On some composite Kies families: distributional properties and saturation in Hausdorff sense        
        
    
        Volume 10, Issue 3 (2023), pp. 287–312
            
    
                    Pub. online: 21 March 2023
                    
        Type: Research Article
            
                
             Open Access
Open Access
        
            
    
                Received
9 November 2022
                                    9 November 2022
                Revised
7 January 2023
                                    7 January 2023
                Accepted
12 March 2023
                                    12 March 2023
                Published
21 March 2023
                    21 March 2023
Abstract
The stochastic literature contains several extensions of the exponential distribution which increase its applicability and flexibility. In the present article, some properties of a new power modified exponential family with an original Kies correction are discussed. This family is defined as a Kies distribution which domain is transformed by another Kies distribution. Its probabilistic properties are investigated and some limitations for the saturation in the Hausdorff sense are derived. Moreover, a formula of a semiclosed form is obtained for this saturation. Also the tail behavior of these distributions is examined considering three different criteria inspired by the financial markets, namely, the VaR, AVaR, and expectile based VaR. Some numerical experiments are provided, too.
            References
 Afify, A.Z., Gemeay, A.M., Alfaer, N.M., Cordeiro, G.M., Hafez, E.H.: Power-modified Kies-exponential distribution: Properties, classical and Bayesian inference with an application to engineering data. Entropy 24(7), 883 (2022). MR4467767. https://doi.org/10.3390/e24070883
 Al-Babtain, A.A., Shakhatreh, M.K., Nassar, M., Afify, A.Z.: A new modified Kies family: Properties, estimation under complete and type-II censored samples, and engineering applications. Mathematics 8(8), 1345 (2020). MR4199201. https://doi.org/10.3934/math.2021176
 Alsubie, A.: Properties and applications of the modified Kies–Lomax distribution with estimation methods. J. Math., 2021(2), 1–18 (2021). MR4346604. https://doi.org/10.1155/2021/1944864
 Berger, M.-H., Jeulin, D.: Statistical analysis of the failure stresses of ceramic fibres: Dependence of the weibull parameters on the gauge length, diameter variation and fluctuation of defect density. J. Mater. Sci. 38(13), 2913–2923 (2003). https://doi.org/10.1023/A:1024405123420
 Bhatti, F.A., Ahmad, M.: On a new family of kies burr iii distribution: Development, properties, characterizations, and applications. Sci. Iran. 27(5), 2555–2571 (2020). ISSN 1026-3098. . URL http://scientiairanica.sharif.edu/article_21382.html
 Gupta, R.C., Bradley, D.M.: Representing the mean residual life in terms of the failure rate. Math. Comput. Model. 37(12–13), 1271–1280 (2003). MR1996036. https://doi.org/10.1016/S0895-7177(03)90038-0
 Hansen, L.P.: Large sample properties of generalized method of moments estimators. Econometrica: Journal of the econometric society, 50(4) 1029–1054 (1982). MR0666123. https://doi.org/10.2307/1912775
 Koenker, R.W.: Quantile regression. Cambridge University Press, (2005). ISBN 9780521845731. MR2268657. https://doi.org/10.1017/CBO9780511754098
 Kumar, C.S., Dharmaja, S.H.S.: On some properties of Kies distribution. Metron 72(1), 97–122 (2014). MR3176964. https://doi.org/10.1007/s40300-013-0018-8
 Kumar, C.S., Dharmaja, S.H.S.: The exponentiated reduced Kies distribution: Properties and applications. Commun. Stat., Theory Methods 46(17), 8778–8790 (2017). MR3680792. https://doi.org/10.1080/03610926.2016.1193199
 Kumar, C.S., Dharmaja, S.H.S.: On modified Kies distribution and its applications. J. Stat. Res. 51(1), 41–60 (2017). MR3702285. https://doi.org/10.47302/jsr.2017510103
 Lai, C.-D.: Generalized Weibull distributions. In: Generalized Weibull Distributions, pp. 23–75. Springer, (2014). MR3115122. https://doi.org/10.1007/978-3-642-39106-4_2
 Matsushita, S., Hagiwara, K., Shiota, T., Shimada, H., Kuramoto, K., Toyokura, Y.: Lifetime data analysis of disease and aging by the weibull probability distribution. J. Clin. Epidemiol. 45(10), 1165–1175 (1992). https://www.sciencedirect.com/science/article/pii/089543569290157I. https://doi.org/10.1016/0895-4356(92)90157-I
 McCool, J.I.: Using the Weibull distribution: reliability, modeling, and inference, vol. 950. John Wiley & Sons, (2012). MR3014584. https://doi.org/10.1002/9781118351994
 Prabhakar Murthy, D.N., Xie, M., Jiang, R.: Weibull models. John Wiley & Sons, (2004). MR2013269
 Newey, W.K., Powell, J.L.: Asymmetric least squares estimation and testing. Econometrica: Journal of the Econometric Society 55(4), 819–847 (1987). MR0906565. https://doi.org/10.2307/1911031
 Rinne, H.: The Weibull distribution: a handbook. Chapman and Hall/CRC, (2008). MR2477856
 Sanku, D.E.Y., Nassarn, M., Kumar, D.: Moments and estimation of reduced Kies distribution based on progressive type-II right censored order statistics. Hacet. J. Math. Stat. 48(1), 332–350 (2019). MR3976180. https://doi.org/10.15672/hjms.2018.611
 Seguro, J.V., Lambert, T.W.: Modern estimation of the parameters of the weibull wind speed distribution for wind energy analysis. J. Wind Eng. Ind. Aerodyn. 85(1), 75–84 (2000). https://www.sciencedirect.com/science/article/pii/S0167610599001221. https://doi.org/10.1016/S0167-6105(99)00122-1
 Sendov, B.: Hausdorff approximations, vol. 50. Springer, (1990). MR1078632. https://doi.org/10.1007/978-94-009-0673-0
 Shafiq, A., Lone, S.A., Naz Sindhu, T., El Khatib, Y., Al-Mdallal, Q.M., Muhammad, T.: A new modified Kies Fréchet distribution: Applications of mortality rate of Covid-19. Results Phys. 28, 104638 (2021). https://www.sciencedirect.com/science/article/pii/S2211379721007294. https://doi.org/10.1016/j.rinp.2021.104638
 Sobhi, M.M.A.: The modified Kies–Fréchet distribution: properties, inference and application. AIMS Math. 6, 4691–4714 (2021). MR4220431. https://doi.org/10.3934/math.2021276
 Soulimani, A., Benjillali, M., Chergui, H., da Costa, D.B.: Multihop weibull-fading communications: Performance analysis framework and applications. J. Franklin Inst. 358(15), 8012–8044 (2021). https://www.sciencedirect.com/science/article/pii/S0016003221004701. MR4319388. https://doi.org/10.1016/j.jfranklin.2021.08.004
 Weibull, W.: A statistical distribution function of wide applicability. J. Appl. Mech. 18(3), 293–297 (1951). https://doi.org/10.1115/1.4010337
 Wilks, D.S.: Rainfall intensity, the weibull distribution, and estimation of daily surface runoff. J. Appl. Meteorol. Climatol. 28(1), 52–58 (1989). https://doi.org/10.1175/1520-0450(1989)028<0052:RITWDA>2.0.CO;2
 Yazhou, J., Molin, W., Zhixin, J.: Probability distribution of machining center failures. Reliab. Eng. Syst. Saf. 50(1), 121–125 (1995). https://www.sciencedirect.com/science/article/pii/095183209500070I. https://doi.org/10.1016/0951-8320(95)00070-I
 Zaevski, T.S., Kyurkchiev, N.: Some notes on the four-parameters Kies distribution. Comptes rendus de l’Académie bulgare des Sciences 75(10), 1403–1409 (2022). MR4504780
 
                 
            