Given a compound mixed renewal process S under a probability measure P, we provide a characterization of all progressively equivalent martingale probability measures Q on the domain of P, that convert S into a compound mixed Poisson process. This result extends earlier works of Delbaen and Haezendonck, Lyberopoulos and Macheras, and the authors, and enables us to find a wide class of price processes satisfying the condition of no free lunch with vanishing risk. Implications to the ruin problem and to the computation of premium calculation principles in an arbitrage-free insurance market are also discussed.
In the present paper the change of measures technique for compound mixed renewal processes, developed in Tzaninis and Macheras [ArXiv:2007.05289 (2020) 1–25], is applied to the ruin problem in order to obtain an explicit formula for the probability of ruin in a mixed renewal risk model and to find upper and lower bounds for it.
Based on a discrete version of the Pollaczeck–Khinchine formula, a general method to calculate the ultimate ruin probability in the Gerber–Dickson risk model is provided when claims follow a negative binomial mixture distribution. The result is then extended for claims with a mixed Poisson distribution. The formula obtained allows for some approximation procedures. Several examples are provided along with the numerical evidence of the accuracy of the approximations.
The discrete time risk model with two seasons and dependent claims is considered. An algorithm is created for computing the values of the ultimate ruin probability. Theoretical results are illustrated with numerical examples.
We obtain a Lundberg-type inequality in the case of an inhomogeneous renewal risk model. We consider the model with independent, but not necessarily identically distributed, claim sizes and the interoccurrence times. In order to prove the main theorem, we first formulate and prove an auxiliary lemma on large values of a sum of random variables asymptotically drifted in the negative direction.