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Abstract The minimax identity for a nondecreasing upper-semicontinuous utility function
satisfying mild growth assumption is studied. In contrast to the classical setting, concavity of
the utility function is not asumed. By considering the concave envelope of the utility function,
equalities and inequalities between the robust utility functionals of an initial utility function and
its concavification are obtained. Furthermore, similar equalities and inequalities are proved in
the case of implementing an upper bound on the final endowment of the initial model.
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1 Introduction

Consider a complete market model framework with the unique equivalent local mar-
tingale measure Qe. In the spirit of Reichlin [19], we consider a utility function U on
R+ which is nondecreasing upper-semicontinuous and satisfying a mild growth con-
dition. Schied and Wu [21] impose the below assumptions on the set of probability
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measures Q on (�,F); note that Q is not the set of all measures on the measurable
space (�,F), but just a subset satisfying these assumptions.

Assumption 1. (i) Q is convex;

(ii) P[A] = 0 if and only if Q[A] = 0 for all Q ∈ Q;

(iii) The set Z := {dQ/dP|Q ∈ Q} is closed in L0(P).
Also, to Assumption 1 we add

(iv) The set Ze := {dQ/dP |Q ∈ Qe} is closed in L0(P),

where Qe denotes the set of measures in Q that are equivalent to P.

In this paper we study the minimax identity for the robust nonconcave utility
functional in a complete market model, i.e.

u(x) := sup
X∈X (x)

inf
Q∈Q

EQ[U(X)] = inf
Q∈Q

sup
X∈X (x)

EQ[U(X)],

while considering two possibilities for the set X (x) of admissible final endowments:

• the standard budget constraint:

X (x) = {X ∈ L1+(Qe)|EQe [X] ≤ x}, x > 0,

• an additional upper bound:

XW(x) = {X ∈ L1(Qe) | 0 ≤ X ≤ W, EQe [X] ≤ x}, (1)

with some random variable W : � → [0,+∞).

One of the key tasks of financial mathematics is proving the existence as well as
the construction of optimal investment strategies, in other words, finding the utility-
maximizing investment strategies. Mostly, this problem was studied under the as-
sumption that the probability distribution of the value process is known.

However, in reality, along with the exact probabilities unknown, there are abun-
dant aspects that can be considered in mentioned maximization problems such as the
completeness of the market, the set of prior probability measures, the assumptions on
investor’s utility function, the modeling of payoff and so on. That is why instead of a
single measure it is sound to consider the set of probability measures with natural as-
sumptions on it. Thus, the standard utility maximization problem becomes the robust
utility maximization problem

sup
X∈X (x)

inf
Q∈Q

EQ[U(X)],

where one maximizes the expected utility under the infimum over the whole set of
probability measures, for details see Gilboa and Schmeidler [9, 10, 22], Yaari [25],
Föllmer and Schied [8, Section 2.5].

In the case of a standard utility maximization problem it is possible to construct
the optimal investment strategy given a strictly concave utility function, see Föllmer
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and Schied [8, Section 2.5], and for the general utility functions, see Bahchedjioglou
and Shevchenko [4]. Both references considered standard budget constraints as well
as an additional upper bound on the final endowments. For a detailed survey of this
problem in a general model setup in both complete and incomplete market models
but with risk-averse agent, see Biagini [6].

In this paper, we consider the robust maximization problem with the general non-
concave utility function, with and without budget constraints likewise. In the previous
literature different approaches were used for robust portfolio optimization such as re-
ducing the robust case to the standard one through proving the existence of the “worst-
case scenario measure” or “the least favorable measure”, e.g., [17, 20], a stochastic
control approach, see [11], an approach using BSDEs, see [7] and references therein.

Besides, for solving the optimal investment problems one can make use of the
following interim finding such as minimax identity and duality theory. Using the min-
imax identity for concave functions, see [1, section 6], Schied and Wu [21] showed
the existence of an optimal probability measure Q̂ in the sense that

sup
X∈X (x)

inf
Q∈Q

EQ[U(XT )] = sup
X∈X (x)

EQ̂[U(XT )],

which, together with the results of the Kramkov and Schachermayer [13, 14], was
the base for proving the existence of the optimal investment strategy. They used a
general incomplete market model with rather natural assumptions on the set of prob-
ability measures. Backhoff Veraguas and Fontbona [3] extended these results by im-
plementing the assumption on the densities of the uncertainty set instead of the usual
compactness assumption. Moreover, they have done this without relying on the exis-
tence of the worst-case measure or on any assumption implying this.

Neufeld and Šikić [15, 16] studied a robust stochastic optimization problem in the
quasi-sure setting in discrete time. Their paper [15] deals with the study of general
concave utility functions, showing the existence of the maximizer in different market
models under the linearity-type condition, which is caused by the no-arbitrage condi-
tion. In [16], they consider the nonconcave utility maximization problem and outline
the conditions of maximizer’s existence.

For more results concerning the robust utility maximization problem we refer to
Bartl, Kupper and Neufeld [5] and references therein.

The majority of articles on utility maximization assume that the investor’s utility
function is strictly concave, strictly increasing, continuously differentiable, and sat-
isfies the Inada conditions. While the assumption of monotonicity is natural, since
an agent prefers more wealth to less, other assumptions can be omitted or relaxed.
There is a wide class of models in which the maximization of the nonconcave and not
necessarily continuously differentiable utility function has been studied by reducing
the problem to the concave case. One of the most important works was done by Re-
ichlin [18, 19]. He considered the general framework of nonconcave utility functions
for both complete and incomplete market models. By applying the concavification
technique he established valuable relations between the maximization problems for
a nonconcave utility function U and its concavification Uc thereby reducing the task
to the concave problem. Moreover, Reichlin proved the existence of the maximizer
under certain assumptions and established its properties.
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While considering two cases of admissible final endowments – the standard bud-
get constraint and additional upper bound (which has not been considered before in
such model setup) – we extend Reichlin’s results by proving new connections in the
form of equalities and inequalities of the robust utility maximization functionals of
initial nonconcave utility functions and its concavification. Furthermore, we proceed
in proving the minimax identity for general nonconcave utility functions. The cru-
cial step for obtaining the mentioned results with implementing an additional upper
bound is the use of the regular conditional distribution which sheds new light on the
possible approaches for solving the optimization problem.

The paper is organized as follows. In Section 2 we study the minimax identity
for a nonconcave utility function in the complete market model. We do not prove nor
refute the minimax identity, however, we show useful equalities and inequalities to
relate the robust utility functional of initial utility function and its concavification.
Section 3 is devoted to the study of the minimax identity under the implementation
of budget constraints. The results of Section 3 are similar to the corresponding results
of Section 2, however, some of proves differ significantly.

Throughout the paper the measurability of real-valued functions is understood in
the Borel sense.

2 Minimax identity for nonconcave utility functions in complete market model

This problem is already solved in [12], but, since we want to expand this problem
by considering budget constraints, we present the main part of the mentioned paper
omitting the proofs.

2.1 Formulation of the problem

To formulate the goal of this paper first let us remind some notations. For any initial
capital x > 0, let X (x) be the set of all possible random endowments corresponding
to x, i.e. all random variables X such that X ≥ 0, EQe [X] ≤ x.

Moreover, we consider a utility function U which is nondecreasing, upper-semi-
continuous, defined on a domain (0,∞) and satisfying the mild growth condition:

lim
x→∞

U(x)

x
= 0.

It follows from [2, Proposition 3.1] that U(x) has a nondecreasing and continuous
concave envelope Uc(x), or the smallest concave function such that Uc(x) ≥ U(x)

for all x ∈ R; we will call it a concavification of U .
This section aims to prove some equalities and inequalities related to the minimax

identity for the robust nonconcave utility functionals:

sup
X∈X (x)

inf
Q∈Q

EQ[U(X)] = inf
Q∈Q

sup
X∈X (x)

EQ[U(X)].

We will assume that the probability space (�,F ,P) is atomless. Introduce the
notation:

uc(x) := sup
X∈X (x)

inf
Q∈Q

EQ[Uc(X)];
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uQ(x) := sup
X∈X (x)

EQ[U(X)];

uc
Q(x) := sup

X∈X (x)

EQ[Uc(X)].

Also, we need the finiteness of value functions, which we can write as follows.

Assumption 2.

For all x > 0, there exists a measure Q0 ∈ Qe such that uQ0(x) < ∞.

Assumption 3.

uc
Q0

(x) < ∞ for some, and hence for all x > 0 and some Q0 ∈ Qe.

Note that finiteness of uc
Q(x) implies finiteness of uQ(x), since uQ(x) ≤ uc

Q(x).

Theorem 1. Suppose that Assumptions 1, 2, 3 hold and that the probability space
(�,F ,P) is atomless.

Then the following holds:

sup
X∈X (x)

inf
Q∈Qe

EQ[Uc(X)](1�)= sup
X∈X (x)

inf
Q∈Q

EQ[Uc(X)](2�)= inf
Q∈Q

sup
X∈X (x)

EQ[Uc(X)]
(4�) (3�)

sup
X∈X (x)

inf
Q∈Qe

EQ[U(X)] inf
Q∈Qe

sup
X∈X (x)

EQ[Uc(X)]
(6�) (5�)

sup
X∈X (x)

inf
Q∈Q

EQ[U(X)] (7�)≤ inf
Q∈Q

sup
X∈X (x)

EQ[U(X)] (8�)≤ inf
Q∈Qe

sup
X∈X (x)

EQ[U(X)]
The proof of this theorem will be divided into several parts.

2.2 Minimax identity for the concavified objective function Uc(x)

Now we are going to show that the minimax identity holds for Uc(x).
There is a lot of literature with proofs of the minimax identity for robust utility

functionals, the most general case was considered in [21]. However, there the authors
assume that the utility function is strictly increasing, strictly concave, and satisfies the
Inada conditions both at point 0 and at ∞.

The function Uc(·) which we are considering is no longer strictly concave and
does not satisfy the Inada conditions at 0, hence we cannot use all the previous results
without changes.

The next lemma is almost the same as [21, Lemma 3.4].

Lemma 1. Suppose that Assumption 1 and Assumption 3 hold.
Then we have

uc(x) = sup
X∈X (x)

inf
Q∈Q

EQ[Uc(X)] = inf
Q∈Q

sup
X∈X (x)

EQ[Uc(X)]

= sup
X∈X (x)

inf
Q∈Qe

EQ[Uc(X)] = inf
Q∈Qe

sup
X∈X (x)

EQ[Uc(X)].

Remark. This lemma holds if we will consider utility function U : (0,∞) → R

instead of U : [0,∞) → R. Thus, we present the proof for a more general case.

Proof. The proof can be found in [12, Lemma 1].
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2.3 Minimax identity for the objective function U(x)

In this section, we want to prove lemmas which will help us to complete the proof of
Theorem 1.

Remark. Note that the main argument in the proof of minimax identity for the ro-
bust utility maximization problem is the lop sided minimax theorem by Aubin and
Ekeland, see [1, Chapter 6, p. 295], which holds if the functional X → E[ZU(X)]
is concave. Since we consider the nonconcave utility function U , we cannot prove
the minimax identity in this case similarly. A more general case of the minimax
identity was proved by Maurice Sion, see [24]. However, to use Sion’s minimax
theorem we still need functional X → E[ZU(X)] to be quasi-concave, which is
not true, in the general case, even for the indicator functions multiplied by the con-
stants.

Lemma 2. If Assumption 1 and Assumption 2 hold, then for all X ∈ X (x)

inf
Q∈Q

EQ[U(X)] = inf
Q∈Qe

EQ[U(X)]. (2)

Proof. The proof can be found in [12, Lemma 2].

Remark 1. The above lemma also holds for Uc in place of U .

The proof of equality (5�) is based on [19, Theorem 5.1].

Lemma 3. Suppose that (�,F ,P) is atomless.
Then it holds that

inf
Q∈Qe

sup
X∈X (x)

EQ[U(X)] = inf
Q∈Qe

sup
X∈X (x)

EQ[Uc(X)].

Proof. The proof can be found in [12, Lemma 3].

Proof of Theorem 1.

• (1�)–(3�) follows from Lemma 1;

• (4�) follows from the fact that Uc ≥ U ;

• (5�) follows from Lemma 3;

• To obtain (6�) we need to take the sup
g∈C(x)

of the both sides in equality (2);

• Inequality (7�) follows from the fact that for all Q ∈ Q and all X ∈ X (x) it
holds

inf
Q∈Q

EQ[U(X)] ≤ sup
X∈X (x)

EQ[U(X)].

• Since Qe ⊆ Q, inequality (8�) is clear.
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3 Minimax identity for constrained case of random endowments

3.1 Formulation of the problem

This section is in general similar to Section 2, however, similarly to [8, Chapter 3] we
consider a modified constrained counterpart.

Specifically, we assume that there is an upper bound on the endowment, given by
a random variable W : � → (0,+∞). The set of admissible payoffs is then given by

XW := {X ∈ L0(P) | 0 ≤ X ≤ W P-a.s.}.
As it was pointed out in [8, Chapter 3], such formulation arises in various applica-
tions. For instance, we can consider an agent who aims at reaching a certain random
final wealth W ; this may be the future price of certain asset or the claim that agent
will have to pay. In this situation, additional utility for any amount above W is zero,
while the agent still applies her utility function for endowments below W . Since we
assume completeness, there is no reason to consider endowments X, which exceed
W with positive probability, as they can safely be replaced by X ∧ W .

We keep all of the assumptions from Section 2 on the set of all probability mea-
sures Q and the utility function U intact. For technical reasons we will also assume
that (�,F) is a standard Borel space, which in particular implies the existence of a
regular conditional distribution given W . We will require that this conditional distri-
bution is atomless, in other words, that the constraint W leaves a sufficient amount of
randomness.

Assumption 4. 1. (�,F) is a standard Borel space.

2. There exists a regular conditional distribution given W , which is atomless, i.e.
there exists a function P : F×(0,∞) → [0,∞) such that for all v > 0, P(·, v)

is an atomless probability measure, and for all A ∈ F , P(A, ·) is a measurable
function satisfying P(A,W) = P(A | W) a.s.

Remark 2. A simple sufficient condition for (�,F) to be Borel is that F is gen-
erated by a collection of real-valued random variables, which is sufficient for the
majority of applications. Since we assume market completeness, this assumptions is
automatically fulfilled as long as one does not consider completion of F .

The second assumption is verified if, for example, on (�,F ,P) there is a ran-
dom variable which is independent of W and has continuous distribution, so it does
not seem to be too restrictive. We also stress that it does not contradict the market
completeness; the simplest example is a market with two independent continuously
distributed assets S1, S2 and W = f (S1).

As in [4], for each k > 0 denote

Uk(x) = U(x ∧ k), x ≥ 0. (3)

Note that the function Uk and its concavification Uk
c satisfy all of the assumptions

on the utility function U and its concavification Uc. Moreover, Uk
c (x) = Uk(x), for

all x ≥ k.
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Our goal is to prove some equalities and inequalities related to the minimax iden-
tity for the robust nonconcave utility functionals

sup
X∈XW

x

inf
Q∈Q

EQ[UW(ω)(X)] = inf
Q∈Q

sup
X∈XW

x

EQ[UW(ω)(X)]

with the budget set XW
x defined by

XW
x := {X ∈ L1(Qe) | 0 ≤ X ≤ W,EQe [X] ≤ x},

where x > 0 is the initial wealth and Qe is the unique equivalent local martingale
measure.

Introduce the following notation:

uW
c (x) := sup

X∈XW
x

inf
Q∈Q

EQ[UW(ω)
c (X)];

uW
Q (x) := sup

X∈XW
x

EQ[UW(ω)(X)];

uW
c,Q(x) := sup

X∈XW
x

EQ[UW(ω)
c (X)].

Remark. Since Uk(x) ≤ U(x), x ≥ 0, Assumptions 2 and 3 provide the finiteness
of the value function above.

It is natural to consider only the case where

EQe [W ] > x, (4)

as otherwise, thanks to the monotonicity of U , the optimization problem has a trivial
solution X∗ = W .

The formulation of the next theorems and lemmas are the same as in Section 2.
However, because of the boundness assumption on the endowments the proof of the
corresponding statements will be different.

Theorem 2. Under Assumptions 1, 2, 3, 4, we have the following:

sup
X∈XW

x

inf
Q∈Qe

EQ[UW(ω)
c (X)](1�)= sup

X∈XW
x

inf
Q∈Q

EQ[UW(ω)
c (X)](2�)= inf

Q∈Q
sup

X∈XW
x

EQ[UW(ω)
c (X)]

(4�) (3�)

sup
X∈XW

x

inf
Q∈Qe

EQ[UW(ω)(X)] inf
Q∈Qe

sup
X∈XW

x

EQ[UW(ω)
c (X)]

(6�) (5�)

sup
X∈XW

x

inf
Q∈Q

EQ[UW(ω)(X)] (7�)≤ inf
Q∈Q

sup
X∈XW

x

EQ[UW(ω)(X)](8�)≤ inf
Q∈Qe

sup
X∈XW

x

EQ[UW(ω)(X)]

The proof of this theorem will be divided into several parts.

3.2 Minimax identity for the concavified objective function U
W(ω)
c (x)

Now we are going to show that minimax identity holds for U
W(ω)
c (x). First we prove

some useful properties.
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Lemma 4. a) The set XW
x is convex.

b) It holds that uW
c (x) = sup

X∈XW
x

inf
Q∈Q

EQ[UW(ω)
c (X)] is concave.

Proof. a) Consider X1 ∈ XW
x1

and X2 ∈ XW
x2

for some x1, x2 > 0 and α ∈ (0, 1).
One has that 0 ≤ αX1 + (1 − α)X2 ≤ W and EQe [αX1 + (1 − α)X2] ≤
αx1 + (1 − α)x2. Hence, αX1 + (1 − α)X2 ∈ XW

αx1+(1−α)x2
.

b) Take X1 ∈ XW
x1

and X2 ∈ XW
x2

for some x1, x2 > 0 and α ∈ (0, 1).

Then, noting that {αX1 + (1 − α)X2|X1 ∈ XW
x1

, X2 ∈ XW
x2

} ⊂ XW
αx1+(1−α)x2

,
one has

uW
c (αx1 + (1 − α)x2) = sup

X∈XW
αx1+(1−α)x2

inf
Q∈Q

EQ[UW(ω)
c (X)]

≥ sup
αX1+(1−α)X2|X1∈XW

x1
,X2∈XW

x2

inf
Q∈Q

EQ[UW(ω)
c (αX1 + (1 − α)X2)]

≥ sup
αX1+(1−α)X2|X1∈XW

x1
,X2∈XW

x2

inf
Q∈Q

EQ[αUW(ω)
c (X1) + (1 − α)UW(ω)

c (X2)]

≥ sup
αX1+(1−α)X2|X1∈XW

x1
,X2∈XW

x2

[α inf
Q∈Q

EQ[UW(ω)
c (X1)]

+(1 − α) inf
Q∈Q

EQ[UW(ω)
c (X2)]]

= α sup
X1∈XW

x1

inf
Q∈Q

EQ[UW(ω)
c (X1)] + (1 − α) sup

X2∈XW
x2

inf
Q∈Q

EQ[UW(ω)
c (X2)]

= αuW
c (x1) + (1 − α)uW

c (x2).

Lemma 5. Suppose that Assumption 1 and Assumption 3 hold.
Then we have

uW
c (x) = sup

X∈XW
x

inf
Q∈Q

EQ[UW(ω)
c (X)] = inf

Q∈Q
sup

X∈XW
x

EQ[UW(ω)
c (X)]

= sup
X∈XW

x

inf
Q∈Qe

EQ[UW(ω)
c (X)] = inf

Q∈Qe

sup
X∈XW

x

EQ[UW(ω)
c (X)].

Proof. Take ε > 0. Consider Y := (X + ε) ∧ W , for X ∈ XW
x . Then Y ∈ XW

x+ε,
since 0 ≤ Y ≤ W and EQe [Y ] = EQe [(X + ε) ∧ W ] ≤ EQe [X + ε] ≤ x + ε.

Define YW
X,ε := {Y ∈ L1(Qe) | Y = (X + ε)∧W,X ∈ XW

x }. Then YW
X,ε ⊂ XW

x+ε.
Thus, it holds that

uW
c (x + ε) = sup

X̄∈XW
x+ε

inf
Q∈Q

EQ[UW(ω)
c (X̄)]

≥ sup
Y∈YW

X,ε

inf
Q∈Q

EQ[UW(ω)
c (Y )] = sup

Y∈YW
X,ε

inf
Q∈Q

E

[
UW(ω)

c (Y ) · dQ

dP

]
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= sup
Y∈YW

X,ε

inf
Z∈Z

E[ZUW(ω)
c (Y )].

In the proof of [12, Lemma 1] it is already shown that for each X ∈ X (x) the map
Z �→ E[ZU

W(ω)
c (Y )] is a weakly lower-semicontinuous affine functional defined on

the weakly compact convex set Z .
Moreover, in the proof of [12, Lemma 1] it is already shown that for each Z ∈ Z ,

X → E[ZU
W(ω)
c (X+ε)] is a concave functional. Hence, one has that for each Z ∈ Z ,

X → E[ZU
W(ω)
c (Y )] is a concave functional defined on the convex set XW

x .
Noting that weak convergence follows from almost sure convergence, the con-

ditions of the lop sided minimax theorem [1, Chapter 6, p. 295] are satisfied, and
so

sup
Y∈YW

X,ε

min
Z∈Z

E[ZUW(ω)
c (Y )] = min

Z∈Z
sup

Y∈YW
X,ε

E[ZUW(ω)
c (Y )].

Hence, we arrive at

uW
c (x + ε) ≥ sup

Y∈YW
X,ε

inf
Z∈Z

E[ZUW(ω)
c (Y )] = min

Z∈Z
sup

Y∈YW
X,ε

E[ZUW(ω)
c (Y )]

≥ inf
Q∈Q

sup
Y∈YW

X,ε

EQ[UW(ω)
c (Y )]

Y≥X≥ inf
Q∈Q

sup
Y∈YW

X,ε

EQ[UW(ω)
c (X)] ≥ sup

X∈XW
x

inf
Q∈Q

EQ[UW(ω)
c (X)] = uW

c (x).

The last inequality follows from the fact that for all Q ∈ Q and X ∈ XW
x

sup
X∈XW

x

EQ[UW(ω)
c (X)] ≥ inf

Q∈Q
EQ[UW(ω)

c (X)].

Sending ε ↓ 0 and using the continuity of uW
c , as a concave function on the set

(0,+∞), we obtain the first part of the lemma.
From Assumption 3 and [21, Lemma 3.3] it follows that uW

c (x) = inf
Q∈Qe

uW
c,Q(x)

(the proof is similar to the proof of [12, Lemma 2]).
Hence,

uW
c (x) = inf

Q∈Qe

uW
c,Q(x) = inf

Q∈Qe

sup
X∈XW

x

EQ[UW(ω)
c (X)]

≥ sup
X∈XW

x

inf
Q∈Qe

EQ[UW(ω)
c (X)] ≥ sup

X∈XW
x

inf
Q∈Q

EQ[UW(ω)
c (X)] = uW

c (x).

This concludes the proof.

3.3 Minimax identity for the objective function U(x)

In this section, we will establish auxiliary results which will allow us to complete the
proof of Theorem 2.
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Lemma 6. If Assumption 1 and Assumption 2 hold, then for all X ∈ XW
x

inf
Q∈Q

EQ[UW(X)] = inf
Q∈Qe

EQ[UW(X)]. (5)

Proof. The proof is the same as in the nonconstrained case. See [12, Lemma 2].

Lemma 7. Let {Pv, v ∈ (0,∞)} be a family of atomless probability measures on a
standard Borel space (�,F), such that for any A ∈ F , P·(A) is measurable. Then,
for all Q ∈ Qe, for all X ∈ XW

x , there exists X� ∈ XW
x such that

EQ[UW(X�)] = EQ[UW
c (X�)] = EQ[UW

c (X)] ≥ EQ[UW(X)]. (6)

Proof. The main idea of the proof is to utilize the ideas of [19, Proposition 5.3] in
our conditional setting.

Fix Q ∈ Qe and define ψ = dQe/dP, ϕ = dQe/dQ. First of all, note that for
any Q ∈ Qe, there exists a corresponding regular conditional probability given W .
Indeed, since ψ is positive, M(v) := ∫

�
ψ P(dω, v) is positive as well, so

PQ(A, v) =
∫
A

ψ P(dω, v)

M(v)
, A ∈ F ,

is a probability measure. It is easy to see that it is measurable in v and PQ(A,W) =
Q(A | W) Q-a.s.

By Lemma 13 applied to Y(x, ω) = X(ω), φ(v, ω) = ϕ(ω) and Pv(A) =
PQ(A, v), there exists a jointly measurable function Y �(v, ω) such that for all v > 0,
EPQ(·,v)[Y �(v, ω)ϕ(ω)] ≤ EPQ(·,v)[X(ω)ϕ(ω)] and

EPQ(·,v)[Uv
(
Y �(v, ω)

)] = EPQ(·,v)[Uv
c

(
Y �(v, ω)

)] = EPQ(·,v)[Uv
c

(
X(ω)

)].
Set X�(ω) = Y �(W(ω), ω). Then

EQe

[
X�

] = EQ

[
Y �

(
W(ω), ω

)
ϕ
] = EQ

[
EQ

[
Y �

(
W(ω), ω

)
ϕ | W

]]
= EQ

[
EPQ(·,v)[Y �(v, ω)ϕ(ω)]∣∣

v=W

] ≤ EQ

[
EPQ(·,v)[X(ω)ϕ(ω)]∣∣

v=W

]
= EQ

[
EQ [X(ω)ϕ | W ]

] = EQ [X(ω)ϕ] = EQe [X] ≤ x,

so X� ∈ XW
x . Further,

EQ

[
UW

c (X�)
]

= EQ

[
UW(ω)

c

(
Y �(W(ω), ω)

)]
= EQ

[
EQ

[
UW(ω)

c

(
Y �(W(ω), ω)

) | W
]]

= EQ

[
EPQ(·,v)[Uv

c

(
Y �(v, ω)

)]∣∣
v=W

] = EQ

[
EPQ(·,v)[Uv

c

(
X(ω)

)]∣∣
v=W

]
= EQ

[
EQ

[
Uv

c

(
X(ω)

) | W
]] = EQ

[
Uv

c

(
X(ω)

)]
.

The equality EQ[UW(X�)] = EQ[UW
c (X�)] is proved similarly, and the inequal-

ity EQ[UW
c (X)] ≥ EQ[UW(X)] is obvious, since UW

c ≥ UW . The proof is now
complete.
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Lemma 8. If Assumption 4 holds, then for all Q ∈ Qe it holds that

sup
X∈XW

x

EQ[UW(ω)(X)] = sup
X∈XW

x

EQ[UW(ω)
c (X)], for all x > 0.

Proof. Apply the sup
X∈XW

x

to the all parts of (6). Then one has

sup
X∈XW

x

EQ[UW(ω)(X�)] = sup
X∈XW

x

EQ[UW(ω)
c (X�)]

= sup
X∈XW

x

EQ[UW(ω)
c (X)] ≥ sup

X∈XW
x

EQ[UW(ω)(X)]. (7)

Since Q ∈ Qe is arbitrary, X ∈ XW
x is arbitrary and X� ∈ XW

x , it follows that the
inequality in (7) is an equality and, hence, the statement of the lemma is proven.

Lemma 9. Under Assumption 4,

inf
Q∈Qe

sup
X∈XW

x

EQ[UW(ω)(X)] = inf
Q∈Qe

sup
X∈XW

x

EQ[UW(ω)
c (X)].

Proof. Follows immediately from Lemma 8.

Proof of Theorem 2.

• (1�)–(3�) follows from Lemma 5;

• (4�) follows from the fact that U
W(ω)
c ≥ UW(ω);

• (5�) follows from Lemma 9;

• To obtain (6�) we need to take the sup
X∈XW

x

of the both sides of equality (5);

• Inequality (7�) follows from the fact that for all Q ∈ Q and all X ∈ XW
x it

holds that

inf
Q∈Q

EQ[UW(ω)(X)] ≤ sup
X∈XW

x

EQ[UW(ω)(X)].

• Since Qe ⊆ Q, inequality (8�) is clear.

A Auxiliary statements

In what follows U : R+ → R+ is a nondecreasing upper-semicontinuous function
satisfying a mild growth condition, Uv(y) = U(y ∧ v), v > 0, and Uv

c is the concav-
ification of Uv . For v > y > 0, let

a(v, y) =
{

inf{z ≤ y : Uv
c (x) > Uv(x) on [z, y]}, Uv(y) < Uv

c (y),

y, Uv(y) = Uv
c (y),
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and

b(v, y) =
{

sup{z ≤ y : Uv
c (x) > Uv(x) on [y, z]}, Uv(y) < Uv

c (y),

y, Uv(y) = Uv
c (y),

be the left and right endpoints of the interval around y, in which Uv < Uv
c (or just y in

the case where Uv(y) = Uv
c (y)). Observe that Uv(a(v, y)) = Uv

c (a(v, y)). Indeed,
if Uv(a(v, y)) < Uv

c (a(v, y)), then Uv < Uv
c in some open interval around a(v, y),

contradicting the definition of infimum. Similarly, Uv(b(v, y)) = Uv
c (b(v, y)).

Lemma 10. The functions a and b defined above are measurable.

Proof. We will show only measurability of a, that of b can be shown similarly.
Note that a is obviosly nondecreasing in y. It is also right-continuous in y. Indeed,

let yn ≥ y0, yn → y0, n → ∞. If Uv(y0) < Uv
c (y0), then, thanks to continuity of Uv

c

and upper-semicontinuity of Uv , this inequality holds in an open interval around y0,
which means that a(v, yn) = a(v, y0) for all n large enough. Otherwise, if Uv(y0) =
Uv

c (y0), then a(v, yn) ∈ (y0, yn] for all n ≥ 1, whence a(v, yn) → y0 = a(v, y0),
n → ∞.

Further, since for v1 < v2, U
v2
c dominates Uv1 on [0, v1], we have that U

v2
c ≥

U
v1
c . Consequently, a is nonincreasing in v. Now the proof follows from the following

lemma.

Lemma 11. Let a function f : (0,∞)2 → R be such that for each x > 0, f (x, ·) is
nondecreasing and right-continuous, and for each y > 0, f (·, y) is nondecreasing.
Then f is measurable.

Proof. For arbitrary t ∈ R consider the set At = f −1((−∞, t)). Thanks to mono-
tonicity, (x, y) ∈ At ⇒ (x′, y′) ∈ At for all x′ ≤ x, y′ ≤ y. Moreover, thanks to
right-continuity in y, the x-sections At,x = {y > 0 : (x, y) ∈ At } are open intervals.

Define At,x+ = ⋃
z>x At,z. We claim that the set Ao

t := {(x, y) ∈ (0,∞)2 : y ∈
At,x+} is open (it is actually the interior of At ). Indeed, if (x, y) ∈ At

0, then y ∈ At,z

for some z > x. Since At,z is open, for some ε > 0, (y − ε, y + ε) ⊂ At,z. Then,
thanks to monotonicity, (0, z) × (y − ε, y + ε) ⊂ A0

t .
By the definition of Ao

t ,

At \ Ao
t =

⋃
x>0

{x} × (At,x \ At,x+).

For any x > 0, At,x \ At,x+ is a difference of two open intervals, so it’s either a
half-open interval or empty. Since the half-open intervals for different x are disjoint,
there are at most countable number of then. Therefore, At \Ao

t is Borel as a countable
union of Borel sets, which finishes the proof.

Lemma 12. Let {Pv, v ∈ (0,∞)} be a family of atomless probability measures on
a standard Borel space (�,F), such that for any A ∈ F , P·(A) is measurable. Let
also ξ : (0,∞) × � → R be measurable. Then, there exist measurable functions
ζ : (0,∞) × � → R and q : (0,∞) × R → R such that for all v ∈ (0,∞), ζ(v, ·)
has a uniform distribution on (0, 1) with respect to Pv , q(v, ·) is nondecreasing, and
q(v, ζ(v, ω)) = ξ(v, ω) Pv-a.s.
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Proof. Since (�,F) carries an atomless measure, it is uncountable. Then it is well
known that it is isomorphic to (R,B(R)), i.e. there exists a measurable bijection
τ : � → R such that τ−1 is measurable as well. Therefore we can assume without
loss of generality that (�,F) = (

(0, 1),B((0, 1))
)
.

Assume first that the distribution of ξ(v, ω) is continuous for all v ∈ (0,∞). The
cumulative distribution function Fξ (v, x) = Pv({ξ(v, ω) ≤ x}) is jointly measur-
able (see, e.g., [23, Lemma 4.1]), so the quantile function qξ (v, r) = inf{x ∈ R :
Fξ (v, x) ≥ r} is jointly measurable as well. So in this case we can set ζ(v, ω) =
Fξ (v, ξ(v, ω)) and q(v, r) = qξ (v, r); by the quantile transformation theorem, ζ and
q are as required.

For general ξ , define

κ(v, x) = Pv({ω : ξ(v, ω) < x}) + Pv({ω ≤ x : ξ(v, ω) = ξ(v, x)}), x ∈ (0, 1),

which is jointly measurable thanks to [23, Lemma 4.1]. It is easy to see that for any
v ∈ (0,∞), κ has continuous distribution under Pv , and

qξ (v, κ(v, ω)) = ξ(v, ω),

where, as above, qξ is the quantile function of ξ . Then we can set ζ(v, ω) =
Fκ(v, κ(v, ω)) and q(v, r) = qξ (v, qκ(v, r)), arriving at the desired statement.

Lemma 13. Let {Pv, v ∈ (0,∞)} be a family of atomless probability measures on a
standard Borel space (�,F), such that for any A ∈ F , P·(A) is measurable. Also let
Y, φ : (0,∞) × � → [0,∞) be jointly measurable functions such that Y(v, ω) ≤ v

for all v > 0, ω ∈ �. Then, there exists a jointly measurable function Y �(v, ω) such
that for all v > 0, EPv [Y �(v, ω)φ(v, ω)] ≤ EPv [Y(v, ω)φ(v, ω)] and

EPv [Uv
(
Y �(v, ω)

)] = EPv [Uv
c

(
Y �(v, ω)

)] = EPv [Uv
c

(
Y(v, ω)

)].
Proof. We will adapt the construction used in the proof of [19, Proposition 5.3] so
that it has the desired measurability property.

Define

S = {(v, ω) ∈ (0,∞) × � : Uv(Y (v, ω)) < Uv
c (Y (v, ω))},

and for (v, ω) ∈ S, let

α(v, ω) := inf{z : Uv(x) < Uv
c (x) on (z,X(ω)]},

β(v, ω) := sup{z : Uv(x) < Uv
c (x) on [X(ω), z)}

be the left and the right ends of the interval on which Uv < Uv
c . These functions are

measurable thanks to Lemma 10.
For (v, ω) ∈ S, define

λ(v, ω) = β(v, ω) − X(ω)

β(v, ω) − α(v, ω)

so that X(v, ω) = λ(v, ω)α(v, ω) + (1 − λ(v, ω))β(v, ω). Due to Lemma 12, there
exist measurable functions ζ, q : (0,∞)×� → R such that for all v > 0, φ(v, ω) =
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q(v, ζ(v, ω)) Pv-a.s. and ζ(v, ω) is uniformly distributed on (0, 1) under Pv . For
s ∈ [0, 1], v > 0 and ω,ω′ ∈ �, define

h(s, v, ω, ω′) = I(v,X(ω))∈S,(v,X(ω′))∈S,a(v,X(ω))=a(v,X(ω′))
(
Iζ(v,ω′)<s − λ(v, ω′)

)
and

f (s, v, ω) =
∫

�

h(v, ω, ω′, s)Pv(dω′).

Since λ(v, ω) ∈ (0, 1) and ζ has continuous distribution under Pv , we have that for
all (v, ω) ∈ S, f is continuous in s and f (0, v, ω) < 0 < f (1, v, ω). Denoting
σ(v, ω) = inf{s ∈ (0, 1) : f (s, v, ω) ≥ 0}, we have f (σ (v, ω), v, ω) = 0. Also for
any s ∈ (0, 1), {(v, ω) : σ(v, ω) ≤ s} = {(v, ω) : f (s, v, ω) ≥ 0}, so σ(v, ω) is
measurable.

Now set

Y �(v, ω) =

⎧⎪⎨⎪⎩
Y(v, ω), (v, ω) /∈ S;
α(v, ω), (v, ω) ∈ S ∩ {ζ(v, ω) < σ(v, ω)};
β(v, ω), (v, ω) ∈ S ∩ {ζ(v, ω) ≥ σ(v, ω)}.

Since for any fixed v > 0 the construction coincides with that given in [19, Proposi-
tion 5.3], the rest of the proof follows.
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