus, y∗

N−k+1 ≥ y∗
N−k .

Remark 1. If f and g are as in Lemma 3 and |f (x)| ≤ |g(x)| on [−1, 1], then

inf|yN |≥1
y0=0

1

2

N∑
n=1

(
yn − g(yn−1)

)2 ≤ inf|yN |≥1
y0=0

1

2

N∑
n=1

(
yn − f (yn−1)

)2
. (21)

Proof. By Lemma 3, the minimum on the right-hand side is attained for an increasing
sequence {yn}Nn=0:

inf
yN=1,y0=0

yn≥0,n=1,...,N−1

1

2

N∑
n=1

(
yn − f (yn−1)

)2 = inf
yN=1,y0=0

y0≤y1≤···≤yN

1

2

N∑
n=1

(
yn − f (yn−1)

)2
.

Now, for each n = 1, . . . , N ,

yn − f (yn−1) ≥ yn − yn−1 ≥ 0,

and the same is true when f is replaced by g. Since f (x) ≤ g(x) on [0, 1],
yn − f (yn−1) ≥ yn − g(yn−1),

and it follows that (
yn − f (yn−1)

)2 ≥ (
yn − g(yn−1)

)2
.

The statement of the lemma then follows.
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4 Piecewise linear functions

Consider the process
Xε

n+1 = f
(
Xε

n

) + εξn+1, (22)

where X0 = 0, {ξn}n≥1 is a sequence of i.i.d. standard normal random variables, ε

is a small positive parameter and f is a continuous piecewise linear function. We
consider exit times from the interval (−1, 1), so � = (−1, 1) and

τε = min
{
n ≥ 1 : |Xε

n| ≥ 1
}
. (23)

As in Section 3, the definition of f outside of [−1, 1] does not have an impact on the
results in this section.

Proposition 1. Let f be a function on R that satisfies

f (x) =

⎧⎪⎨
⎪⎩

a(x + b) if −1 ≤ x ≤ −b,

0 if −b < x < b,

a(x − b) if b ≤ x ≤ 1,

where 0 ≤ a < 1 and 0 ≤ b < 1. Then, for any M ≥ 1,

lim sup
ε→0

ε2 log Ex0τε ≤ 1

2
min

(
1, inf

2≤N≤M

((
1 − a2) (1 + a−aN

1−a
b)2

1 − a2N

))
. (24)

If a = 1 and 0 ≤ b < 1,

lim sup
ε→0

ε2 log Ex0τε ≤ 1

2
inf

1≤N≤M

(
(1 + (N − 1)b)2

N

)
(25)

for any M ≥ 1.

Fig. 1. The upper bound on the right-hand side in (24) illustrated for different values of a and b

and N = 1 (when the value is 1/2) and N = 2, . . . 8. The dotted line shows the value (1−a2)/2
in each case
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Proof. We have

inf|yN |≥1
y0=0

N∑
n=1

(
yn − f (yn−1)

)2 = inf|yN |=1
|y0|=b

N∑
n=1

(
yn − f (yn−1)

)2

= inf
yN=1
y0=b

N∑
n=1

(
yn − f (yn−1)

)2
,

because f (0) = f (b) and it is enough to take the infimum over positive values be-
cause of Lemma 2. If yN = 1, y0 = b and cn = aN−n for n = 1, . . . , N , we have the
following telescoping sum:

N∑
n=1

cn

(
yn − f (yn−1)

) =
{

1 if N = 1,

1 + ab 1−aN−1

1−a
if N ≥ 2.

By the Cauchy–Schwarz inequality,

N∑
n=1

(
yn − f (yn−1)

)2 ≥
∑N

n=1 cn(yn − f (yn−1))

(
∑N

n=1 c2
n)

,

where equality can be attained. Since
∑N

n=1 c2
n = (1 − a2N)/(1 − a2), it follows that

lim sup
ε→0

ε2 log Ex0τε ≤ 1

2
min

(
1, inf

2≤N≤M

((
1 − a2) (1 + a−aN

1−a
b)2

1 − a2N

))
,

for any M ≥ 1. The value of the infimum, as well as for which N it is attained,
depends on the choices of a and b; in some cases the minimum is 1 and in some cases
it it less than one.

If we let a = 1 and 0 < b < 1, we can use the same method as above with the
telescoping sum. Then cn = aN−n = 1 for n = 1, . . . , N ,

N∑
n=1

cn

(
yn − f (yn−1)

) = 1 + (N − 1)b

and the result is

lim sup
ε→0

ε2 log Ex0τε ≤ 1

2
inf

1≤N≤M

(1 + (N − 1)b)2

N
. (26)

Here, the infimum is 1 (which is attained for N = 1) if b ≥ 1/3. For b < 1/3, the
optimal N is either

⌊ 1
b

⌋ − 1 or
⌊ 1

b

⌋
.

Note that if b = 0 in expression (24), the infimum is attained for N = M . The
inequality holds for any M ≥ 1 and also as M → ∞. Then the right-hand side in
(24) becomes (1 − a2)/2, the result for the autoregressive process (11).



10 G. Högnäs, B. Jung

Proposition 2. Let a ∈ (0, 1) and c ∈ (0, 1] and let f be a function that satisfies

f (x) =

⎧⎪⎨
⎪⎩

−ac if −1 ≤ x < −c,

ax if −c ≤ x ≤ c,

ac if c < x ≤ 1.

Then

lim sup
ε→0

ε2 log Eτε ≤
{

1
2 ((1 − ac)2 + (1 − a2)c2), if c ≤ a,

1
2 (1 − a2), if c ≥ a.

(27)

Fig. 2. The upper bound on the right-hand side in (27) drawn as a function of c for some chosen
values of a. The dotted lines show the value (1 − a2)/2 for each a

Proof. By Lemma 2 and Lemma 3 we only need to minimize over positive and in-
creasing sequences. We determine the infimum of

N∑
n=1

(
yn − f (yn−1)

)2

for y0 = 0, y0 ≤ y1 ≤ · · · ≤ yN−1 ≤ yN and yN = 1. The set of sequences which
we minimize over can be split into two parts: Either yN−1 < c or the d last elements
in the sequence are larger than c: yN−d ≥ c. If yN−d ≥ c,

N∑
n=1

(
yn − f (yn−1)

)2 ≥ (1 − ac)2 + (d − 1)(c − ac)2 +
N−d∑
n=1

(
yn − f (yn−1)

)2
,

and this lower bound is attained for yN−d+1 = · · · = yN−1 = c. Minimizing the sum
on the right-hand side above when 0 ≤ y1 ≤ · · · ≤ yN−d−1 ≤ c and yN−d ≥ c is the
same minimizing problem as in (13), since f (yn−1) = ayn−1 when yn−1 ≤ c. We get

inf
yN=1,y0=0,yN−d≥c

y0≤y1≤···≤yN

N∑
n=1

(
yn−f (yn−1)

)2 = (1−ac)2+(d−1)(c−ac)2+ (1 − a2)c2

1 − a2(N−d)
.
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This value is smallest if d = 1, and it is then

(1 − ac)2 + (1 − a2)c2

1 − a2(N−1)
. (28)

On the other hand, if yN−1 < c,

inf
yN=1,y0=0,yN−1<c

y0≤y1≤···≤yN

N∑
n=1

(
yn − f (yn−1)

)2

= inf
yN=1,y0=0,yN−1<c

y0≤y1≤···≤yN

N∑
n=1

(yn − ayn−1)
2 = 1 − a2

1 − a2N

if a < c, because the minimizing problem then coincides with the same problem for
the autoregressive process. If a ≥ c,

inf
yN=1,y0=0,yN−1<c

y0≤y1≤···≤yN

N∑
n=1

(
yn − f (yn−1)

)2

= inf
yN=1,y0=0,yN−1<c

y0≤y1≤···≤yN

(
(1 − ayn−1)

2 +
N−1∑
n=1

(
yn − f (yn−1)

)2
)

where it is optimal to have yN−1 close to c, and we get the same infimum as in (28).
To summarize,

inf
yN=1,y0=0

y0≤y1≤···≤yN

N∑
n=1

(
yn − f (yn−1)

)2

= min

{
(1 − ac)2 + (1 − a2)c2

1 − a2(N−1)
,

1 − a2

1 − a2N

}
.

Since

lim sup
ε→0

ε2 log Ex0τε ≤ inf
1≤N≤M

inf
yN=1,y0=0

y0≤y1≤···≤yN

N∑
n=1

(
yn − f (yn−1)

)2

for any positive integer M , we can let M be arbitrarily large. We get

lim sup
ε→0

ε2 log Ex0τε ≤
{

1
2 ((1 − ac)2 + (1 − a2)c2), if c ≤ a,

1
2 (1 − a2), if c ≥ a.
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Proposition 3. Let 0 ≤ a < 1 and let f be a function that satisfies

f (x) =
{

0 if −1 ≤ x < 0,

−ax if 0 ≤ x ≤ 1.

Then

lim sup
ε→0

ε2 log Ex0τε ≤ 1

2

1

1 + a2 . (29)

Proof. We study the sum

SN :=
N∑

n=1

(
yn − f (yn−1)

)2
.

If yN = 1, then SN ≥ 1, since f (x) ≤ 0 for all x ∈ [−1, 1]. Also, if yN = −1 and
yN−1 < 0, we have SN ≥ 1. In the case when yN = −1 and yN−1 ≥ 0, it is optimal
to have yN−2 = · · · = y1 = y0 = 0. The smallest value that the sum can take is the
minimum of (−1 + ax)2 + x2 for x ∈ [0, 1], which is 1/(1 + a2). Thus,

inf
1≤N≤M

inf|yN |=1,y0=0
y1,...,yN−1∈(−1,1)

N∑
n=1

(
yn − f (yn−1)

)2 = 1

1 + a2 ,

and it follows that

lim sup
ε→0

ε2 log Ex0τε ≤ 1

2

1

1 + a2 .

Note that if a = 0 in Proposition 3, we have f (x) = 0 on [−1, 1], which is a
special case of the autoregressive process with a = 0. The upper bound is then just
1/2 which agrees with the result in the autoregressive case.

Proposition 4. Let f be a function that satisfies

f (x) =
{

−bx if −1 ≤ x < 0,

−ax if 0 ≤ x ≤ 1,

where 0 < a < 1, 0 < b < 1. Then

lim sup
ε→0

ε2 log Ex0τε ≤ 1

2
min

(
1 − (ab)2

1 + a2 ,
1 − (ab)2

1 + b2

)
. (30)

Proof. Let

S =
N∑

n=1

(
yn − f (yn−1)

)2
.

Consider the cases yN = 1 and yN = −1 separately. First, let yN = −1. Clearly, the
sum S is smallest if the sequence {yn}Nn=1 has alternating signs: yN−1 > 0, yN−2 <

0, . . . . Putting the derivative of S with respect to yn equal to zero gives

yn − f (yn−1) = f ′(yn)
(
yn+1 − f (yn)

)
,
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where f ′(yn) = −b if yn < 0 and f ′(yn) = −a if yn > 0. Let sn := yn − f (yn−1).
Then, if N = 2M so that N is even, it is optimal to have y1 > 0. Then

s2k = −a−kb−k+1s1,

s2k+1 = a−kb−ks1,

and it follows that

yN = −s1
[
aMbM−1 + aM−2bM−1 + aM−2bM−3 + aM−4bM−3 + · · ·

+ a−M+2b−M+1 + a−Mb−M+1].
This is a sum of two geometric sums. Since yN = −1,

s1 = 1

(1 + a2)(ab)Na−2b−1 · (ab)−2 − 1

(ab)−2N − 1
.

The value of the sum is

S =
N∑

n=1

s2
n = 1 − (ab)2

1 + a2 · 1

1 − (ab)2N
.

If N is odd, it is optimal to have y1 < 0. Then the same calculations as above follow,
if a is replaced by b and vice versa. It follows that the value of the sum is

S =
N∑

n=1

s2
n = 1 − (ab)2

1 + b2 · 1

1 − (ab)2N
.

The cases when yN = 1 and N is odd or even, give the same values of the sum. The
smallest values are attained when N is large, and the statement of the proposition
follows.

We note that when a = b in Proposition 4, we have the autoregressive process
with f (x) = −ax on [−1, 1]. The upper bound in Proposition 4 reduces to 1/(2(1 −
a2)) which is the bound for the autoregressive process.

Remark 2. The TAR(1)-model, where f (x) = a|x| for |a| < 1, is another piecewise
linear example. For this model,

lim sup
ε→0

ε2 log Eτε ≤ 1 − a2

2
. (31)

Proof. If 0 ≤ a < 1,

inf|yN |≥1
y0=0

1

2

N∑
n=1

(yn − a|yn−1|)2 = inf
yN=1,y0=0

yn≥0,n=1,...,N−1

1

2

N∑
n=1

(yn − ayn−1)
2, (32)

and we have the same infimum as in the autoregressive case (which was treated in
[12] and [13]). The case −1 < a ≤ 0 is treated in a similar way.

The upper bound in (31) is sharp; this was shown in [18], where Novikov’s mar-
tingale method was used for this process to get the corresponding lower bound (the
proof was almost the same as for the autoregressive process).
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5 Other nonlinear functions

For a more general function f it is not always possible to minimize the sum and get
explicit upper bounds. Numerical calculations may be needed. It is also possible to
construct (nonstrict) upper bounds by simply evaluating the sum for some sequence
of values instead of actually minimizing it. This is illustrated in the following case.
Consider the case when f is quadratic, so we have the process

Xε
n+1 = f

(
Xε

n

) + εξn+1, (33)

where X0 = 0, {ξn}n≥1 is a sequence of i.i.d. standard normal random variables, ε is
a small positive parameter and f (x) = ax2.

Proposition 5. When f (x) = ax2 and 0 ≤ a ≤ 0.5,

lim sup
ε→0

ε2 log Eτε ≤ 1

2
.

If a ≥ 0.5,

lim sup
ε→0

ε2 log Eτε ≤ 1

2

(
1

a
− 1

4a2

)
. (34)

Proof. Since f (x) ≥ 0 and f is even, it is optimal to have yN = 1 and yn ≥ 0 ∀n.
We have

N∑
n=1

(
yn − f (yn)

)2 =
N∑

n=1

(
yn − ay2

n−1

)2

= 1 + y2
n−1(1 − 2a) + y2

n−2(1 − 2ayn−1) + · · · + y2
1(1 − 2ay2)

+ a2(y4
n−1 + y4

n−2 + · · · + y2
2

) ≥ 1

when 0 ≤ a ≤ 0.5, and equality is achieved by putting y1 = y2 = · · · = yN−1 = 0.
For a ≥ 0.5,

inf
1≤N≤M

⎛
⎜⎝ inf|yN |≥1,y0=0

|yn|<1,n=1,2,...,n−1

1

2

N∑
n=1

(
yn − ay2

n−1

)2

⎞
⎟⎠ ≤ inf

y2=1,y0=0
|y1|<1,

1

2

2∑
n=1

(
yn−ay2

n−1

)2
,

where the infimum on right-hand side is 1
2 ( 1

a
− 1

4a2 ) (it is attained for y1 =
√

1
a

− 1
2a2 ).

This gives the upper bound in (34).

This is not necessarily the best upper bound for all a ≥ 0.5, since we have only
calculated the infimum for N = 2, but at least we get an upper bound. Numerical
calculations suggest that the bound in (34) is the best one for a slightly larger than
0.5, and that the optimal choice of N increases as a increases.

For another example of a nonlinear case, consider the classical deterministic
Ricker model defined by

xn+1 = xne
r−γ xn, n = 0, 1, 2, . . . ,
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where xt represents the size or density of a population at time t , r > 0 models the
growth rate and γ > 0 is an environmental factor [9]. By suitably renorming the
population, we may take γ = 1. The model then has a fixed point at x = r (and one
at x = 0). If we introduce stochasticity in the model by adding normally distributed
white noise, and move the fixed point x = r to the origin, we have the process

Xε
n+1 = f

(
Xε

n

) + εξn+1,

where f (x) = (x + r)e−x − r and {ξn}n≥1 is a sequence of i.i.d. N(0, 1) variables.
We can examine the time until the process exits from a suitable neighbourhood of the
origin.

Fig. 3. The function f (x) = xer−x for r = 1.5. We have a fixed point at x = r . On the right,
we see a part of the plot with the fixed point moved to the origin

If r = 1.5, consider for example the time until exit from the interval [−0.5, 0.5].
Numerical calculations of the infimum

inf
1≤N≤M

⎛
⎜⎜⎜⎝ inf|yN |≥0.5

y0=0
|yn|<0.5,n=1,...,N

1

2

N∑
n=1

(
yn − f (yn−1)

)2

⎞
⎟⎟⎟⎠

give the approximate value 0.09, so that

lim sup
ε→0

ε2 log Eτε � 0.09.

The derivative of f at the origin is 1 − r , so a suitable linear approximation of the
function f is l(x) = −0.5x. By replacing f by l, we have an autoregressive process
for which the upper bound of the exit time is

lim sup
ε→0

ε2 log Eτε ≤ 0.52 1 − 0.52

2
= 0.09375.

We note that a linear approximation might give good enough approximations of the
upper bounds, in cases when the neighbourhood around the origin is chosen to be
rather small.
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6 Connection to stationary distribution

Mark Kac proved in 1947 that the mean return time of a discrete Markov chain to
a point x is the reciprocal of the invariant probability π(x). In [7], we explored this
idea by comparing the exit time for the process defined by the stochastic difference
equation

Xε
n+1 = f

(
Xε

n

) + εξn+1 (35)

and the return time to a certain set for the same process. We get an upper bound for
the asymptotics of the exit time, and that bound is the reciprocal of the stationary dis-
tribution of the process, evaluated at the point where the level curve of the stationary
distribution touches the boundary of the set (or interval in the univariate case) from
which the process exits.

In the univariate case with f (x) = ax, x ∈ R, (that is, for the autoregressive
process), this method gives the same upper bound as the LDP method:

lim sup ε2 log Eτε ≤ 1 − a2

2
.

These methods only give an upper bound, but we know that the bound is sharp in the
autoregressive case; the corresponding lower bound can be shown by other methods
– see [18], where Novikov’s martingale method ([16] and [17]) was used, and [11].

In Section 4, we saw several examples of processes of the type defined in (35)
where f was a piecewise linear function. For these examples, it is not straightforward
to derive expressions for the stationary distributions of the processes. We also note
that in Section 4, where the LDP method was used, the definition of f outside of the
interval [−1, 1] could be ignored. However, when calculating stationary distributions,
the definition of f outside of [−1, 1] matters a great deal.

We observe that there is another piecewise linear case for which the stationary
distribution is known, and this is a TAR(1) process with a threshold of 0, studied by
Anděl et al. [1], where

Xε
n+1 = f

(
Xε

n

) + εξn+1,

with f (x) = −|ax| for |a| < 1. In [1], they gave the following formula for the
stationary distribution of this process:

1

ε

(
2(1 − a2)

π

)1/2

exp

(
−1

2

(
1 − a2)x2

ε2

)
�

(−ax

ε

)
,

where � is the cumulative distribution function of a N(0, 1) random variable. We
note that

−ε2 log

(
1

ε

(
2(1 − a2)

π

)1/2

exp

(
−1

2

(
1 − a2)x2

ε2

)
�

(−ax

ε

))
→ 1 − a2

2

at the point x = −1. This means that in this particular case, the value of the limit of
the stationary distribution, evaluated at the point where the process exits the interval,
coincides with the upper bound achieved by use of the LDP method in Remark 2.

A preprint of a previous version of this paper has been posted on ArXiv [10].
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