Interacting Brownian motions in infinite dimensions related to the origin of the spectrum of random matrices        
        
    
        Volume 9, Issue 1 (2022), pp. 89–122
            
    
                    Pub. online: 10 January 2022
                    
        Type: Research Article
            
                
             Open Access
Open Access
        
            
    
                Received
11 August 2021
                                    11 August 2021
                Revised
8 November 2021
                                    8 November 2021
                Accepted
8 November 2021
                                    8 November 2021
                Published
10 January 2022
                    10 January 2022
Abstract
The generalised sine random point field arises from the scaling limit at the origin of the eigenvalues of the generalised Gaussian ensembles. We solve an infinite-dimensional stochastic differential equation (ISDE) describing an infinite number of interacting Brownian particles which is reversible with respect to the generalised sine random point field. Moreover, finite particle approximation of the ISDE is shown, that is, a solution to the ISDE is approximated by solutions to finite-dimensional SDEs describing finite-particle systems related to the generalised Gaussian ensembles.
            References
 Akemann, G., Damgaard, P.H., Magnea, U., Nishigaki, S.: Universality of random matrices in the microscopic limit and the Dirac operator spectrum. Nucl. Phys. B 487(3), 721–738 (1997). MR1432823. https://doi.org/10.1016/S0550-3213(96)00713-4
 Bufetov, A.I., Dymov, A.V., Osada, H.: The logarithmic derivative for point processes with equivalent Palm measures. J. Math. Soc. Jpn. 71(2), 451–469 (2019). MR3943446. https://doi.org/10.2969/jmsj/78397839
 Bufetov, A.I., Qiu, Y., Shamov, A.: Kernels of conditional determinantal measures and the Lyons–Peres completeness conjecture. J. Eur. Math. Soc. 23(5), 1477–1519 (2021). MR4244512. https://doi.org/10.4171/JEMS/1038
 Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W. (eds.): NIST Handbook of Mathematical Functions Cambridge University Press, Cambridge (2010). MR2723248
 Erdélyi, A.: Asymptotic forms for Laguerre polynomials. J. Indian Math. Soc. (N.S.) 24(1960), 235–250 (1961). MR0123751
 Forrester, P.J.: Log-Gases and Random Matrices. London Mathematical Society Monographs. Princeton University Press, Princeton (2010). MR2641363. https://doi.org/10.1515/9781400835416
 Fritz, J.: Gradient dynamics of infinite point systems. Ann. Probab. 15, 478–514 (1987). MR0885128
 Fukushima, M., Oshima, Y., Takeda, M.: Dirichlet Forms and Symmetric Markov Processes, 2nd edn. Walter de Gruyter, Berlin (2011). MR2778606
 Honda, R., Osada, H.: Infinite-dimensional stochastic differential equations related to the Bessel random point fields. Stoch. Process. Appl. 125(10), 3801–3822 (2015). MR3373304. https://doi.org/10.1016/j.spa.2015.05.005
 Kanzieper, E., Freilikher, V.: Random matrix models with log-singular level confinement: method of fictitious fermions. Philos. Mag. B 77(5), 1161–1172 (1998). https://doi.org/10.1080/13642819808205006
 Katori, M., Tanemura, H.: Markov property of determinantal processes with extended sine, Airy, and Bessel kernels. Markov Process. Relat. Fields 17(4), 541–580 (2011). MR2918121
 Kawamoto, Y., Osada, H.: Finite-particle approximations for interacting Brownian particles with logarithmic potentials. J. Math. Soc. Jpn. 70(3), 921–952 (2018). MR3830792. https://doi.org/10.2969/jmsj/75717571
 Kawamoto, Y., Osada, H., Tanemura, H.: Uniqueness of Dirichlet forms related to infinite systems of interacting Brownian motions. Potential Anal. (2020). Published online. MR4341065. https://doi.org/10.1007/s11118-020-09872-2
 Kawamoto, Y., Osada, H., Tanemura, H.: Infinite-dimensional stochastic differential equations and tail σ-fields II: the IFC condition. J. Math. Soc. Japan. to appear. MR4126938. https://doi.org/10.1007/s00440-020-00981-y
 Kuijlaars, A.B.J., Vanlessen, M.: Universality for eigenvalue correlations at the origin of the spectrum. Commun. Math. Phys. 243(1), 163–191 (2003). MR2020225. https://doi.org/10.1007/s00220-003-0960-z
 Lang, R.: Unendlich-dimensionale Wienerprocesse mit Wechselwirkung I. Z. Wahrscheinlichkeitstheor. Verw. Geb. 38, 55–72 (1977). MR0431435. https://doi.org/10.1007/BF00534170
 Lang, R.: Unendlich-dimensionale Wienerprocesse mit Wechselwirkung II. Z. Wahrscheinlichkeitstheor. Verw. Geb. 39, 277–299 (1978). MR0431435. https://doi.org/10.1007/BF01877496
 Lyons, R.: A note on tail triviality for determinantal point processes. Electron. Commun. Probab. 23, 1–3 (2018). MR3866045. https://doi.org/10.1214/18-ECP175
 Ma, Z.-M., Röckner, M.: Introduction to the Theory of (Non-symmetric) Dirichlet Forms. Springer, Berlin (1992). MR1214375. https://doi.org/10.1007/978-3-642-77739-4
 Nagao, T., Slevin, K.: Nonuniversal correlations for random matrix ensembles. J. Math. Phys. 34(5), 2075–2085 (1993). MR1214509. https://doi.org/10.1063/1.530157
 Olver, F.W.J.: Asymptotics and Special Functions. A K Peters, Ltd., Wellesley, MA (1997). Reprint of the 1974 original, AKP Classics MR1429619
 Osada, H.: Dirichlet form approach to infinite-dimensional Wiener processes with singular interactions. Commun. Math. Phys. 176, 117–131 (1996). MR1372820. https://doi.org/10.1007/BF02099365
 Osada, H.: Non-collision and collision properties of Dyson’s model in infinite dimensions and other stochastic dynamics whose equilibrium states are determinantal random point fields. In: Funaki, T., Osada, H. (eds.) Stochastic Analysis on Large Scale Interacting Systems. Advanced Studies in Pure Mathematics, vol. 39, pp. 325–343 (2004). MR2073339. https://doi.org/10.2969/aspm/03910325
 Osada, H.: Tagged particle processes and their non-explosion criteria. J. Math. Soc. Jpn. 62(3), 867–894 (2010). MR2648065. https://doi.org/10.2969/jmsj/06230867
 Osada, H.: Infinite-dimensional stochastic differential equations related to random matrices. Probab. Theory Relat. Fields 153, 471–509 (2012). MR2948684. https://doi.org/10.1007/s00440-011-0352-9
 Osada, H.: Interacting Brownian motions in infinite dimensions with logarithmic interaction potentials. Ann. Probab. 41, 1–49 (2013). MR3059192. https://doi.org/10.1214/11-AOP736
 Osada, H.: Interacting Brownian motions in infinite dimensions with logarithmic interaction potentials II: airy random point field. Stoch. Process. Appl. 123, 813–838 (2013). MR3005007. https://doi.org/10.1016/j.spa.2012.11.002
 Osada, H., Osada, S.: Discrete approximations of determinantal point processes on continuous spaces: tree representations and tail triviality. J. Stat. Phys. 170, 421–435 (2018). MR3744393. https://doi.org/10.1007/s10955-017-1928-2
 Osada, H., Tanemura, H.: Infinite-dimensional stochastic differential equations and tail σ-fields. Probab. Theory Relat. Fields 177, 1137–1242 (2020). MR4126938. https://doi.org/10.1007/s00440-020-00981-y
 Shirai, T., Takahashi, Y.: Random point fields associated with certain Fredholm determinants I: fermion, Poisson and boson point process. J. Funct. Anal. 205, 414–463 (2003). MR2018415. https://doi.org/10.1016/S0022-1236(03)00171-X
 Tanemura, H.: A system of infinitely many mutually reflecting Brownian balls in ${\mathbb{R}^{d}}$. Probab. Theory Relat. Fields 104, 399–426 (1996). MR1376344. https://doi.org/10.1007/BF01213687
 Tsai, L.-C.: Infinite dimensional stochastic differential equations for Dyson’s model. Probab. Theory Relat. Fields 166, 801–850 (2016). MR3568040. https://doi.org/10.1007/s00440-015-0672-2
 
                 
            