Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 10, Issue 1 (2023)
  4. Minimax identity with robust utility fun ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Cited by
  • More
    Article info Full article Cited by

Minimax identity with robust utility functional for a nonconcave utility
Volume 10, Issue 1 (2023), pp. 19–35
Olena Bahchedjioglou ORCID icon link to view author Olena Bahchedjioglou details   Georgiy Shevchenko  

Authors

 
Placeholder
https://doi.org/10.15559/22-VMSTA215
Pub. online: 28 October 2022      Type: Research Article      Open accessOpen Access

Received
11 July 2022
Revised
25 September 2022
Accepted
12 October 2022
Published
28 October 2022

Abstract

The minimax identity for a nondecreasing upper-semicontinuous utility function satisfying mild growth assumption is studied. In contrast to the classical setting, concavity of the utility function is not asumed. By considering the concave envelope of the utility function, equalities and inequalities between the robust utility functionals of an initial utility function and its concavification are obtained. Furthermore, similar equalities and inequalities are proved in the case of implementing an upper bound on the final endowment of the initial model.

References

[1] 
Aubin, J.-P., Ekeland, I.: Applied Nonlinear Analysis. Pure and Applied Mathematics (New York), p. 518. John Wiley & Sons, Inc., New York (1984). A Wiley-Interscience Publication. MR0749753
[2] 
Aumann, R.J., Perles, M.: A variational problem arising in economics. J. Math. Anal. Appl. 11, 488–503 (1965). MR0182447. https://doi.org/10.1016/0022-247X(65)90100-9
[3] 
Backhoff Veraguas, J.D., Fontbona, J.: Robust utility maximization without model compactness. SIAM J. Financ. Math. 7(1), 70–103 (2016) MR3466196. https://doi.org/10.1137/140985718
[4] 
Bahchedjioglou, S.G. O.: Optimal investments for the standard maximization problem with non-concave utility function in complete market model. Math. Methods Oper. Res. 95(5), 163–181 (2022). MR4397208. https://doi.org/10.1007/s00186-022-00774-0
[5] 
Bartl, D., Kupper, M., Neufeld, A.: Duality theory for robust utility maximisation. Finance Stoch. 25(3), 469–503 (2021) MR4283309. https://doi.org/10.1007/s00780-021-00455-6
[6] 
Biagini, S.: Expected Utility Maximization: Duality Methods. John Wiley & Sons, Ltd (2010). https://doi.org/10.1002/9780470061602.eqf04009.
[7] 
Bordigoni, G., Matoussi, A., Schweizer, M.: A stochastic control approach to a robust utility maximization problem. In: Stochastic Analysis and Applications, pp. 125–151. Springer (2007) MR2397786. https://doi.org/10.1007/978-3-540-70847-6_6
[8] 
Föllmer, H., Schied, A.: Stochastic Finance. De Gruyter (2016). MR3859905. https://doi.org/10.1515/9783110463453
[9] 
Gilboa, I.: Expected utility with purely subjective non-additive probabilities. J. Math. Econ. 16(1), 65–88 (1987). MR0885821. https://doi.org/10.1016/0304-4068(87)90022-X
[10] 
Gilboa, I., Schmeidler, D.: Maxmin expected utility with non-unique prior. In: Uncertainty in Economic Theory, pp. 141–151. Routledge (2004) MR1000102. https://doi.org/10.1016/0304-4068(89)90018-9
[11] 
Hernández-Hernández, D., Schied, A.: A control approach to robust utility maximization with logarithmic utility and time-consistent penalties. Stoch. Process. Appl. 117(8), 980–1000 (2007) MR2340875. https://doi.org/10.1016/j.spa.2006.11.005
[12] 
Kharytonova, O.O.: Duality theory under model uncertainty for non-concave utility functions. Bull. Taras Shevchenko Nat. Univ. Kyiv. Ser. Phys. Math. 4, 50–56 (2019). https://doi.org/10.17721/1812-5409.2019/4.6
[13] 
Kramkov, D., Schachermayer, W.: The asymptotic elasticity of utility functions and optimal investment in incomplete markets. Ann. Appl. Probab. 9(3), 904–950 (1999). MR1722287. https://doi.org/10.1214/aoap/1029962818
[14] 
Kramkov, D., Schachermayer, W.: Necessary and sufficient conditions in the problem of optimal investment in incomplete markets. Ann. Appl. Probab. 13(4), 1504–1516 (2003). MR2023886. https://doi.org/10.1214/aoap/1069786508
[15] 
Neufeld, A., Šikić, M.: Robust utility maximization in discrete-time markets with friction. SIAM J. Control Optim. 56(3), 1912–1937 (2018) MR3807937. https://doi.org/10.1137/16M1101829
[16] 
Neufeld, A., Šikić, M.: Nonconcave robust optimization with discrete strategies under knightian uncertainty. Math. Methods Oper. Res. 90(2), 229–253 (2019) MR4031791. https://doi.org/10.1007/s00186-019-00669-7
[17] 
Quenez, M.-C.: Optimal portfolio in a multiple-priors model. In: Seminar on Stochastic Analysis, Random Fields and Applications IV, pp. 291–321 (2004). Springer MR2096294
[18] 
Reichlin, C.: Non-concave utility maximization: optimal investment, stability and applications. PhD thesis, ETH Zürich (2012). https://doi.org/10.3929/ethz-a-007615699
[19] 
Reichlin, C.: Utility maximization with a given pricing measure when the utility is not necessarily concave. Math. Financ. Econ. 7(4), 531–556 (2013) MR3092304. https://doi.org/10.1007/s11579-013-0093-x
[20] 
Schied, A.: Optimal investments for robust utility functionals in complete market models. Math. Oper. Res. 30(3), 750–764 (2005). MR2161208. https://doi.org/10.1287/moor.1040.0138
[21] 
Schied, A., Wu, C.-T.: Duality theory for optimal investments under model uncertainty. Stat. Decis. 23(3), 199–217 (2005). MR2236457. https://doi.org/10.1524/stnd.2005.23.3.199
[22] 
Schmeidler, D.: Subjective probability and expected utility without additivity. Econometrica, 571–587 (1989). https://doi.org/10.2307/1911053
[23] 
Shevchenko, G.M.: Arbitrage in a discrete-time financial risk model with a proportional tax on the portfolio size. Theory Probab. Math. Stat. 81, 177–186 (2010). MR2667318. https://doi.org/10.1090/S0094-9000-2011-00818-6
[24] 
Sion, M.: On general minimax theorems. Pac. J. Math. 8(1), 171–176 (1958) MR0097026
[25] 
Yaari, M.E.: The dual theory of choice under risk. Econometrica, 95–115 (1987). MR0875518. https://doi.org/10.2307/1911158

Full article Cited by PDF XML
Full article Cited by PDF XML

Copyright
© 2023 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Minimax identity robust utility functionals nonconcave utility constrained optimization

MSC2010
91G10 90C26 91B16 47N10 49J35

Metrics
since March 2018
365

Article info
views

198

Full article
views

278

PDF
downloads

100

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy