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Abstract The stochastic literature contains several extensions of the exponential distribution
which increase its applicability and flexibility. In the present article, some properties of a new
power modified exponential family with an original Kies correction are discussed. This family
is defined as a Kies distribution which domain is transformed by another Kies distribution. Its
probabilistic properties are investigated and some limitations for the saturation in the Hausdorff
sense are derived. Moreover, a formula of a semiclosed form is obtained for this saturation.
Also the tail behavior of these distributions is examined considering three different criteria
inspired by the financial markets, namely, the VaR, AVaR, and expectile based VaR. Some
numerical experiments are provided, too.
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1 Introduction

The Weibull distribution is one of the most important generalizations of the expo-
nential distribution. Despite of the loss of the important memorylessness feature, the
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Weibull distribution has several advantages which determine its wide use in many
real life areas including engineering sciences [29], meteorology and hydrology [28],
communications and telecommunications [26], energetics [22], chemical and metal-
lurgical industry [4], epidemiology [16], insurance and banking [6], etc. For more
theoretical and practical details related to this distribution we refer to the original
work [27] as well as the recently published books [18, 20, 17], and [15].

A significant modification of the Weibull distribution known as a Kies distribu-
tion was firstly proposed in [9] and recently considered in many studies. It reduces the
positive real half-line support of the Weibull to the interval (0, 1) changing the vari-
ables as t = x

x+1 . Later, many authors discussed several modifications. Refs. [11, 21]
and [30] examine four parameter distributions whose domain is translated to an arbi-
trary positive interval. Refs. [12, 13] take a power of the Kies cumulative distribution
function (CDF, hereafter) to define a new family.

A composition approach for the Kies distribution is presented in [2]. This way
the new distribution is defined after the change of variables t = H (x) where H (x)

is the CDF of an auxiliary distribution. Ref. [25] introduces the Fréchet distribution
for this purpose and later in [24] the resulting Kies-Fréchet distribution is applied to
model the COVID 19 mortality. Alternatively, [1] and [3] use the exponential and
Lomax distributions, respectively. See also [5] for another composition based on the
generalized uniform distribution.

In the present article we define a new Kies family by its CDFs which are con-
structed as a composition of two other Kies CDFs on the interval (0, 1), G(H (t)).
Note that this definition is possible due to this domain. We name the distributions
G(·) and H (·) the original one and the correction. Thus we have a four-parameter
family – two parameters for each initial distribution. We investigate the probabilistic
properties of the resulting distribution in the light of its compositional essence. We
derive many relations between the corresponding terms – CDF, probability density
function, quantile function, mean residual life function, different expectations and
moments – of the resulting and the initial distributions. Also we investigate the tail
behavior by the use of three risk measures arising in the modern capital markets,
namely VaR (abbreviated from Value-at-Risk), AVaR (Average-Value-at-Risk, also
known as CVAR and TVAR), and expectile based VaR.

Other important results we derive are related to the so-called Hausdorff satura-
tion. It presents the distance between the CDF and a �-shaped curve connecting its
endpoints. In fact, the saturation measures how the distribution mass is located in the
domain – the distribution is more left-placed when the saturation is lower, and vice
versa. Also, when studying specific classes of cumulative distribution functions it is
important to know their intrinsic characteristics – the saturation in the Hausdorff sense
is namely such one. This characteristic is important for researchers in choosing an ap-
propriate model for approximating specific data from different branches of scientific
knowledge such as Biostatistics, Population dynamics, Growth theory, Debugging
and Test theory, Computer viruses propagation, Insurance mathematics. In addition,
the use of composite Kiess families can also be useful in the study of reaction-kinetic
models – a similar study of the dynamics of the classical Kiess model is discussed
in [14]. We obtain in this paper an interval evaluation of the saturation and investi-
gate its power w.r.t. the four distribution parameters. Moreover, we prove a formula
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of a semiclosed form for the Hausdorf saturation. Many numerical experiments are
provided.

The next question we discuss is related to the inverse problem – the calibration
w.r.t. some empirical data. It is accepted in the present literature that the maximum
likelihood estimation is a good approach for the Kies style distributions due to the
available closed form estimator. However, our numerical simulations do not support
this opinion. For this we construct an algorithm based on the least square errors. It
turns out that this method produces very believable outcomes.

To illustrate our results we explore an empirical data from the real financial mar-
kets, namely, for the S&P500 index. It is well known that there are high- and low-
volatility periods. In fact, this is the ubiquitous phenomenon of volatility clustering.
We extract the periods between two market shocks and examine the distribution of
their lengths. We compare the results which the corrected Kies distribution returns
with the outcome of its ancestors, namely, the exponential, the Weibull, and the orig-
inal Kies distributions.

The paper is organized as follows. Section 2 defines the new class of distributions
and discusses their probabilistic properties. The tail behavior is examined in Section 3
trough the measures VaR, AVaR, and expectile based VaR. The Hausdorff distance
and the related saturation are considered in Section 4. We discuss the calibration
problem in Section 5. Finally, we present a numerical example based on the S&P500
index in Section 6.

2 Definitions and distributional properties

We shall use for convenience the following notations in the whole paper. The cumu-
lative distribution function (CDF, as we mentioned above) of a distribution will be
denoted by an uppercase letter, the overlined letter will be used for the complemen-
tary cumulative distribution function (CCDF), the corresponding lowercase letter is
preserved for the probability density function (PDF), and finaly the letter Q indexed
by the CDF’s letter will mean the quantile function (QF). For example, if F (t) is
the CDF, then F (t), f (t), and QF (t) are the corresponding CCDF, PDF, and QF,
respectively. Also, we shall use the Greek letter ξ for random variables, and we shall
mark it by the corresponding CDF letter in the subscript, i.e. ξF means a random
variable the CDF of which is F (t).

The standard Kies distribution is defined on the domain (0, 1) by its CDF

H (t) := 1 − e
−k

(
t

1−t

)b

(1)

for some positive parameters b and k. Inverting CDF (1) we can derive the quantile
function for t ∈ (0, 1):

QH (t) = (− ln (1 − t))
1
b

k
1
b + (− ln (1 − t))

1
b

. (2)

Differentiating equation (1) we obtain the probability density function

h (t) = bke
−k

(
t

1−t

)b
tb−1

(1 − t)b+1 . (3)
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The following proposition describes the shape of PDF (3).

Proposition 2.1. The value of the PDF at the right end of the distribution domain is
zero, h (1) = 0. Let the function α (t) for t ∈ (0, 1) be defined as

α (t) := kb

(
t

1 − t

)b

− (2t + b − 1) . (4)

The following statements for PDF (3) w.r.t. the position of the power b w.r.t. 1 hold.

1. If b > 1, then PDF (3) is zero in the left domain’s endpoint, h (0) = 0. Func-
tion (4) has a unique root for t ∈ (0, 1), we denote it by t2. The PDF increases
for t ∈ (0, t2) having a maximum for t = t2 and decreases for t ∈ (t2, 1).

2. If b = 1, then the left limit of the PDF is h (0) = k. If k ≥ 2, then the PDF is
a function decreasing from k to 0. Otherwise, if k < 2, then we introduce the
value t2 = 1 − k

2 ; note that t2 ∈ (0, 1). The PDF starts from the value k for
t = 0, increases to a maximum for t = t2, and decreases to zero.

3. If b < 1, then h (0) = ∞. The derivative of function (4) is

α′ (t) = kb2 tb−1

(1 − t)b+1 − 2. (5)

Let t be defined as t := 1−b
2 . The PDF is a decreasing function when α′ (t) ≥ 0.

Suppose that α′ (t) < 0. In this case derivative (5) has two roots in the interval
(0, 1); we denote them by t1 and t2. If α

(
t2

) ≥ 0, then the PDF decreases
in the whole distribution domain. Otherwise, if α

(
t2

)
< 0, then function (4)

has two roots in the interval (0, 1), too; we notate them by t1 and t2. The PDF
starts from infinity, decreases in the interval (0, t1) having a local minimum
for t = t1, increases for t ∈ (t1, t2) having a local maximum for t = t2, and
decreases to zero for t ∈ (t2, 1).

Proof. We have that h (1) = 0 due to the exponential decay of PDF (3).The value
h (0) and the shape of PDF (3) is derived in Appendix A.

We introduce and investigate a new class of distributions for which the correction
is presented by another Kies distribution (1).

Definition 2.2. Let a, b, λ, and k be positive constants. Let two Kies distributed
random variables be defined by their CDFs

H (t) := 1 − e
−k

(
t

1−t

)b

,

G (t) := 1 − e
−λ

(
t

1−t

)a

.

(6)

We define a new distribution in the domain (0, 1) by the CDF

F (t) := G(H (t)) . (7)

We shall call it a H -corrected Kies distribution. We name G the original distribution
and H the correcting distribution.
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Remark 1. Note that this superposition is possible since the Kies CDF is an increas-
ing from zero to one function in the interval (0, 1).

Proposition 2.3. The CDF (7) can be written as

F (t) = 1 − e
−λ

(
e
k
(

t
1−t

)b

−1

)a

. (8)

Proof. We have

F (t) = 1 − e
−λ

(
H(t)

1−H(t)

)a

= 1 − e
−λ

(
1

H(t)
−1

)a

= 1 − e
−λ

(
e
k
(

t
1−t

)b

−1

)a

, (9)

since

H (t) = e
−k

(
t

1−t

)b

. (10)

As a corollary of Definition 2.2 we can establish the quantile function.

Corollary 2.4. The quantile function of a H -corrected Kies distributed random vari-
able can be derived trough the formula

QF (t) = QH (QG (t)) , (11)

where QH (t) and QG (t) are the quantile functions of the original Kies distributions
(equation (2)) H (t) and G(t), respectively.

Differentiating equation (8) we obtain for the PDF

f (t) = abλk e
−λ

(
e
k
(

t
1−t

)b

−1

)a (
e
k
(

t
1−t

)b

− 1

)a−1

e
k
(

t
1−t

)b
tb−1

(1 − t)b+1 . (12)

More informative is another form of PDF (12) presented in the following proposition.

Proposition 2.5. The PDF of the H -corrected Kies distribution (12) can be written
alternatively as

f (t) = g (H (t)) h (t) . (13)

Proof. The prof is an immediate consequence from superposition (7).

Remark 2. Formula (13) means that the PDF of the H -corrected Kies distribution is
the initial PDF weighted by the corresponding correction’s PDF.

First we have to derive the PDF value of the H -corrected Kies distribution at the
left domain endpoint t = 0 (obviously, the value at the right one, t = 1, is zero).
Analogously to the original Kies distributions, one can expect that 0 < f (0) < ∞
when a = b = 1. This is true, but the values a = b = 1 are far from exhausting
the cases in which the left endpoint of the PDF is finite and nonzero. The proposition
below characterizes the PDF’s behavior near the zero.

Proposition 2.6. The left value f (0) of the H -corrected Kies PDF (13) is:
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1. f (0) = 0 when ab > 1;

2. f (0) = λka when ab = 1;

3. f (0) = ∞ when ab < 1.

Proof. We shall use form (12) of the PDF. We can see that the PDF near the zero
depends only on the term

L := abλk
(
ektb − 1

)a−1
tb−1. (14)

Expanding the exponent in the Taylor series, we transform equation (14) to

L = abλk

(( ∞∑
n=1

kntnb

n!

)
t

b−1
a−1

)a−1

= abλk

( ∞∑
n=1

kntnb+ b−1
a−1

n!

)a−1

.

(15)

Suppose first that a < 1. If b is such that

b + b − 1

a − 1
< 0, (16)

then at least one term of the sum above, namely the first one, tends to infinity for
t → 0. Therefore L → 0, since a < 1. Note that inequality (16) is equivalent to
ab > 1. If the inequality (16) is opposite in sign, then all terms of the sum tend
to zero, and therefore L → ∞ (note again a < 1). If we have equality in (16), or
equivalently ab = 1, then the first term tends to k and the rest tend to zero. Hence
L → abλkka−1 = λka .

Assume now that a > 1. If inequality (16) holds, equivalently to ab < 1, then
L → ∞, since the fist term of the sum tends to infinity and a > 1. If ab = 1,
then only the first term is nonzero – its limit is k – and hence L → λka . If ab > 1
(oppositely to inequality (16)), we conclude that L → ∞, since the sum tends to
infinity and the power is positive.

Finally, if a = 1, then the desired result holds because formula (14) turns to
L = bλktb−1.

The shape of the PDF of the H -corrected Kies distribution is a consequence of
Propositions 2.1 and 2.6. Obviously, it has to be more various than the PDF of the
original Kies distribution. Various examples are presented in Figure 1. In each of all
six subfigures we vary the coefficients λ and a for the original distribution G as λ ∈
{0.5, 1, 1.5} and a ∈ {0.5, 2}. Namely, the original Kies distribution G is colored
by blue. The rest of the plotted PDFs are produced by the following parameters for
the correcting distribution H : k ∈ {1, 2} and b ∈ {0.5, 1, 2}.

The following proposition for the expectations of the corrected Kies random vari-
ables holds.
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Fig. 1. PDFs of the corrected Kies distributions

Proposition 2.7. Let ξF be an H -corrected Kies distributed random variable with
original distribution G, ξG be an original Kies distributed random variable, and β (·)
be a real valued function. The expectation of the random variable β (ξF ) is equal to
the expectation of the random variable β (QH (ξG)). Written formalized that is

E [β (ξF )] = E [β (QH (ξG))] . (17)
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Proof. Using the form of PDF (13) and changing the variables as x = H (t) (equiv-
alently, t = QH (x)) we derive

E [β (ξF )] =
1∫

0

β (t) g (H (t)) dH (t)

=
1∫

0

β (QH (x)) g (x) dx

= E [β (QH (ξG))] . (18)

The following corollaries hold.

Corollary 2.8. The random variables ξF and QH (ξG) are identically distributed
under the assumptions of Proposition 2.7.

Corollary 2.9. The H -corrected Kies distributed random variable ξF has finite mo-
ments and they can be presented as

μn := E
[
ξn
F

] = E
[
(QH (ξG))n

]
(19)

for n = 1, 2, . . . .

Proof. We can obtain the moments integrating by parts as

E
[
ξn
F

] =
1∫

0

tndF (t) = 1 − n

1∫
0

tn−1F (t) dt (20)

and hence they are finite. Formula (19) is an immediate consequence of equation (17).

Let us consider now the mean residual life function (MRLF, hereafter) of
an H -corrected Kies distribution. Usually it is defined as the conditional expectation

mF (t) := E [ξF − t |ξF > t]. (21)

We shall use an alternative presentation stated in [7]:

mF (t) := 1

F (t)

1∫
t

F (s) ds. (22)

The following proposition for the MRLF stands.

Proposition 2.10. The MRLF of an H -corrected Kies distributed random variable
ξF can be written as

mF (t) = E
[
QH (ξG) IξG>H(t)

]
F (t)

− t. (23)
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Proof. Let us consider first the integral in formula (22). Changing the variables as
x = H (s) (equivalently to s = QH (x)) and integrating by parts we derive

1∫
t

F (s) ds =
1∫

t

G (H (s)) ds =
1∫

H(t)

G (x) dQH (x)

= G(x) QH (x)
∣∣1
H(t)

+
1∫

H(t)

g (x) QH (x) dx

= −F (t) t + E
[
QH (ξG) IξG>H(t)

]
.

(24)

We obtain the desired result combining equations (22) and (24).

Remark 3. A simple validation of Proposition 2.10 can be seen for t = 0. Then
formula (21) leads to m(0) = E [ξF ] and thus formulas (17) and (23) coincide when
β (·) is the identity function.

3 Tail behavior

Let us consider three measures arising from the risk management – VaR, AVaR, and
expectile based VaR; we shall use the notation EX for the last one. By its original
definition, the VaR at level α of a random variable is just the opposite of the quantile
function VaR(α) = −Q(α). Since the domain of the Kies family is the interval (0, 1)

we shall think VaR(α) := Q(α). As its name shows, AVaR is an average VaR in some
sense – it is defined as

AVaR(α) := 1

α

α∫
0

VaR(u)du. (25)

Also, we consider the right tail behavior by defining the following term

AVaR(α) := 1

1 − α

1∫
α

VaR(u)du. (26)

The expectile function is related to the quantiles in the following way. The α-quantile
of the random variable ξ can be viewed as the lower solution of the optimal problem

Q(α) = arg min
x∈R

{
E

[
α (ξ − x)+ + (1 − α) (ξ − x)−

]}
, (27)

where z+ and z− are notations for max (z, 0) and max (−z, 0), respectively. For more
details, see, for example, [10]. Analogously, the expectile is defined in [19] as the
solution of the following quadratic problem

EX(α) := arg min
x∈R

{
E

[
α

(
(ξ − x)+

)2 + (1 − α)
(
(ξ − x)−

)2
]}

. (28)
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Note that the expectiles are well defined when the random variable has a finite second
moment. For the corrected Kies distributions this is true due to Corollary 2.9. It can
be easily proven that expectile (28) is the solution of the following equation w.r.t. the
variable x

αE
[
(ξ − x)+

] = (1 − α) E
[
(ξ − x)−

]
. (29)

We derive AVaRs and the expectile based VaR in the following two propositions.

Proposition 3.1. We have the following double presentations for AVaR(α) and
AVaR(α):

AVaR(α) = μ1

α
− 1 − α

α
[QF (α) + mF (QF (α))]

= E
[
QH (ξG) IξG<QG(α)

]
α

AVaR(α) = QF (α) + mF (QF (α))

= E
[
QH (ξG) IξG>HQG(α)

]
1 − α

,

(30)

where μ1 is the first moment given in Corollary 2.9 and mF (·) is the MRLF.

Proof. We shall use the following relation between the truncated expecations and the
MRLF, the proof of which can be found in [7],

E
[
(ξF − y)+

] = mF (y) F (y) . (31)

Having in mind equations x− = x+ − x and (31), and changing the variables as
s = QF (t) ⇔ t = F (s), we derive for the first statement of equation (30)

AVaR(α) = 1

α

α∫
0

QF (t) dt = 1

α

QF (α)∫
0

sf (s) ds = E
[
ξF Iξ<QF (α)

]
α

= QF (α) P (ξF < QF (α))

α
− E

[
(ξF − QF (α))−

]
α

= QF (α) − E
[
(ξF − QF (α))+

]
α

+ E [ξF − QF (α)]

α

= μ1

α
− 1 − α

α
[QF (α) + mF (QF (α))] .

(32)

To derive the second form of the AVaR, we use equations (11), (19), and (23) (for the
quantile function, the moment and the MRLF, respectively) and obtain

AVaR(α) = μ1 − (1 − α) [QF (α) + mF (QF (α))]

α

=
E [QH (ξG)] − (1 − α)

[
QF (α) + E

[
QH (ξG)IξG>H

(
QF (α)

)]
F(QF (α))

− QF (α)

]

α

= E
[
QH (ξG) IξG≤QG(α)

]
α

.

(33)
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Let us turn to the right tail term AVaR. Analogously as above, we obtain

AVaR(α) = 1

1 − α

1∫
α

QF (t) dt = 1

1 − α

1∫
QF (α)

sf (s) ds = E
[
ξF Iξ>QF (α)

]
1 − α

= QF (α) P (ξF > QF (α))

1 − α
+ E

[
(ξF − QF (α))+

]
1 − α

= QF (α) + mF (QF (α)) F (QF (α)

1 − α

= QF (α) + mF (QF (α)) .

(34)

Writing equation (23) for t = QF (α), we see that

QF (α) + mF (QF (α)) = E
[
QH (ξG) IξG>QG(α)

]
1 − α

, (35)

which leads to the second form of AVaR

Remark 4. Note that the second forms of AVaR and AVaR can be obtained directly
(without using the first form) changing the variables as t = QG (u) ⇔ u = G(t) in
the integral ∫

QF (u) du =
∫

QH (QG (u)) du. (36)

Next we discuss the expectile based VaR. It can be obtained through both of
equations presented in the following proposition.

Proposition 3.2. The α-expectile based VaR, EX(α), is the solution of the following
equivalent equations (w.r.t. the variable t)

(1 − 2α)mF (t) F (t) + (1 − α) (t − μ1) = 0

t
(
G(H (t)) − α

) − E
[
QH (ξG)

(
1 − α − (1 − 2α) IξG>H(t)

)] = 0,
(37)

where μ1 is the first moment given in Corollary 2.9 and mF (·) is the MRLF.

Proof. Using the formula x− = x+ − x and equation (29) which determines the
expectile we derive

αE
[
(ξF − t)+

] = (1 − α) E
[
(ξF − t)+ − (ξF − t)

]
. (38)

Replacing the truncated expectation from formula (31) we obtain the first equation
in (37). It remains to replace the expectation and the MRLF from equations (17)
and (23) to derive the second part of (37).

4 Hausdorff distance and saturation

Let us consider the max-norm in R
2, i.e. if A and B are the points A = (tA, xA) and

B = (tB, xB), then ‖A−B‖ := max {|tA − tB | , |xA − xB |}. We define the Hausdorff
distance, also known as a H-distance, in a sense of [23].
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Definition 4.1. The Hausdorff distance d (g, h) between two curves g and h in R
2 is

d (g, h) := max

{
sup
A∈g

inf
B∈h

‖A − B‖, sup
B∈h

inf
A∈g

‖A − B‖
}

. (39)

Remark 5. Roughly said, the Hausdorff distance is the highest optimal path between
the curves.

We can define now the saturation of a distribution.

Definition 4.2. Let F (·) be the CDF of a distribution with a left-finite domain [a, b),
−∞ < a < b ≤ ∞. Its saturation is the Hausdorff distance between the completed
graph of F (·) and the curve consisting of two lines – one vertical between the points
(a, 0) and (a, 1) and another horizontal between (a, 1) and (b, F (b)).

Having in mind that the domain of the Kies distribution is the interval (0, 1), we
can prove the following corollary for its saturation.

Corollary 4.3. The saturation of the Kies CDF, F (·), is the unique solution of the
equation

F (d) = 1 − d. (40)

Proof. The proof is an immediate corollary of Definitions 4.1 and 4.2. Note that
equation (40) has a unique root because the function F (·) is increasing and continu-
ous.

We shall prove now the following formula of a semiclosed form for the saturation
of CDF (8).

Theorem 4.4. Let y be a positive parameter and the function γ (y) be defined as

γ (y) := y
[
eλ(ey−1)a − 1

]b

. (41)

Suppose that k = γ (y) for some value of y. Then the H -corrected Kies distribution’s
saturation is

d (y) = e−λ(ey−1)a . (42)

Note that the function γ (y) is strictly increasing in the interval (0,∞) and hence it
is invertible. Therefore the saturation can be expressed as a function of λ, k, a, and b

as

d (λ, k, a, b) = e
−λ

(
eγ−1(λ,k,a,b)−1

)a

. (43)

Proof. Applying Corollary 4.3 to CDF (8) we see that the saturation d satisfies the
equation

μ (d) := λ

(
e
k
(

d
1−d

)b

− 1

)a

+ ln (d) = 0 (44)

in the interval (0, 1). Note that the solution exists and is unique, because the function
μ (d) is continuous, increasing, μ (0) = −∞, and μ (1) = +∞. Let us change the
variables as

z = 1

k
e
k
(

d
1−d

)b

⇔ d = (ln (kz))
1
b

(ln (kz))
1
b + k

1
b

. (45)
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Thus the function μ (d) defined as formula (44) turns to

μ (d) = λ (zk − 1)a + ln (d) . (46)

Another change we need is y = ln (kz) or, equivalently, z = ey

k
. Thus

d = y
1
b

y
1
b + k

1
b

(47)

and therefore the function μ (d) can be rewritten w.r.t. the variable y as

μ (y) = ln

(
eλ(ey−1)a y

1
b

y
1
b + k

1
b

)
. (48)

Therefore the equation μ (y) = 0 turns to

eλ(ey−1)a y
1
b

y
1
b + k

1
b

= 1 (49)

or, equivalently,

k = y
[
eλ(ey−1)a − 1

]b

. (50)

Substituting k from equation (50) into formula (47), we obtain

d = y
1
b

y
1
b + y

1
b

[
eλ(ey−1)a − 1

] = e−λ(ey−1)a . (51)

We finish the proof combining equations (50) and (51).

The behavior of the corrected Kies CDFs can be seen in Figures 2a–2d together
with the saturation d; it is presented by the red points. The red lines form squares
which in fact confirms Corollary 4.3. The used quadruplet for the parameters are
(λ, k, a, b) ∈ {(2, 2, 5, 1) , (2, 2, 1, 0.5) , (2, 1, 2, 1) , (0.5, 1, 0.5, 0.5)}.

Next we discuss a useful in practice interval approximation of the Hausdorff satu-
ration d. Let us consider first the case λ = a = b = 1. The saturation d has to satisfy
equation (44) which now can be written as

μ (d) = ek d
1−d − 1 + ln (d) = 0. (52)

The function μ (d) can be approximated very well for small ds by the function

μ1 (d) = ekd − 1 + ln (d) . (53)

Taking the exponent in the Taylor series we see that the function

μ1 (d) = kd + ln d +
∞∑

n=2

(kd)n

n! . (54)
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Fig. 2. CDFs of the corrected Kies distributions with the Hausdorff saturation

can be approximated as O
(
d2

)
for small enough values of d by the function

μ2 (d) = kd + ln d. (55)

Let d1 and d2 be defined as d1 := 1
k

and d2 := ln k
k

. We shall check when μ2 (d1) <

0 < μ2 (d2). Obviously the first inequality holds when k > e. Assuming that this
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restriction holds, we see that μ2 (d2) = ln ln k > 0 and hence the second inequality
holds, too. Thus we conclude that the function μ2 (d) has a unique root in the interval
(0, 1) and it belongs to the subinterval (d1, d2) when k > e, since this function is
strictly increasing.

In the next proposition we discuss the general case assuming that λka > 1.

Proposition 4.5. Suppose that λka > 1. Let the parameter b be such that b < b,
where b is2

b := ln (λka)

a
. (56)

Then the function μ2 (d) defined as

μ2 (d) := kdb −
(

− ln d

λ

) 1
a

(57)

has a unique root in the interval (0, 1). Moreover, the root belongs to the subinterval
(d1, d2) where

d1 :=
(

1

λka

) 1
ab

,

d2 :=
(

ln (λka)

abλka

) 1
ab

.

(58)

Note that d1 < d2 due to the condition b < b.

Proof. Let us consider first function (57) in the particular case λ = a = 1. Thus we
have

k > eb,

μ2 (d) = kdb + ln d,

d1 =
(

1

k

) 1
b

,

d2 =
(

ln k

bk

) 1
b

.

(59)

Obviously, the function μ2 (d) is increasing and μ2 (d1) < 0 due to k > eb. We have
for μ2 (d2):

μ2 (d2) = ln k

b
+ 1

b

[
ln

(
ln k

b

)
− ln k

]
= 1

b
ln

(
ln k

b

)
> 0. (60)

The last inequality is true again due to k > eb.

2Note that this inequality is equivalent to k > e when λ = a = b = 1.
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Let us remove the restriction λ = a = 1. Let the function μ2 (d; k, b) :=
kdb+ln d be defined as before – see the second line of (59). Note that we mark the de-
pendence on the variables k and b. We can easily check that the equation μ2 (d) = 0 is
equivalent to μ2 (d; K,B) = 0 for K = λka and B = ab and thus we can use the de-
rived above result. This way the values of K and B lead to formulas (56) and (58).

Let us return to the saturation of the corrected Kies distribution. We have shown
above that it is the solution of equation (44) which is equivalent to

e
k
(

d
1−d

)b

− 1 −
(

− ln d

λ

) 1
a = 0. (61)

Analogously to the case a = b = λ = 1 , formula (54), we can see that after the
Taylor expansion of the exponent, the left hand-side of equation (61) can be approxi-
mated by the function μ2 (d) near zero as O

(
d2b

)
. Hence, its root can be used as an

approximation of the corrected Kies distribution’s saturation when it is small enough.
On the other hand, the function μ2 (d) is a lower approximation of μ (d) and there-
fore μ2 (d) < μ (d). Thus the saturation is below the root of the function μ2 (d) and
hence d < d2. The question stands, when d2 < 1. Let us define b1 as

b1 := ln (λka)

aλka
= b

λka
. (62)

Note that b1 < b. We shall show that if b < b, then d2 < 1 only when b > b1. Using
again the notations K = λka and B = ab and having in mind formula (58) we see
that d2 < 1 when 1 > ln K

BK
which is equivalent to b > b1. Note that K > 1.

On the contrary, d1 is not always below the saturation d. It turns out that there
exists a value, say b2, dependent on the other parameters, such that d1 < d for b < b2,
and vice versa. To see this, we consider function (44). Obviously, it is increasing in the
distribution domain (0, 1). Also, d1 increases w.r.t. the parameter b because λka > 1.
Therefore μ (b) := μ (d1 (b)) is an increasing function, too; note that d1 (b) < 1.
Having in mind μ (0) = −∞, μ (+∞) = +∞, and μ

(
d (b)

) = 0, we conclude
that indeed d1 (b) < d (b) for b < b2, where b2 is the unique solution in the interval
(0,∞) of the equation

μ (b) = λ

⎛
⎝e

λ− 1
a

(
1−λ

− 1
ab k

− 1
b

)−b

− 1

⎞
⎠

a

− ln λ

ab
− ln k

b
. (63)

We shall show that b2 < b, too. Let us mark the dependence on b in the terms d1
and d2. We can easily check that d1

(
b
) = d2

(
b
)

and hence d < d1
(
b
) = d2

(
b
)

< 1
(because d < d2

(
b
)

and d1
(
b
)

< 1). Therefore μ
(
b
) = μ

(
d1

(
b
))

> μ
(
d
) = 0,

since μ (b) is an increasing function. Thus we see that b2 < b.
We can formulate these results in the following proposition.

Proposition 4.6. Suppose that b < b, where b is given in formula (56). Then if
b < b2, where b2 is the solution of equation (63), then d1 < d < d2. If in addition
b > b1 for b1 given in equation (62), then d2 < 1. Having in mind that b1 ∨ b2 < b,
we can formulate the following statements:
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• If b1 < b2, then

1. d1 < d < d2 and d2 > 1 when b < b1;

2. d1 < d < d2 < 1 when b ∈ (b1, b2);

3. d < d1 < d2 < 1 when b ∈ (
b2, b

)
;

• If b1 > b2, then

1. d1 < d < d2 and d2 > 1 when b < b2;

2. d < d1 < d2 and d2 > 1 when b ∈ (b2, b1);

3. d < d1 < d2 < 1 when b ∈ (
b1, b

)
;

As we can see from definition (58), d1 can be viewed as an increasing function
w.r.t. the parameter b. Let us consider the second value d2. It can be written as d2 =
α (β) = (βc)β , where β = 1

ab
and c = ln k

k
. The function α (β) decreases in the

interval β ∈ (
0, 1

ec

)
and increases for β > 1

ec
because its derivative can be written

as α′ (β) = α (β) (ln βc + 1). Thus, we conclude that d2, considered as a function of
the parameter b, d2 (b), decreases for b < b∗ and increases otherwise, where

b∗ := e
ln (λka)

aλka
= eb1. (64)

Some calculus shows that b∗ < b when λ > e
ka , and b∗ > b otherwise. Note that

b1 < b∗.
The interval approximations of the saturation are presented in Figures 2e and 2f.

The values of d, d1, and d2 considered as functions of the parameter b are colored
in blue, red, and orange, respectively. The parameters for the first figure are λ = 2,
a = 1, and k = 20. The related important values for the parameter b are b1 = 0.0922,
b2 = 1.9126, b∗ = 0.2507, and b = 3.6889. We mark b1, b2, and b3 by black, green,
and blue points, respectively. In this case b1 < b∗ < b2 and thus the first case of
Proposition 4.6 holds. Also b∗ < b, since λ > e

ka . We can see in Figure 2e that
the interval (d1, d2) is a good evaluation for the saturation d when b ∈ (b∗, b2).
Otherwise, if b > b2, then the limitation is d < d1.

We choose parameters λ = 2, k = 1, and a = 5 for Figure 2f. Now the important
values are b1 = 0.0693, b2 = 0.0134, b∗ = 0.1884, and b = 0.1386. Note that
b∗ > b because λ < e

ka . Also, b1 > b2 and thus the second case of Proposition 4.6
is actual. We have that d > d1 for b < b2, but both values are very close. Otherwise
d < d1 when b ∈ (

b2, b
)
.

Let us mention that the relation d < d2 still holds if we remove the restriction
b < b. In this case we have d < d2 < d1 < 1.

5 Calibration

The defined corrected Kies distributions depend on four parameters λ, k, a, and b.
The maximum likelihood estimator can be obtained in a closed form – for original
Kies distributions, see [13]. Unfortunately, it turns out that this method does not work
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efficiently either in terms of speed or precision. For this we construct a least square
errors (LSqE) type algorithm. It falls in the large class of generalized methods of
moments (GMM), since it is based on curve fitting to a histogram. Hence we can use
the existing results for the GMM; we refer to [8]. These methods produce consistent
and asymptotically normal estimators for the Kies distributions since the whole Kies
family exhibits finite moments.

Let us have n observations t1, t2, . . . , tn. First we calculate the empirical PDF at
m(= 50) bins as

l
emp
i := mNi

n ((max {ti} − min {ti}) . (65)

Then we derive the PDF values of the corrected Kies distribution with parameters
(λ, k, a, b) in the centers of the bins, say lKies

i (λ, k, a, b), via formula (12). The
usual LSqE criterion for minimization is

L (λ, k, a, b) =
m∑

i=1

(
l
emp
i − lKies

i (λ, k, a, b)
)2

. (66)

We introduce a little logarithmic modification to minimize the impact of the extremely
large values of the PDF. We make this because the PDF is infinitely large at the zero
for some values of the parameters. Thus we define the cost function as

L (λ, k, a, b) :=
m∑

i=1

∣∣∣ln (
l
emp
i + ε

) − ln
(
lKies
i (λ, k, a, b) + ε

)∣∣∣. (67)

We have to minimize the corresponding criterion – (66) or (67) – over all possible
parameters {λ, k, a, b}. The additional constant ε is introduced, because some em-
pirical values may be equal to zero. We set this constant to be ε = 10−5. Also, we
can use criterion (66) if the empirical PDF seems to be finite at its left endpoint. We
provide some experiments to validate this algorithm. We generate n corrected Kies
distributed random numbers as ti = QF (ri), where QF (·) is the quantile function
given in equation (11), and ri are (0, 1)-uniformly distributed random numbers. Our
choice of n is among n = 1 000, n = 10 000, n = 100 000, and n = 1 000 000. We
fix the coefficients λ and k to one, λ = k = 1, and vary a and b among 0.5, 1, and 2.
We report in Table 1 the results which are returned by our calibration algorithm. The
fits can be seen in Figure 3. It turns out that this simple LSqE algorithm is quite fast
and accurate.

6 An application

We investigate now the behavior of the S&P500 index. It is one of the most used in-
dicators in the financial markets and provides an important information for the world
economy. We use daily observations for the period between January 2, 1980 and July
01, 2022 – totally 10717 ones. We derive the so-called log-returns, denoted by ri , via
the equation

ri := ln

(
Si+1

Si

)
for i = 1, 2, . . . , 10716, (68)
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Table 1. The fitted parameters of the corrected Kies distribution

parameter real n = 1 000 n = 10 000 n = 100 000 n = 1 000 000

λ 1 1.1918 0.8809 0.9801 1.0315
k 1 0.8076 1.1230 1.0310 0.9670
a 0.5 0.5637 0.5541 0.5045 0.4923
b 1 0.9379 0.8609 0.9744 1.0258

λ 1 1.1224 0.9164 0.9273 1.0096
k 1 0.9450 1.0817 1.0653 0.9882
a 0.5 0.5814 0.5031 0.5451 0.4969
b 2 1.8257 1.9312 1.7986 2.0200

λ 1 0.9224 0.7287 0.9904 1.0395
k 1 1.1869 1.1270 1.0063 0.9797
a 1 0.7860 1.1613 1.0126 0.9855
b 0.5 0.5761 0.4087 0.4915 0.5096

λ 1 0.7780 0.6540 0.9013 0.9728
k 1 1.1416 1.1456 1.0248 1.0121
a 1 1.1356 1.2856 1.1234 1.0173
b 1 0.8307 0.7231 0.8761 0.9783

λ 1 1.3803 1.4454 0.8623 1.1066
k 1 0.8388 0.7850 1.0578 0.9413
a 1 0.8738 0.9411 1.0997 0.9822
b 2 2.2277 2.2455 1.7768 2.0618

λ 1 0.5789 1.4045 1.0190 1.1136
k 1 1.1381 0.8774 0.9984 0.9617
a 2 2.0803 2.0887 1.9625 2.0007
b 2 1.8879 1.9627 2.0357 2.0085

where Si are the observed S&P500 values. The log-returns are presented in Figure 4a.
It can be seen that there are periods of calm trading as well as high-volatility periods.
This is a well observed phenomenon at all financial markets – the so-called volatility
clustering. The highest downward peak happens at October 19, 1987 (1971th obser-
vation) – the Black Monday. The S&P500 index loses more than twenty percents –
this is the highest one-day loss ever. We are interested in the length of the periods
between the shocks. We derive them obtaining the dates at which the index falls by
more than two percents – there are 357 such dates – and then we calculate the lengths
of the periods between these days. The longest such period contains 950 days – be-
tween May 19, 2003 and February 26, 2007. We mark these days with red points in
Figure 4. We may view the derived lengths as survival times and we examine their
distribution. We divide all observations by 1000 to fit the Kies domain, because the
maximal value is 950. We calibrate the parameters of four distributions – corrected
Kies and its ancestors, namely, exponential, Weibull, and original Kies. We use the
following parametrization:

fexponential := 1

λ
e− x

λ ,

fWeibull := k

λ

(x

λ

)k−1
e−(

x
λ

)k
.

(69)
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Fig. 3. PDFs of the corrected Kies distributions

The derived parameters are reported in the first part of Table 2. Immediately after
them we provide the results which are returned by the LSqE algorithm described in
Section 5. The constant ε in cost function (67) is chosen to be ε = 0.01. It turns out
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Fig. 4. S&P500 log-returns and the related estimations

that the corrected Kies distribution is significantly closer to the real observations – its
error is 23.1820. The value of this error for the original Kies distribution is 25.3491,
whereas for the exponential and Weibull distributions it is 26.6652 and 29.4037, re-
spectively.

Having in mind Propositions 2.1 and 2.6 (third statements) we conclude that the
initial value of PDF for both Kies style distributions is the infinity, because b =
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0.7120 < 1 for the original distribution and ab = 0.4509 < 1 for the corrected
one. Hence, a lot of mass is in the left part of the domain. This fact confirms the
mentioned above financial phenomenon of volatility clustering. This is true for the
Weibull distribution, too, since its parameter k is less than one; k = 0.8327 < 1.
Also, the initial value of the exponential PDF is relatively large; it is 34.1236.

Additionally, the shape of the calibrated distributions means that the right tails are
important. In fact, they present the probabilities of large calm periods in the markets.
We compare the results which the four distributions generate for the tail measures
VaR, AVaR, and EX with the empirical ones – see again Table 2. The levels we have
chosen are 0.9, 0.925, 0.95, and 0.975; the values of VaR, AVaR, and EX are derived
via equations (11), (30), and (37). Note that here the meaning of these measures is
quite different from their traditional use in finance. We can see again that the cor-
rected Kies distribution produces more realistic values in a comparison with the other
distributions.

Here is the place to mention another purpose for which we can use these distribu-
tions. The available historical data generates relatively small number of observations
for the dates with shocks. Note that the lower empirical values for all tail measures
reported in Table 2 can be explained namely by the lack of enough observations.
Therefore we can use the theoretical distributions as a tool to fulfill the missing infor-
mation. In this light the closest tail behavior of the corrected Kies distribution has an
additional importance.

Table 2. Fits to the S&P500 data

parameter corrected Kies original Kies Weibull exponential empirical

λ 3.1091 - 0.0228 0.0293 -
k 55.0876 15.7857 0.8327 - -
a 0.2086 - - - -
b 2.1617 0.7120 - - -

LSqE 23.1820 25.3491 29.4037 26.6652 -

VaR corrected Kies original Kies Weibull exponential empirical

0.9 0.0710 0.0627 0.0622 0.0675 0.0690
0.925 0.0877 0.0732 0.0716 0.0759 0.0920
0.95 0.1106 0.0883 0.0853 0.0878 0.1300

0.975 0.1448 0.1149 0.1095 0.1081 0.1800

AVaR corrected Kies original Kies Weibull exponential empirical

0.9 0.1200 0.1004 0.0969 0.0968 0.1872
0.925 0.1337 0.1112 0.1069 0.1052 0.2221
0.95 0.1513 0.1268 0.1214 0.1171 0.2799

0.975 0.1763 0.1535 0.1468 0.1374 0.4154

expectile corrected Kies original Kies Weibull exponential empirical

0.9 0.0666 0.0564 0.0556 0.0591 0.0753
0.925 0.0745 0.0624 0.0612 0.0643 0.0856
0.95 0.0857 0.0711 0.0694 0.0718 0.1009

0.975 0.1044 0.0864 0.0838 0.0849 0.1274
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A Proof of Proposition 2.1

The value of PDF (3) at left endpoint of the distribution domain, h (0), can be obtain
directly from equation (3). To continue, let us examine the derivative of PDF (3). It
can be presented as

h′ (t) = ke−kη(t)
[
η′′ (t) − k

(
η′ (t)

)2
]
, (70)

where

η (t) :=
(

t

1 − t

)b

. (71)

Derivative of function (71) is

η′ (t) = b
tb−1

(1 − t)b+1 . (72)

Let us consider first the case b = 1 and therefore

η′ (t) = 1

(1 − t)2 . (73)

The second derivative of function (71) is

η′′ (t) = 2
1

(1 − t)3 . (74)

Having in mind formulas (73) and (74), we see that derivative (70) is positive when
t < t2 = 1 − k

2 , and vice versa. Hence, if k ≥ 2, then derivative (70) is always
negative in the distribution domain and therefore the PDF is a decreasing function.
Otherwise, if k < 2, then 0 < t2 < 1, and hence the PDF increases for t ∈ (0, t2) and
decreases for t ∈ (t2, 1).

Suppose now that b �= 1. The second derivative of function (71) now is

η′′ (t) = b
tb−2

(1 − t)b+2 (2t + b − 1) . (75)

Taking in attention formulas (72) and (75), we conclude that PDF’s derivative (70) is
positive when α (t) < 0, and vice versa, where function α (t) is given in equation (4).

Let us consider the case b > 1. The derivative α′ (t), given in equation (5), is an
increasing function with negative left endpoint and positive right endpoint, α′ (0) =
−2 and α′ (1) = +∞. Thus it has a unique root in the interval (0, 1), which we
denote by t2. Hence, function (4) decreases for t ∈ (0, t2), has a minimum for t = t2
and increases to α (1) = +∞. The shape of the PDF follows, since the left endpoint
of the function α (t) is negative, α (0) = −(b − 1) < 0.

Finally, suppose that b < 1. We derive the second derivative of function (4) as

α′′ (t) = kb2 tb−2

(1 − t)b+2 (2t + b − 1) . (76)
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Therefore α′′ (t) < 0 for t ∈ (
0, t

)
, t = 1−b

2 , and α′′ (t) > 0 for t ∈ (
t, 1

)
. Hence,

the derivative α′ (t) decreases when t ∈ (
0, t

)
and increases when t ∈ (

t, 1
)
. If

α′ (t) ≥ 0, then the derivative α′ (t) is positive in the whole domain and thus α (t)

is an increasing function. Hence, the PDF decreases in the distribution domain, since
α (0) = 1 − b > 0.

Suppose that α′ (t) < 0. Having in mind α′ (0) = α′ (1) = +∞, we conclude
that the derivative α′ (t) has two roots, t1 and t2. Also, α′ (t) < 0 for t ∈ (t1, t2) and
α′ (t) > 0 outside the interval. Therefore the function α (t) starts from the positive
value α (0) = 1 − b, increases to a local maximum for t = t1, decreases to a local
minimum for t = t2 and increases to infinity when t = 1. Hence, if α

(
t2

) ≥ 0, then
α (t) is positive in the whole domain and therefore the PDF is a decreasing function.
Otherwise, if α

(
t2

)
< 0, then the function α (t) has two roots, t1 and t2, and it is

negative between them and positive outside. This finishes the proof.

Acknowledgement

The authors would like to express sincere gratitude to the editor Prof. Yuliya Mishura
and to the anonymous reviewers for the helpful and constructive comments which
substantially improve the quality of this paper.

Funding

This research has been partially supported by Grant No BG05M2OP001-1.001-0003,
financed by the Science and Education for Smart Growth Operational Program (2014–
2020) and co-financed by the European Union through the European structural and
Investment funds. The first author was supported also by the project KP-06-N32/8
with the Bulgarian National Science Fund.

References

[1] Afify, A.Z., Gemeay, A.M., Alfaer, N.M., Cordeiro, G.M., Hafez, E.H.: Power-
modified Kies-exponential distribution: Properties, classical and Bayesian inference
with an application to engineering data. Entropy 24(7), 883 (2022). MR4467767.
https://doi.org/10.3390/e24070883

[2] Al-Babtain, A.A., Shakhatreh, M.K., Nassar, M., Afify, A.Z.: A new modified
Kies family: Properties, estimation under complete and type-II censored sam-
ples, and engineering applications. Mathematics 8(8), 1345 (2020). MR4199201.
https://doi.org/10.3934/math.2021176

[3] Alsubie, A.: Properties and applications of the modified Kies–Lomax distribution
with estimation methods. J. Math., 2021(2), 1–18 (2021). MR4346604. https://doi.org/
10.1155/2021/1944864

[4] Berger, M.-H., Jeulin, D.: Statistical analysis of the failure stresses of ceramic fi-
bres: Dependence of the weibull parameters on the gauge length, diameter vari-
ation and fluctuation of defect density. J. Mater. Sci. 38(13), 2913–2923 (2003).
https://doi.org/10.1023/A:1024405123420

https://mathscinet.ams.org/mathscinet-getitem?mr=4467767
https://doi.org/10.3390/e24070883
https://mathscinet.ams.org/mathscinet-getitem?mr=4199201
https://doi.org/10.3934/math.2021176
https://mathscinet.ams.org/mathscinet-getitem?mr=4346604
https://doi.org/10.1155/2021/1944864
https://doi.org/10.1155/2021/1944864
https://doi.org/10.1023/A:1024405123420


Some composite Kies families 311

[5] Bhatti, F.A., Ahmad, M.: On a new family of kies burr iii distribution: Development,
properties, characterizations, and applications. Sci. Iran. 27(5), 2555–2571 (2020). ISSN
1026-3098. . URL http://scientiairanica.sharif.edu/article_21382.html

[6] Emam, W., Tashkandy, Y.: The weibull claim model: Bivariate extension, bayesian, and
maximum likelihood estimations. Math. Probl. Eng., 2022(1), 1–10 (2022)

[7] Gupta, R.C., Bradley, D.M.: Representing the mean residual life in terms of the
failure rate. Math. Comput. Model. 37(12–13), 1271–1280 (2003). MR1996036.
https://doi.org/10.1016/S0895-7177(03)90038-0

[8] Hansen, L.P.: Large sample properties of generalized method of moments estimators.
Econometrica: Journal of the econometric society, 50(4) 1029–1054 (1982). MR0666123.
https://doi.org/10.2307/1912775

[9] Kies, J.A.: The strength of glass performance. In: Naval Research Lab Report, Washing-
ton, D.C., vol. 5093 (1958)

[10] Koenker, R.W.: Quantile regression. Cambridge University Press, (2005). ISBN
9780521845731. MR2268657. https://doi.org/10.1017/CBO9780511754098

[11] Kumar, C.S., Dharmaja, S.H.S.: On some properties of Kies distribution. Metron 72(1),
97–122 (2014). MR3176964. https://doi.org/10.1007/s40300-013-0018-8

[12] Kumar, C.S., Dharmaja, S.H.S.: The exponentiated reduced Kies distribution: Prop-
erties and applications. Commun. Stat., Theory Methods 46(17), 8778–8790 (2017).
MR3680792. https://doi.org/10.1080/03610926.2016.1193199

[13] Kumar, C.S., Dharmaja, S.H.S.: On modified Kies distribution and its applications. J.
Stat. Res. 51(1), 41–60 (2017). MR3702285. https://doi.org/10.47302/jsr.2017510103

[14] Kyurkchiev, N., Zaevski, T., Iliev, A., Rahnev, A.: A modified three–parameter Kies cu-
mulative distribution function in the light of reaction network analysis. Int. J. Differ. Equ.
Appl. 21(2), 1–17 (2022)

[15] Lai, C.-D.: Generalized Weibull distributions. In: Generalized Weibull Distributions,
pp. 23–75. Springer, (2014). MR3115122. https://doi.org/10.1007/978-3-642-39106-4_2

[16] Matsushita, S., Hagiwara, K., Shiota, T., Shimada, H., Kuramoto, K., Toyokura,
Y.: Lifetime data analysis of disease and aging by the weibull probability distribu-
tion. J. Clin. Epidemiol. 45(10), 1165–1175 (1992). https://www.sciencedirect.com/
science/article/pii/089543569290157I. https://doi.org/10.1016/0895-4356(92)90157-I

[17] McCool, J.I.: Using the Weibull distribution: reliability, modeling, and infer-
ence, vol. 950. John Wiley & Sons, (2012). MR3014584. https://doi.org/10.1002
/9781118351994

[18] Prabhakar Murthy, D.N., Xie, M., Jiang, R.: Weibull models. John Wiley & Sons, (2004).
MR2013269

[19] Newey, W.K., Powell, J.L.: Asymmetric least squares estimation and testing. Econo-
metrica: Journal of the Econometric Society 55(4), 819–847 (1987). MR0906565.
https://doi.org/10.2307/1911031

[20] Rinne, H.: The Weibull distribution: a handbook. Chapman and Hall/CRC, (2008).
MR2477856

[21] Sanku, D.E.Y., Nassarn, M., Kumar, D.: Moments and estimation of reduced Kies distri-
bution based on progressive type-II right censored order statistics. Hacet. J. Math. Stat.
48(1), 332–350 (2019). MR3976180. https://doi.org/10.15672/hjms.2018.611

[22] Seguro, J.V., Lambert, T.W.: Modern estimation of the parameters of the weibull
wind speed distribution for wind energy analysis. J. Wind Eng. Ind. Aerodyn. 85(1),

http://scientiairanica.sharif.edu/article_21382.html
https://mathscinet.ams.org/mathscinet-getitem?mr=1996036
https://doi.org/10.1016/S0895-7177(03)90038-0
https://mathscinet.ams.org/mathscinet-getitem?mr=0666123
https://doi.org/10.2307/1912775
https://mathscinet.ams.org/mathscinet-getitem?mr=2268657
https://doi.org/10.1017/CBO9780511754098
https://mathscinet.ams.org/mathscinet-getitem?mr=3176964
https://doi.org/10.1007/s40300-013-0018-8
https://mathscinet.ams.org/mathscinet-getitem?mr=3680792
https://doi.org/10.1080/03610926.2016.1193199
https://mathscinet.ams.org/mathscinet-getitem?mr=3702285
https://doi.org/10.47302/jsr.2017510103
https://mathscinet.ams.org/mathscinet-getitem?mr=3115122
https://doi.org/10.1007/978-3-642-39106-4_2
https://www.sciencedirect.com/science/article/pii/089543569290157I
https://www.sciencedirect.com/science/article/pii/089543569290157I
https://doi.org/10.1016/0895-4356(92)90157-I
https://mathscinet.ams.org/mathscinet-getitem?mr=3014584
https://doi.org/10.1002/9781118351994
https://doi.org/10.1002/9781118351994
https://mathscinet.ams.org/mathscinet-getitem?mr=2013269
https://mathscinet.ams.org/mathscinet-getitem?mr=0906565
https://doi.org/10.2307/1911031
https://mathscinet.ams.org/mathscinet-getitem?mr=2477856
https://mathscinet.ams.org/mathscinet-getitem?mr=3976180
https://doi.org/10.15672/hjms.2018.611


312 T. Zaevski, N. Kyurkchiev

75–84 (2000). https://www.sciencedirect.com/science/article/pii/S0167610599001221.
https://doi.org/10.1016/S0167-6105(99)00122-1

[23] Sendov, B.: Hausdorff approximations, vol. 50. Springer, (1990). MR1078632.
https://doi.org/10.1007/978-94-009-0673-0

[24] Shafiq, A., Lone, S.A., Naz Sindhu, T., El Khatib, Y., Al-Mdallal, Q.M., Muhammad,
T.: A new modified Kies Fréchet distribution: Applications of mortality rate of Covid-
19. Results Phys. 28, 104638 (2021). https://www.sciencedirect.com/science/article/
pii/S2211379721007294. https://doi.org/10.1016/j.rinp.2021.104638

[25] Sobhi, M.M.A.: The modified Kies–Fréchet distribution: properties, inference and
application. AIMS Math. 6, 4691–4714 (2021). MR4220431. https://doi.org/10.3934
/math.2021276

[26] Soulimani, A., Benjillali, M., Chergui, H., da Costa, D.B.: Multihop weibull-
fading communications: Performance analysis framework and applications. J. Franklin
Inst. 358(15), 8012–8044 (2021). https://www.sciencedirect.com/science/article/pii/
S0016003221004701. MR4319388. https://doi.org/10.1016/j.jfranklin.2021.08.004

[27] Weibull, W.: A statistical distribution function of wide applicability. J. Appl. Mech. 18(3),
293–297 (1951). https://doi.org/10.1115/1.4010337

[28] Wilks, D.S.: Rainfall intensity, the weibull distribution, and estimation of daily surface
runoff. J. Appl. Meteorol. Climatol. 28(1), 52–58 (1989). https://doi.org/10.1175/1520-
0450(1989)028<0052:RITWDA>2.0.CO;2

[29] Yazhou, J., Molin, W., Zhixin, J.: Probability distribution of machining center fail-
ures. Reliab. Eng. Syst. Saf. 50(1), 121–125 (1995). https://www.sciencedirect.com
/science/article/pii/095183209500070I. https://doi.org/10.1016/0951-8320(95)00070-I

[30] Zaevski, T.S., Kyurkchiev, N.: Some notes on the four-parameters Kies distribu-
tion. Comptes rendus de l’Académie bulgare des Sciences 75(10), 1403–1409 (2022).
MR4504780

https://www.sciencedirect.com/science/article/pii/S0167610599001221
https://doi.org/10.1016/S0167-6105(99)00122-1
https://mathscinet.ams.org/mathscinet-getitem?mr=1078632
https://doi.org/10.1007/978-94-009-0673-0
https://www.sciencedirect.com/science/article/pii/S2211379721007294
https://www.sciencedirect.com/science/article/pii/S2211379721007294
https://doi.org/10.1016/j.rinp.2021.104638
https://mathscinet.ams.org/mathscinet-getitem?mr=4220431
https://doi.org/10.3934/math.2021276
https://doi.org/10.3934/math.2021276
https://www.sciencedirect.com/science/article/pii/S0016003221004701
https://www.sciencedirect.com/science/article/pii/S0016003221004701
https://mathscinet.ams.org/mathscinet-getitem?mr=4319388
https://doi.org/10.1016/j.jfranklin.2021.08.004
https://doi.org/10.1115/1.4010337
https://doi.org/10.1175/1520-0450(1989)028<0052:RITWDA>2.0.CO;2
https://www.sciencedirect.com/science/article/pii/095183209500070I
https://www.sciencedirect.com/science/article/pii/095183209500070I
https://doi.org/10.1016/0951-8320(95)00070-I
https://mathscinet.ams.org/mathscinet-getitem?mr=4504780

	Introduction
	Definitions and distributional properties
	Tail behavior
	Hausdorff distance and saturation
	Calibration
	An application
	Proof of Proposition 2.1

