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Abstract The generalised sine random point field arises from the scaling limit at the origin
of the eigenvalues of the generalised Gaussian ensembles. We solve an infinite-dimensional
stochastic differential equation (ISDE) describing an infinite number of interacting Brownian
particles which is reversible with respect to the generalised sine random point field. Moreover,
finite particle approximation of the ISDE is shown, that is, a solution to the ISDE is approxi-
mated by solutions to finite-dimensional SDEs describing finite-particle systems related to the
generalised Gaussian ensembles.

Keywords Interacting Brownian motions, random matrices, infinite-dimensional stochastic
differential equations, infinite particle systems
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1 Introduction

Consider the unitary ensembles of random matrices whose density is given by

1

Z |detM|2αe−TrM∗MdM for α > −1

2
, (1.1)

where dM is the usual flat Lebesgue measure on the space of N×N Hermite matrices,
and Z is the normalising constant. Hereafter, by abuse of notation, we use the same
letter Z for normalising constants of several ensembles. Let xN = (x1, . . . , xN) ∈
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R
N be the eigenvalues of an N × N matrix M . When M is distributed as (1.1), the

probability density function of its eigenvalues is written as the following mN
G,α , which

is called generalised Gaussian ensembles [20]:

mN
G,α(dxN) = 1

Z
∏

1≤i<j≤N

|xi − xj |2
∏

1≤k≤N

|xk|2αe−x2
k dxN. (1.2)

Then, mN
G,α naturally gives a random point field μN

G,α in the sense that the labelled

density of μN
G,α with respect to the Lebesgue measure is given by mN

G,α .

Note that μN
G,α is a determinantal random point field. Let {pn

α}n∈N be the monic

orthogonal polynomials with respect to |x|2αe−x2
dx, and we set hn = ∫

R
(pn

α(x))2 ×
|x|2αe−x2

dx. Let KN
G,α : R × R → R be the determinantal kernel defined as

KN
G,α(x, y) = |x|α|y|αe− x2

2 − y2

2

N−1∑
k=0

pk
α(x)pk

α(y)

hk

. (1.3)

Then, for each n, the n-correlation function ρ
N,n
G,α of μN

G,α is given by

ρ
N,n
G,α (x1, . . . , xn) = det

1≤i,j≤n
[KN

G,α(xi, xj )].

From the Cristoffel–Darboux formula [6, Proposition 5.1.3], we have

KN
G,α(x, y) = |x|α|y|αe− x2

2 − y2

2

hN−1

pN
α (x)pN−1

α (y) − pN−1
α (x)pN

α (y)

x − y
.

To focus on fluctuation of the generalised Gaussian ensembles around the origin,
we take a scaling. We set

KN
α (x, y) = 1√

N
KN

G,α

( x√
N

,
y√
N

)
. (1.4)

Let μN
α be the determinantal random point field with kernel KN

α . Clearly, the labelled
density mN

α of μN
α is written in the form

mN
α (dxN) = 1

Z
∏

1≤i<j≤N

|xi − xj |2
∏

1≤k≤N

|xk|2αe− x2
k

N dxN. (1.5)

Then, the scaled kernel KN
α has a nontrivial limit

lim
N→∞ KN

α (x, y) = Kα(x, y) compact uniformly. (1.6)

Here, the limit kernel Kα(x, y) : R × R → R is given by, for x �= y,

Kα(x, y)

=
x
√|x−1y|J

α+ 1
2
(
√

2|x|)J
α− 1

2
(
√

2|y|) − y
√|xy−1|J

α− 1
2
(
√

2|x|)J
α+ 1

2
(
√

2|y|)
√

2(x − y)
,

(1.7)
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and, for x = y,

Kα(x, x) = |x|
2

{
J 2

α+ 1
2
(
√

2|x|) + J 2
α− 1

2
(
√

2|x|)
− J

α+ 3
2
(
√

2|x|)J
α− 1

2
(
√

2|x|) − J
α+ 1

2
(
√

2|x|)J
α− 3

2
(
√

2|x|)}, (1.8)

where Jν denotes the Bessel function of the first kind of order ν. Remark that (1.6)
yields weak convergence of random point fields. Let μα be the determinantal random
point field whose kernel is Kα . More precisely, the n-correlation function ρn

α of μα is
given by

ρn
α(x1, . . . , xn) = det

1≤i,j≤n
[Kα(xi, xj )]. (1.9)

Then, we obtain

lim
N→∞ μN

α = μα weakly.

The kernel Kα is called the generalised sine kernel of order α [1]: when α = 0, Kα

becomes the classical sine kernel sin(x−y)/(x−y). Note that, for x, y > 0 or α ∈ N,
the kernel (1.7) takes a simpler form

Kα(x, y) = √
xy

J
α+ 1

2
(
√

2x)J
α− 1

2
(
√

2y) − J
α− 1

2
(
√

2x)J
α+ 1

2
(
√

2y)
√

2(x − y)
.

As with other random matrix models, the universality of the limit kernel has been
studied. Let V : R → R be a function that increases fast enough at infinity, for
instance, an even degree polynomial with a positive leading coefficient. Then, we
consider the following mN

V,α , which is a generalisation of (1.2):

mN
V,α(dxN) = 1

Z
∏

1≤i<j≤N

|xi − xj |2
∏

1≤k≤N

|xk|2αe−V (xk)dxN.

Then, a natural problem is the universality of random matrices. More precisely, it is
of interest to show that, for a potential V of a quite wide class, local fluctuation at
the origin for mN

V,α yields the universal random point field μα under suitable scaling.
Akemann et al. showed the universality under the assumptions that α is a nonnega-
tive integer, V is an even degree polynomial, and recurrence coefficients of associ-
ated orthogonal polynomials satisfy certain condition [1]. The assumption that α is
a nonnegative integer was excepted by Kanzieper and Freilikher [10]. Moreover, the
restriction that V is even degree polynomial was removed by Kuijlaars and Vanlessen.
They showed universality for real analytic potential with mild assumptions [15].

It is natural to try to study stochastic dynamics with infinitely many particles re-
lated to the universal random point field μα . More specifically, our purpose is to con-
struct reversible diffusion whose equilibrium measure is μα , and describe its infinite-
dimensional stochastic differential equation (ISDE). In order to derive such an ISDE,
we consider a stochastic process related to μN

α , which is given by

dX
N,i
t = dBi

t +
{ α

X
N,i
t

− X
N,i
t

N
+

N∑
j �=i

1

X
N,i
t − X

N,j
t

}
dt, 1 ≤ i ≤ N, (1.10)
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where (Bi)Ni=1 is the N -dimensional Brownian motion. We derive (1.10) as follows.
Consider a Dirichlet form

E(f, g) =
∫
RN

1

2

N∑
i=1

∂f

∂xi

∂g

∂xi

mN
α (dxN)

on L2(RN,mN
α (dxN)). Then, by using integration by parts and (1.5), the generator

−AN of E on L2(RN,mN
α (dxN)) is given by

AN = 1

2
� +

N∑
i=1

{ α

xi

− xi

N
+

N∑
j �=i

1

xi − xj

} ∂

∂xi

,

which corresponds to (1.10).
Taking N to infinity in (1.10), it is expected that the limit ISDE is given by

dXi
t = dBi

t +
{ α

Xi
t

+ lim
r→∞

∑
|Xi

t −X
j
t |<r,j �=i

1

Xi
t − X

j
t

}
dt, i ∈ N. (1.11)

Here, (Bi)i∈N is the collection of independent copies of the one-dimensional Brown-
ian motion. Clearly, (1.11) becomes the Dyson model in the case α = 0. Our purpose
is to construct a solution (Xi)i∈N to (1.11).

It is important to point out that (1.11) is essentially different from the Bessel in-
teracting ISDE, and deriving (1.11) from (1.10) is nontrivial for the long-range effect
of logarithmic interaction. Honda and Osada derived the following Bessel interacting
ISDE for α > 1/2 [9]:

dXi
t = dBi

t +
{ α

Xi
t

+
∑

j∈N,j �=i

1

Xi
t − X

j
t

}
dt, i ∈ N. (1.12)

Note that the (unlabelled) solution to (1.12) is reversible with respect to the Bessel
random point field. Seemingly, our model (1.11) resembles (1.12). However, the sum
of the drift term in (1.12) converges absolutely unlike (1.11). The Bessel random
point field is a random point field on the positive line, and its one-correlation function,
which stands for the mean density of particles, decreases with order x−1/2 as x → ∞;
therefore, the sum of the interaction term in (1.12) converges absolutely. In contrast,
the generalised sine random point field is on R, and its one-correlation function is of
constant order as |x| → ∞; this implies that the drift term in (1.11) does not converge
absolutely. Thus, we need careful computation to show the conditional convergence
of the drift term as opposed to (1.12), and (1.11) is more difficult to study than (1.12)
in this respect.

We refer to historical remarks on interacting Brownian motions with infinitely
many particles. For a free potential � and an interaction potential �, interacting
Brownian motions in infinite-dimensions are given by the ISDE of the form

dXi
t = dBi

t − β

2
∇x�(Xi

t )dt − β

2

∞∑
j �=i

∇x�(Xi
t , X

j
t )dt, i ∈ N. (1.13)



Interacting Brownian motions related to the origin of the spectrum 93

Here, (Bi)i∈N is the collection of independent copies of d-dimensional Brownian
motion and β > 0 is the inverse temperature. Lang derived general solutions to
ISDE (1.13) under the condition � = 0 and � ∈ C3

0(Rd) [16, 17]. Fritz explicitly de-
scribed the set of starting points for up to four dimensions [7], and Tanemura solved
equations for hardcore Brownian balls [31]. These results were achieved through Itô’s
method, and required the coefficients to be smooth and have compact support. These
conditions exclude physically interesting examples of long-range interaction poten-
tials, such as the Lennard-Jones 6-12 potential and Riesz potentials. In particular,
the logarithmic potential, which appears in random matrix theory, is also excluded.
Osada established a Dirichlet form approach to solve ISDEs with a long-range poten-
tial, which can be applied to the logarithmic interacting particle systems [22, 24–27].
Osada and Tanemura also showed strong uniqueness of solutions [29]. Furthermore,
Tsai constructed nonequilibrium solutions to the Dyson model for 1 ≤ β < ∞ [32].

We use the Dirichlet form approach to construct the unique strong solution to
(1.11). More precisely, we construct a reversible diffusion on the configuration space
with respect to μα , and show that the process satisfies (1.11). To show ISDEs by the
Dirichlet form approach, expression of the logarithmic derivatives is crucial, because
the logarithmic derivatives correspond the drift terms of ISDEs. Bufetov, Dymov, and
Osada introduced a method to compute the logarithmic derivatives for determinantal
random point fields [2]. Since μα is determinantal, their result seems to be applicable
to our case. In spite of this, we use finite-particle approximation method to find the
logarithmic derivative of μα , which was introduced in [25]. This is because finite-
particle approximation of the logarithmic derivative implies that of dynamics [12].
More accurately, let (XN,i)1≤i≤N and (Xi)i∈N be the solutions to (1.10) and (1.11),
respectively. Then, provided suitable labelling, the approximation of the logarithmic
derivatives imply that the first m-particles of (XN,i)1≤i≤N converge to that of (Xi)i∈N
weakly in the path space. We will show such convergence in Theorem 2.4. This is an
advantage of our method.

This paper is organised as follows. In Section 2, main results are shown. In Sec-
tion 3, we prepare estimates of determinantal kernels. In Section 4 and Section 5,
the logarithmic derivative and quasi-Gibbs property of μα are shown, respectively. In
Section 6, the strong uniqueness of our solution is proved.

2 Set up and main results

2.1 The strong uniqueness of solutions to ISDEs and dynamical convergence

Let S = R. Let S be the configuration space over S given by

S = {s =
∑

i

δsi ; si ∈ S, s(K) < ∞ for any compact set K ⊂ S}.

We regard the zero measure as an element of S by convention. We equip S with the
vague topology, which makes S to be a Polish space. A probability measure μ on
(S,B(S)) is called a random point field on S. Let

Ss = {s ∈ S ; s({x}) ≤ 1 for any x ∈ S}, Si = {s ∈ S ; s(S) = ∞},
Ss,i = Ss ∩ Si. (2.1)
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For each n ∈ N, a symmetric and locally integrable function ρn : Sn → [0,∞)

is called the n-correlation function of μ with respect to the Lebesgue measure if ρn

satisfies∫
A

k1
1 ×···×A

km
m

ρn(x1, . . . , xn)dx1 · · · dxn =
∫

S

m∏
i=1

s(Ai)!
(s(Ai) − ki)!dμ(s)

for any sequence of disjoint bounded sets A1, . . . , Am ∈ B(S) and any sequence of
natural numbers k1, . . . , km satisfying k1 + · · · + km = n.

We define an unlabelling map u : {⋃∞
k=0 Sk} ∪ SN → S as u((si)i) = ∑

i δsi .
Here, S0 = {∅} and u(∅) = o, where o is the zero measure. Furthermore, a measurable
function l : Ss,i → SN is called a labelling map if u ◦ l is the identity map.

Recall that μα is the random point field whose correlation functions are given
by (1.9). The next theorem is the main result of the present paper.

Theorem 2.1. Assume α > 1/2. Then, there exists a set Sα satisfying

μα(Sα) = 1, Sα ⊂ Ss,i,

such that the following holds: for any s ∈ u−1(Sα), there exists an S∞-valued con-
tinuous process X = (Xi)i∈N and an R

N-valued Brownian motion B = (Bi)i∈N
satisfying

dXi
t = dBi

t +
{ α

Xi
t

+ lim
r→∞

∑
|Xi

t −X
j
t |<r

1

Xi
t − X

j
t

}
dt, (2.2)

X0 = s, (2.3)

and

P(u(Xt ) ∈ Sα, 0 ≤ ∀t < ∞) = 1.

The solutions obtained in Theorem 2.1 are just weak solutions. We next show the
strong uniqueness of solutions to (2.2). We shall give the definitions of (IFC), (AC),
(SIN), (NBJ), and (MF) in Section 6.

Theorem 2.2. For μα ◦ l−1-a.s. s, there exists a strong solution (X, B) to (2.2)–(2.3)
satisfying (IFC), (μα-AC), (SIN), and (NBJ). Furthermore, the strong uniqueness of
solutions to (2.2)–(2.3) holds under the constraints of (MF), (IFC), (μα-AC), (SIN),
and (NBJ).

Remark 2.3. Five assumptions (IFC), (AC), (SIN), (NBJ), and (MF) are required
for the uniqueness of solutions in Theorem 2.2. It is not difficult to check these as-
sumptions in practice. In fact, we showed that solutions to ISDEs satisfy (IFC) under
mild assumptions, and furthermore, if a solution is associated with a Dirichlet form,
we can check the five assumptions [13, 14]. Thus, as an application of the unique-
ness of solutions in Theorem 2.2, we can show the uniqueness of Dirichlet forms
associated with the generalised sine random point field [13], but we do not pursue
here.
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Let (X, B) be the unique solution obtained in Theorem 2.2 and we write X =
(Xi)i∈N. Let XN = (XN,i)1≤i≤N be the (unique) solution to (1.10). In analogy to the
labelling map l, let lN : {s ∈ S ; s(S) = N} → SN be a labelling map for N -particles.
For labelling maps l = (li)i∈N and lN = (lN,i)1≤i≤N , we write lm = (li)1≤i≤m and
lNm = (lN,i)1≤i≤m, respectively. Here and subsequently, W(A) stands for the set of all
continuous paths w : [0,∞) → A. Then, we see a weak convergence from XN to X
in a path space.

Theorem 2.4. Assume α > 1/2. Suppose that, for each m ∈ N,

lim
N→∞ μN

α ◦ (lNm)−1 = μα ◦ (lm)−1 weakly. (2.4)

Assume that XN
0 = μN

α ◦ (lN)−1 and X0 = μα ◦ l−1 in distribution. Then, for each
m ∈ N,

lim
N→∞(XN,1, XN,2, . . . , XN,m) = (X1, X2, . . . , Xm)

weakly in W(Sm).

2.2 Quasi-Gibbs property and logarithmic derivative

Theorem 2.1 is proved by making use of the Dirichlet form approach. In this frame-
work, quasi-Gibbs property and logarithmic derivatives play important roles. We first
introduce the concept of quasi-Gibbs measures.

We set Sr = {|x| ≤ r} and Sm
r = {s ∈ S ; s(Sr) = m}. Let �r be the Poisson

random point field whose intensity is the Lebesgue measure on Sr and set �m
r =

�r(·∩Sm
r ). Let πr, π

c
r : S → S be such that πr(s) = s(·∩Sr ) and πc

r (s) = s(·∩Sc
r ),

respectively.

Definition 2.5 ([26, 27]). A random point field μ is said to be a (�,�)-quasi-Gibbs
measure if, for each r,m ∈ N and μ-a.s. s, the regular conditional probability

μm
r,s := μ(πr(x) ∈ · |πc

r (x) = πc
r (s), x(Sr ) = m)

satisfies

c−1
1 e−Hr (x)�m

r (dx) ≤ μm
r,s(dx) ≤ c1e

−Hr (x)�m
r (dx).

Here, c1 = c1(r,m, s) is a positive constant depending on r , m, and s, and Hr is the
Hamiltonian on Sr defined as

Hr (x) =
∑
xi∈Sr

�(xi) +
∑

xj ,xk∈Sr

�(xj , xk) for x =
∑

i

δxi
.

Moreover, for two measures μ, ν on a σ -field F , we write μ ≤ ν if μ(A) ≤ ν(A) for
all A ∈ F .

Theorem 2.6. For any α > 1/2, μα is a (−2α log |x|,−2 log |x − y|)-quasi-Gibbs
measure.
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From Theorem 2.6, a reversible diffusion with respect to μα is constructed by
the Dirichlet form theory. Let Eμα and Dμα◦ be as in (2.8) and (2.9) with k = 0 and
μ = μα , respectively. See, e.g., [8, 19] for notions of the general theory of Dirichlet
forms such as locality, quasi-regularity, associated diffusions, and capacity.

Corollary 2.7. Assume α > 1/2. Then, (Eμα ,Dμα◦ ) is closable on L2(μα), and its
closure (Eμα ,Dμα ) is a local and quasi-regular Dirichlet form. Thus, there exists an
S-valued diffusion (X, {Ps}s∈S) associated with (Eμα ,Dμα ).

Proof. This corollary immediately follows from Theorem 2.6 with [26, Lemma 2.1,
Corollary 2.1].

We remark that each particle does not hit the origin. Let Capμα be the one-
capacity with respect to (Eμα ,Dμα , L2(μα)).

Lemma 2.8. Assume α > 1/2. Let A = {s ; s({0}) ≥ 1}. Then,

Capμα (A) = 0.

Proof. From (1.8), we see that, for each r , there exists a positive constant c2 such
that

ρ1
α(x) ≤ c2|x|2α for x ∈ Sr . (2.5)

Once we have obtained (2.5), the lemma is proved by the same argument as in [9,
Lemma B.1].

We next prepare some quantities to introduce the logarithmic derivative, which
is a crucial quantity for the representation of ISDE. For a random point field μ and
x = (x1, . . . , xk) ∈ S, for some k ∈ N, we call μx the (reduced) Palm measure of μ

conditioned at x if μx is the regular conditional probability defined as

μx = μ
(

· −
k∑

i=1

δxi
| s({xi}) ≥ 1 for i = 1, . . . , k

)
.

Recall that ρk denotes the k-correlation function of μ. A Radon measure μ[k] on
Sk × S is called the k-Campbell measure of μ if μ[k] is given by

μ[k](dxds) = ρk(x)μx(ds)dx.

Let L
p

loc(S × S, μ[1]) = ⋂∞
r=1 Lp(Sr × S, μ[1]).

A function f : S → R is said to be local if f is σ [πr ]-measurable for some
r ∈ N. Moreover, we say that f is smooth if f̌ is smooth, where f̌ is the permutation
invariant function in (si)i such that f (s) = f̌ ((si)i) for s = ∑

i δsi . Let D◦ be the set
of all local smooth functions on S, and we write D◦,b = {f ∈ D◦ ; f is bounded}.
We set

C∞
0 (R \ {0}) ⊗ D◦,b = { m∑

i=1

fi(x)gi(y) ; fi ∈ C∞
0 (R \ {0}), gi ∈ D◦,b, m ∈ N

}
.
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Definition 2.9 ([25]). An R-valued function dμ ∈ L1
loc(S × S, μ[1]) is called the

logarithmic derivative of μ if, for all ϕ ∈ C∞
0 (R \ {0}) ⊗ D◦,b,∫

S×S
dμ(x, y)ϕ(x, y)μ[1](dxdy) = −

∫
S×S

∇xϕ(x, y)μ[1](dxdy).

Remark 2.10. The space of test functions is not C∞
0 (R) ⊗D◦,b, but C∞

0 (R \ {0}) ⊗
D◦,b, since particles never hit the origin for the case μ = μα with α > 1/2 from
Lemma 2.8.

The next claim is the key theorem in the present paper.

Theorem 2.11. For α > 1/2, the logarithmic derivative of μα exists in L
p

loc(S × S,

μ
[1]
α ) for 1 ≤ p < 2, and it is given by

dμα (x, y) = 2α

x
+ lim

r→∞
∑

|x−yj |<r

2

x − yj

(2.6)

for y = ∑
j δyj

. Here, the limit in the right hand side of (2.6) is taken in L
p

loc(S × S,

μ
[1]
α ).

2.3 The general theory for ISDEs

This subsection is devoted to the general framework – the Dirichlet form approach
for infinite particle systems. We first introduce Dirichlet forms describing k-labelled
processes.

For f, g ∈ D◦, we define D[f, g] : S → R as

D[f, g](s) = 1

2

∑
i

∂f̌ (s)
∂si

∂ǧ(s)
∂si

. (2.7)

Here s = ∑
i δsi and s = (si)i . Remark that D[f, g] is well defined, because the right

hand side of (2.7) depends only on s. For f, g ∈ C∞
0 (Sk) ⊗ D◦, let ∇k[f, g] be the

function on Sk × S defined as

∇k[f, g](x, s) = 1

2

k∑
i=1

∂f (x, s)

∂xi

∂g(x, s)

∂xi

,

where x = (xi)
k
i=1 ∈ Sk . For f, g ∈ C∞

0 (Sk) ⊗ D◦, we set

D
k[f, g](x, s) = ∇k[f, g](x, s) + D[f (x, ·), g(x, ·)](s).

Then, we set the bilinear form (Eμ[k]
,Dμ[k]

◦ ) as

Eμ[k]
(f, g) =

∫
Sk×S

D
k[f, g]dμ[k], (2.8)

Dμ[k]
◦ = {f ∈ (C∞

0 (Sk) ⊗ D◦) ∩ L2(Sk × S, μ[k]) ; Eμ[k]
(f, f ) < ∞}. (2.9)
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When k = 0, we interpret D0 = D and μ[0] = μ. For simplicity, we write L2(μ[k]) =
L2(Sk × S, μ[k]).

Let Erf(t) = (1/
√

2π)
∫ ∞
t

e−x2/2dx be the complementary error function. Sup-
pose that a random point field μ satisfies the following (A1)–(A5).

(A1) For each n, there exists n-correlation functions ρn of μ and ρn is locally
bounded.

(A2) There exists the logarithmic derivative dμ.

(A3) For each k ∈ {0} ∪ N, (Eμ[k]
,Dμ[k]

◦ ) is closable on L2(μ[k]).

(A4) Capμ(Sc
s) = 0.

(A5) There exists T > 0 such that, for each R > 0,

lim inf
r→∞

{ ∫
|x|≤r+R

ρ1(x)dx
}

Erf
( r√

(r + R)T

)
= 0.

From (A3), let (Eμ[k]
,Dμ[k]

) be the closure of (Eμ[k]
,Dμ[k]

◦ ) on L2(μ[k]). It is
known that (Eμ[k]

,Dμ[k]
) is a quasi-regular Dirichlet form [24]. Then, Capμ in (A4)

denotes the one-capacity associated with (Eμ,Dμ,L2(μ)). Assumption (A4) means
that particles never collide. Furthermore, (A5) implies that each tagged particle does
not explode [24].

Recall that W(A) = C([0,∞), A). Each w ∈ W(Ss,i) can be written as wt =∑
i δwi

t
, where wi is an S-valued continuous path defined on an interval Ii of the

form [0, bi) or (ai, bi), where 0 ≤ ai < bi ≤ ∞. Taking maximal intervals of this
form, we can choose [0, bi) and (ai, bi) uniquely up to labelling. We remark that
limt↓ai

|wi
t | = ∞ and limt↑bi

|wi
t | = ∞ for bi < ∞ for all i. We call wi a tagged

path of w and Ii the defining interval of wi . Let

WNE(Ss,i) = {w ∈ W(Ss,i) ; Ii = [0,∞) for all i}.
It is said that the tagged path wi of w does not explode if bi = ∞, and does not
enter if Ii = [0, bi), where bi is the right end of the defining interval of wi . Thus,
WNE(Ss,i) is the set consisting of all nonexploding and nonentering paths in W(Ss,i).

We can naturally lift each w = {∑i δwi
t
}t∈[0,∞) ∈ WNE(Ss,i) to the labelled path

w = (wi)i∈N = {wt }t∈[0,∞) = {(wi
t )i∈N}t∈[0,∞) ∈ W(SN)

using a label l = (li )i∈N. Indeed, for each w ∈ WNE(Ss,i), we can construct the
labelled process w = {(wi

t )i∈N}t∈[0,∞) such that w0 = l(w0), because each tagged
particle can carry the initial label i from the noncollision and nonexplosion properties
of w. We write this correspondence as

lpath(w) = (lipath(w))i∈N.

From (A1) and (A3), there exists a diffusion X on S associated with
(Eμ,Dμ,L2(μ)) [22]. Then, we set X = lpath(X). The labelled process X gives a
weak solution to an ISDE as follows.
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Lemma 2.12 ([25, Theorem 26]). Assume (A1)–(A5). Then, there exists a set H sat-
isfying

μ(H) = 1, H ⊂ Ss,i,

such that the following holds: for all s ∈ u−1(H), there exists an SN-valued Brownian
motion B = (Bi)i∈N such that (X, B) is a weak solution to

dXi
t = dBi

t + 1

2
dμ(Xi

t , Xi♦
t )dt,

X0 = s,

where Xi♦
t = ∑

j∈N,j �=i δ
X

j
t
. Moreover, it holds that

P(Xt ∈ H, 0 ≤ ∀t < ∞) = 1.

2.4 Derivation of Theorem 2.1 from Theorem 2.6 and Theorem 2.11
We shall apply Lemma 2.12 for μα to show Theorem 2.1.

Lemma 2.13. For any α > 1/2, μα satisfies (A1), (A4) and (A5).

Proof. It is easy to see that Kα is bounded. Then, we have (A1) and (A5). Fur-
thermore, because Kα is locally Lipschitz continuous, (A4) follows from [23, Theo-
rem 2.1].

We derive Theorem 2.1 from Theorem 2.6 and Theorem 2.11.

Proof of Theorem 2.1. Assumption (A2) holds from Theorem 2.11. Furthermore,
we obtain (A3) from Theorem 2.6. Actually, (A3) for k = 0 follows from the quasi-
Gibbs property of μα [26, Lemma 3.6]. For general k ≥ 1, (A3) also follows from
the quasi-Gibbs property of μα in a similar manner.

Combining these with Lemma 2.13, we have checked (A1)–(A5) for μα . There-
fore, Lemma 2.12 completes the proof of Theorem 2.1.

With the above argument, Theorem 2.1 is reduced to Theorem 2.6 and Theo-
rem 2.11. The next section is devoted to preparing key tools to show Theorem 2.6
and Theorem 2.11.

3 Key tools for the proofs of main results

3.1 Determinantal kernels
For ν > −1, let {Ln

ν(x)}n∈N be the classical Laguerre polynomials, that is,

Ln
ν(x) = exx−ν

n!
dn

dxn
(e−xxn+ν).

For simplicity, we write

λn
ν(x) = |x|νe− x2

2 Ln
ν(x

2).

The orthogonal polynomials {pn
α}n∈N, which appear in (1.3), are represented by

the Laguerre polynomials. Accordingly, KN
G,α can be rewritten in terms of {λn

ν}n∈N as
follows.
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Lemma 3.1 ([20]). For any k ∈ {0} ∪ N,

KN
G,α(x, y)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�(k+1)

�(k+α+ 1
2 )

x
√

|x−1y|λk

α+ 1
2
(x)λk

α− 1
2
(y)−y

√
|xy−1|λk

α− 1
2
(x)λk

α+ 1
2
(y)

x−y
for N = 2k + 1,

�(k+1)

�(k+α+ 1
2 )

x
√

|x−1y|λk−1
α+ 1

2
(x)λk

α− 1
2
(y)−y

√
|xy−1|λk

α− 1
2
(x)λk−1

α+ 1
2
(y)

x−y
for N = 2k.

This lemma makes an expression of the one-correlation function of μN
G,α . We

note the symmetry ρ
N,1
G,α (−x) = ρ

N,1
G,α (x) and ρ1

α(−x) = ρ1
α(x). Then, for simplic-

ity, we consider the one-correlation functions for nonnegative x in Lemma 3.2 and
Lemma 3.3.

Lemma 3.2. The following holds for x ≥ 0: when N = 2k + 1,

ρ
N,1
G,α (x) = k

1
2 −α

(
2x

{
λk

α+ 1
2
(x)λk−1

α+ 1
2
(x) − λk

α− 1
2
(x)λk−1

α+ 3
2
(x)

} + λk

α+ 1
2
(x)λk

α− 1
2
(x)

)
× (1 + O(N−1)),

and when N = 2k,

ρ
N,1
G,α (x) = k

1
2 −α

(
2x

{(
λk−1

α+ 1
2
(x)

)2 − λk

α− 1
2
(x)λk−2

α+ 3
2
(x)

} + λk−1
α+ 1

2
(x)λk

α− 1
2
(x)

)
× (1 + O(N−1))

as N → ∞. Here, O(N−1) terms are independent of x ∈ R.

Proof. Noting that (d/dx)Lk
ν(x) = −Lk−1

ν+1(x), we have the equality (d/dx)Lk
ν(x

2) =
−2xLk−1

ν+1(x
2). Combining this with Lemma 3.1 and the fact that

�(k + a)

�(k + b)
= ka−b(1 + O(k−1)) as k → ∞,

we have the desired result.

Lemma 3.3. For x > 0, we have ρ1
α(x) > 0.

Proof. From (1.8) and the fact that Jν+1(x) = 2νx−1Jν(x) − Jν−1(x), we see

ρ1
α(x) = x

{(
J

α+ 1
2
(
√

2x) − α√
2x

J
α− 1

2
(
√

2x)
)2 +

(
1 − α2

2x2

)
J 2

α− 1
2
(
√

2x)
}
.

Combining this with the fact that J
α+ 1

2
(
√

2x) and J
α− 1

2
(
√

2x) have no common zero

points, we see ρ1
α(x) > 0 for

√
2x > α. Recall that Jν−1 − Jν+1 = 2J ′

ν . Then, (1.8)
yields that

ρ1
α(x) = x{J ′

α+ 1
2
(
√

2x)J
α− 1

2
(
√

2x) − J ′
α− 1

2
(
√

2x)J
α+ 1

2
(
√

2x)}

= √
2α

∫ √
2x

0

J
α+ 1

2
(t)J

α− 1
2
(t)

t
dt

= √
2α

∫ √
2x

0

J
α+ 1

2
(t){J

α+ 3
2
(t) + 2J ′

α+ 1
2
(t)}

t
dt.
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We remark that the second equality is shown by differentiation of both sides with
differential equation x2J ′′

ν (x)+xJ ′
ν(x)+(x2 −ν2)Jν(x) = 0. Because Jν(z) > 0 and

J ′
ν(z) > 0 for z ∈ (0, ν) (see [21, p. 246]), we have ρ1

α(x) > 0 for 0 <
√

2x ≤ α.

3.2 Asymptotic behaviour of the Laguerre polynomials

Because of Lemma 3.1, asymptotic analysis of the correlation functions boils down
to that of Laguerre polynomials. We quote the Plancherel–Rotach type asymptotic
results for the Laguerre polynomials by Erdélyi. We introduce the quantity

An
ν = n + ν + 1

2
.

Lemma 3.4 ([5]). Let ν > 0. Then, we have the following asymptotics:

(i) For any 0 < ρ < π/2,

Ln
ν(4An

ν cos2 ρ) = (−1)ne2An
ν cos2 ρ

(2 cos ρ)ν(πn sin 2ρ)1/2

×
{

cos
(
An

ν(sin 2ρ − 2ρ) + π

4

)
+ O

( 1

nρ3

)
+ O

( 1

n(π/2 − ρ)

)}
(3.1)

as nρ3 → ∞ and n(π/2 − ρ) → ∞.

(ii) For any 0 < ρ,

Ln
ν(4An

ν cosh2 ρ) = (−1)neAn
ν (1+2ρ+e−2ρ)

(2 cosh ρ)ν+1(2πAn
ν tanh ρ)1/2

{
1 + O

(1 + ρ3

nρ3

)}
(3.2)

as nρ3 → ∞.

(iii) For any x satisfying x − 4An
ν = o(n

3
5 ),

Ln
ν(x) = (−1)nex/2

2ν+1/3n1/3

{
Ai

( x − 4An
ν

(16An
ν)

1/3

)

+ Ãi
( x − 4An

ν

(16An
ν)

1/3

)[
O

(1

n

)
+ O

(x − 4An
ν

n

)
+ O

( (x − 4An
ν)

5/2

n3/2

)]}
(3.3)

as n → ∞. Here, Ai is the Airy function of the first kind, and Ãi is defined as

Ãi(x) =
{

Ai(x) for x ≥ 0,

{|Ai(x)|2 + |Bi(x)|2} 1
2 for x < 0,

where Bi is the Airy function of the second kind.



102 Y. Kawamoto

Remark that several O-terms in Lemma 3.4 contain two variables. For example,
f (n, ρ) ∈ O((nρ3)−1) as nρ3 → ∞ means that there exist positive constants C and
L such that |f (n, ρ)| ≤ C(nρ3)−1 holds for any n, ρ satisfying nρ3 > L. Other terms
have similar meaning.

With a computation similar to that used in [11], Lemma 3.4 yields the following
asymptotics.

Lemma 3.5. For ν > 0 and m ∈ {−2,−1, 0}, the following hold:

(i) For any 0 < ρ < π/2, we have

λn+m
ν (2n

1
2 cos ρ) = (−1)n+mn

ν−1
2

(π sin 2ρ)1/2

{
cos

(
n(sin 2ρ − 2ρ) − 2ρAm

ν + π

4

)

+ O
( 1

nρ3

)
+ O

( 1

n(π/2 − ρ)

)}
(3.4)

as nρ3 → ∞ and n(π/2 − ρ) → ∞.

(ii) For any 0 < ρ, we have

λn+m
ν (2n

1
2 cosh ρ) = (−1)n+mn

ν−1
2 exp{n(2ρ − sinh 2ρ) + 2ρAm

ν }
23/2 cosh ρ(π tanh ρ)1/2

×
{

1 + O
(1 + ρ3

nρ3

)}
(3.5)

as nρ3 → ∞.

Proof. For n large enough, there exists θ = θ(n, ρ) such that

cos ρ =
(An+m

ν

n

) 1
2

cos(ρ + θ), (3.6)

where An+m
ν = n + m + (ν + 1)/2. Then, it is easy to see that

θ =O(n−1)

sin ρ
, (3.7)

cos(ρ + θ) =
{

1 − Am
ν

2n
+ O(n−2)

}
cos ρ (3.8)

as n → ∞. Combining these with cos(ρ + θ) = cos ρ − θ sin ρ + O(θ2) as θ → 0,
we obtain

θ = Am
ν

2n

cos ρ

sin ρ
+ O(n−2)

sin3 ρ
(3.9)

as n → ∞. Furthermore, the Taylor expansion with (3.7) yields

sin 2(ρ + θ) − 2(ρ + θ) = sin 2ρ − 2ρ − 4θ sin2 ρ + O(n−2)

sin2 ρ
(3.10)
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as n → ∞. Then, by straightforward computation with (3.10) and (3.9), we have

An+m
ν {sin 2(ρ + θ) − 2(ρ + θ)} = n(sin 2ρ − 2ρ) − 2ρAm

ν + O(n−1)

sin2 ρ
(3.11)

as n → ∞.
From (3.1) and (3.6), we see that

Ln+m
ν (4n cos2 ρ) = Ln+m

ν (4An+m
ν cos2(ρ + θ))

= (−1)n+me2n cos2 ρ

(2 cos ρ)ν(πn sin 2(ρ + θ))1/2

×
{

cos
(
An+m

ν {sin 2(ρ + θ) − 2(ρ + θ)} + π

4

)
+ O

( 1

nρ3

)
+ O

( 1

n(π/2 − ρ)

)}
(3.12)

as nρ3 → ∞ and n(π/2 − ρ) → ∞. Therefore, substituting (3.11) for (3.12), we
finally derive (3.4).

To show (ii), let θ = θ(n, ρ) be such that

cosh ρ =
(An+m

ν

n

) 1
2

cosh(ρ + θ). (3.13)

From this, we have that

θ = O(n−1)

sinh ρ
, (3.14)

cosh(ρ + θ) =
{

1 − Am
ν

2n
+ O(n−2)

}
cosh ρ (3.15)

as n → ∞. Combining this with cosh(ρ + θ) = cosh ρ + θ sinh ρ +O(θ2) as θ → 0,
we obtain

θ = −Am
ν

2n

cosh ρ

sinh ρ
+ O(n−2)

sinh3 ρ
(3.16)

as n → ∞. By the Taylor expansion, (3.16) and (3.14) yield

An+m
ν {2θ + e−2ρ(e−2θ − 1)} = An+m

ν

{
2θ(1 − e−2ρ) + O(n−2)

sinh2 ρ

}

= −Am
ν (1 + e−2ρ) + O(n−1)

sinh2 ρ

as n → ∞. Thereby, combining this with the fact that 1+e−2ρ = 2 cosh2 ρ−sinh 2ρ,
we get

An+m
ν (1 + 2(ρ + θ) + e−2(ρ+θ))

= An+m
ν (1 + 2ρ + e−2ρ) + An+m

ν (2θ + e−2ρ(e−2θ − 1))

= 2n cosh2 ρ + n(2ρ − sinh 2ρ) + 2ρAm
ν + O(n−1)

sinh2 ρ
(3.17)

as n → ∞.
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From (3.2) and (3.13), we have

Ln+m
ν (4n cosh2 ρ)

= Ln+m
ν (4An+m

ν cosh2(ρ + θ))

= (−1)n+m exp{An+m
ν (1 + 2(ρ + θ) + e−2(ρ+θ))}

(2 cosh(ρ + θ))ν+1(2πAn+m
ν tanh(ρ + θ))1/2

{
1 + O

(1 + ρ3

nρ3

)}
(3.18)

as nρ3 → ∞. Finally, substituting (3.17) for (3.18), we obtain (3.5).

3.3 Asymptotic estimates of determinantal kernels

Using the results in Section 3.2, we derive asymptotic estimates of determinantal
kernels. For convenience, we set

MN
α (x, y) = 1√

N
KN

G,α(
√

Nx,
√

Ny).

Note that (1.4) implies

MN
α (x, y) = KN

α (Nx,Ny). (3.19)

Fix a constant γ satisfying

−1

2
< γ < −2

5
, (3.20)

and we set

UN
1 = [−√

2 + Nγ , 0) ∪ (0,
√

2 − Nγ ],
UN

2 = (−∞,−√
2 − Nγ ] ∪ [√2 + Nγ ,∞),

T N = [−√
2 − Nγ ,−√

2 + Nγ ] ∪ [√2 − Nγ ,
√

2 + Nγ ].
Remark that R \ {0} = UN

1 ∪ UN
2 ∪ T N . Furthermore, we make the definition

UN = UN
1 ∪ UN

2 .

Hereafter, we always suppose α > 1/2.

Lemma 3.6. (i) For any x ∈ UN
1 , we have

MN
α (x, x) =

√
2 − x2

π
+ O

( 1

N1+2γ

)
+ O

( 1

N |x|
)

(3.21)

as N → ∞ and N |x| → ∞.

(ii) There exist positive constants c3 and L such that, for any x ∈ UN
2 and N ∈ N

satisfying N(x2 − 2)2 > L, we have

MN
α (x, x) ≤ c3

N(x2 − 2)2 . (3.22)



Interacting Brownian motions related to the origin of the spectrum 105

Proof. We prove for the case N = 2k for k ∈ N; the case of odd N can be proved in
the same way. It is sufficient to see for x > 0. Put

√
Nx = 2

√
k cos ρ. Considering

|2−x2| ≥ Nγ for x ∈ UN
1 , we see ρ−1 = O(N−γ /2) as N → ∞. Set ρ̃ = sin 2ρ−2ρ

for simplicity, and (3.4) becomes

λk+m
ν (

√
Nx) = (−1)k+mk

ν−1
2

(π sin 2ρ)1/2

{
cos

(
kρ̃ − 2ρAm

ν + π

4

)

+ O
( 1

N1+3γ /2

)
+ O

( 1

N |x|
)}

as N → ∞ and N |x| → ∞. Then, this yields

2
√

Nx
{
(λk−1

α+ 1
2
(
√

Nx))2 − λk

α− 1
2
(
√

Nx)λk−2
α+ 3

2
(
√

Nx)
}

= 2kα

π

{
sin ρ + O

( 1

N1+2γ

)
+ O

( 1

N |x|
)}

(3.23)

as N → ∞ and N |x| → ∞. Here, we used the fact that cos2 A−cos(A+B) cos(A−
B) = sin2 B with A = kρ̃ − (α − 1

2 )ρ + π
4 and B = ρ. Furthermore, we have

λk−1
α+ 1

2
(
√

Nx)λk

α− 1
2
(
√

Nx)

= kα−1

π sin 2ρ

{
O(1) + O

( 1

N1+3γ /2

)
+ O

( 1

N |x|
)}

(3.24)

as N → ∞ and N |x| → ∞. Then, (3.23) and (3.24) with Lemma 3.2 yield (3.21).
Next, we shall show (ii). Using (3.5) for

√
Nx = 2

√
k cosh ρ, we get

2
√

Nx{(λk−1
α+ 1

2
(
√

Nx))2 − λk

α− 1
2
(
√

Nx)λk−2
α+ 3

2
(
√

Nx)}

= kαe2k(2ρ−sinh 2ρ)+(2α−1)ρ

2π sinh ρ
× O

(1 + ρ3

Nρ3

)

and

λk−1
α+ 1

2
(
√

Nx)λk

α− 1
2
(
√

Nx) = −kα−1e2k(2ρ−sinh 2ρ)+2αρ

23π sinh ρ cosh ρ

{
1 + O

(1 + ρ3

Nρ3

)}

as Nρ3 → ∞. Then, combining these with Lemma 3.2, we obtain (3.22).

Lemma 3.7. (i) There exist a positive constant c4 and f (N, x) ∈ O((N |x|)−1)

as N |x| → ∞ such that, for all N ∈ N and x ∈ UN ,

MN
α (x, x) ≤ c4

(
1 + f (N, x)

)
(3.25)

(ii) There exist a positive constant c5 such that, for all N ∈ N and x ∈ T N ,

MN
α (x, x) ≤ c5N

1
3 . (3.26)
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(iii) There exists a positive constant c6 and f (N, x) ∈ O((N |x|)−1) as N |x| → ∞
such that, for all N ∈ N and x, y ∈ UN ,

|MN
α (x, y)| ≤ c6(1 + f (N, x))(1 + f (N, y))

N |x − y||2 − x2|1/4|2 − y2|1/4 . (3.27)

Proof. Inequality (3.25) follows from (3.21) and (3.22). Let N = 2k (the case N =
2k + 1 is proven in the same manner). For ν > 0, we see Nx2 − 4Ak

ν = o(k
3
5 ) for

x ∈ T N since γ < −2/5. Therefore, (3.3) yields

|λk
ν(

√
Nx)| = Nν/2|x|νe− Nx2

2 |Lk
ν(Nx2)| ≤ CN

ν
2 − 1

3

for some constant C. Here, we used the fact that Ai is bounded on R and Bi is bounded
on (−∞, 0) (see [4, Section 9], for example). This with Lemma 3.2 yields (3.26).
Furthermore, combining Lemma 3.1 with (3.4) and (3.5), we get (3.27).

4 The logarithmic derivative

4.1 Finite particle approximation of the logarithmic derivative

The logarithmic derivative dμ of μ can be approximated by that of finite particle
systems. Let {μN }N∈N be a sequence of random point fields such that μN(s(S) =
N) = 1. Moreover, ρn and ρN,n stand for the n-correlation function of μ and μN ,
respectively. Then, we assume the following:

(B1) For each R ∈ N,

lim
N→∞ ρN,n = ρn uniformly on Sn

R for each n ∈ N, (4.1)

sup
N∈N

sup
xn∈Sn

R

ρN,n(xn) ≤ cn
7nc8n for any n ∈ N, (4.2)

where 0 < c7(R) < ∞ and 0 < c8(R) < 1 are constants independent of n.

Note that (B1) implies limN→∞ μN = μ weakly.
Let u, uN : S → R and g : S2 → R be measurable functions. For r > 0, we set

gr (x, y) =
∑

i

χr (x − yi)g(x, yi), wr (x, y) =
∑

i

(1 − χr(x − yi))g(x, yi),

where y = ∑
i δyi

and χr ∈ C∞
0 (S) is a cut-off function such that 0 ≤ χr ≤ 1,

χr(x) = 0, for |x| ≥ r +1 and χr(x) = 1 for |x| ≤ r . We set S̃R = {x ; R−1 ≤ |x| ≤
R}. Following [12], we make assumption (B2).

(B2) For each N , μN has the logarithmic derivative dμN
such that

dμN

(x, y) = uN(x) + gr (x, y) + wr (x, y).

Furthermore, uN , gr , and wr satisfy the following (i)–(iii) for some p̂ > 1:
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(i) It holds that uN ∈ C1(S \ {0}). Furthermore, uN and ∇uN converge uni-
formly to u and ∇u on each compact set in S \ {0}, respectively.

(ii) It holds that g ∈ C1(S2 ∩ {x �= y}). In addition, for each R ∈ N,

lim
p→∞ lim sup

N→∞

∫
x∈S̃R,|x−y|≤2−p

χr(x − y)|g(x, y)|p̂ ρN,1
x (y)dxdy = 0,

(4.3)

where ρ
N,1
x is the one-correlation function of the reduced Palm measure

μN
x .

(iii) For each R ∈ N,

lim
r→∞ lim sup

N→∞

∫
S̃R×S

|wr (x, y)|p̂dμN,[1] = 0. (4.4)

Then, we obtain an explicit expression of the logarithmic derivative of μ by finite
particle approximation.

Lemma 4.1 ([25, Theorem 45]). Assume (B1) and (B2). Then, the logarithmic deriva-
tive dμ of μ exists in L

p

loc(μ
[1]) for 1 ≤ p < p̂, and it is represented as

dμ(x, y) = u(x) + lim
r→∞ gr (x, y).

Here, the convergence limr→∞ gr takes place in L
p

loc(μ
[1]).

4.2 The logarithmic derivative of the generalised sine random point field

Let μN
α be the determinantal random point field whose kernel is KN

α as in (1.4). In
other words, the (labelled) density of μN

α is given by

mN
α (dxN) = 1

Z
∏

1≤i<j≤N

|xi − xj |2
N∏

k=1

|xk|2αe− x2
k

N dxN. (4.5)

Let ρN,n
α be the n-correlation function of μN

α . Furthermore, let μN
α,x be the reduced

Palm measure of μN
α conditioned at x, and ρ

N,n
α,x denotes its n-correlation function.

We shall apply the general result in Section 4.1 taking μ = μα and μN = μN
α .

From (4.5), the logarithmic derivative of μN
α is given by

dμN
α (x, y) =

∑
j

2

x − yj

+ 2α

x
− 2x

N

for y = ∑N−1
i=1 δyj

. Then, we shall show (B2) under the setting of

uN(x) = 2α

x
− 2x

N
, g(x, y) = 2

x − y
. (4.6)

The most tough assumption in Lemma 4.1 is (4.4). We introduce a sufficient condition
for (4.4). We set || · ||R = sup

x∈S̃R
| · |.
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Lemma 4.2. We set Sx,r = {y ∈ S ; r ≤ |x − y| < ∞}. The following condi-
tions (4.7)–(4.10) imply (4.4) with p̂ = 2:

lim
r→∞ lim sup

N→∞

∣∣∣∣
∣∣∣∣
∫

Sx,r

ρN,1
α (y)

x − y
dy

∣∣∣∣
∣∣∣∣
R

= 0, (4.7)

lim
r→∞ lim sup

N→∞

∣∣∣∣
∣∣∣∣
∫

Sx,r

ρ
N,1
α,x (y) − ρN,1

α (y)

x − y
dy

∣∣∣∣
∣∣∣∣
R

= 0, (4.8)

lim
r→∞ lim sup

N→∞

∣∣∣∣
∣∣∣∣
∫

Sx,r

ρN,1
α (y)

(x − y)2 dy

+
∫

(Sx,r )2

ρN,2
α (y, z) − ρN,1

α (y)ρN,1
α (z)

(x − y)(x − z)
dydz

∣∣∣∣
∣∣∣∣
R

= 0, (4.9)

lim
r→∞ lim sup

N→∞

∣∣∣∣
∣∣∣∣
∫

Sx,r

ρ
N,1
α,x (y) − ρN,1

α (y)

(x − y)2 dy+
∫

(Sx,r )2

ρ
N,2
α,x (y, z) − ρ

N,1
α,x (y)ρ

N,1
α,x (z) − ρN,2

α (y, z) + ρN,1
α (y)ρN,1

α (z)

(x − y)(x − z)
dydz

∣∣∣∣
∣∣∣∣
R

= 0.

(4.10)

Proof. This lemma follows from [25, Lemma 52, Lemma 53]. Remark that, in [25],
the sup norm || · ||R is defined as supx∈SR

|| · ||. Here, it is taken over S̃R instead of SR ,
considering the space of test functions of the logarithmic derivative in Definition 2.9.

4.3 Proof of Theorem 2.11

We begin by rewriting the conditions in Lemma 4.2 in terms of determinantal kernels.
We recall that reduced Palm measures of determinantal random point fields are also
determinantal. From [30], μN

α,x is determinantal, and its kernel KN
α,x is given by

KN
α,x(y, z) = KN

α (y, z) − KN
α (x, y)KN

α (x, z)

KN
α (x, x)

. (4.11)

With the aid of (4.11), we see that

ρN,1
α (y) = KN

α (y, y) (4.12)

ρN,1
α,x (y) − ρN,1

α (y) = KN
α (x, y)2

KN
α (x, x)

(4.13)

ρN,2
α (y, z) − ρN,1

α (y)ρN,1
α (z) = −KN

α (y, z)2 (4.14)

ρN,2
α,x (y, z) − ρN,1

α,x (y)ρN,1
α,x (z) − {ρN,2

α (y, z) − ρN,1
α (y)ρN,1

α (z)}

= 2
KN

α (y, z)KN
α (x, y)KN

α (x, z)

KN
α (x, x)

− KN
α (x, y)2KN

α (x, z)2

KN
α (x, x)2 . (4.15)

Thereby, (4.7)–(4.10) in Lemma 4.2 are rewritten as follows.
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Lemma 4.3. To simplify notation, we set

xN = x

N
, T N

x,r = {y ∈ R ; r

N
≤ |xN − y| < ∞}.

Then, (4.7)–(4.10) are equivalent to (4.16)–(4.19), respectively.

lim
r→∞ lim sup

N→∞

∣∣∣∣
∣∣∣∣
∫

T N
x,r

MN
α (y, y)

xN − y
dy

∣∣∣∣
∣∣∣∣
R

= 0, (4.16)

lim
r→∞ lim sup

N→∞

∣∣∣∣
∣∣∣∣
∫

T N
x,r

1

xN − y

MN
α (xN, y)2

MN
α (xN, xN)

dy

∣∣∣∣
∣∣∣∣
R

= 0, (4.17)

lim
r→∞ lim sup

N→∞

∣∣∣∣
∣∣∣∣
∫

T N
x,r

MN
α (y, y)

N |xN − y|2 dy −
∫

(T N
x,r )

2

MN
α (y, z)2

(xN − y)(xN − z)
dydz

∣∣∣∣
∣∣∣∣
R

= 0,

(4.18)

lim
r→∞ lim sup

N→∞

∣∣∣∣
∣∣∣∣
∫

T N
x,r

1

N |xN − y|2
MN

α (xN, y)2

MN
α (xN, xN)

dy

+
∫

(T N
x,r )

2

1

(xN − y)(xN − z)

(2MN
α (y, z)MN

α (xN, y)MN
α (xN, z)

MN
α (xN, xN)

− MN
α (xN, y)2MN

α (xN, z)2

MN
α (xN, xN)2

)
dydz

∣∣∣∣
∣∣∣∣
R

= 0. (4.19)

Proof. Recall that MN
α (x, y) = KN

α (Nx,Ny) in (3.19). Then, by (4.12) and the
change of variables y �→ Ny, we have that∫

Sx,r

ρN,1
α (y)

x − y
dy =

∫
T N

x,r

KN
α (Ny,Ny)

x − Ny
Ndy =

∫
T N

x,r

MN
α (y, y)

xN − y
dy.

Therefore, we obtain the equivalence between (4.7) and (4.16). By the same argu-
ment with (4.13)–(4.15), it holds that (4.8)–(4.10) are equivalent to (4.17)–(4.19),
respectively.

We shall prove (4.16)–(4.19) in order, in the rest of this section.

Lemma 4.4. For 0 < q ≤ 1, we have

lim
N→∞

∣∣∣∣
∣∣∣∣
∫

T N∪UN
2

MN
α (y, y)q

|xN − y| dy

∣∣∣∣
∣∣∣∣
R

= 0. (4.20)

Proof. From (3.26), we have∣∣∣∣
∣∣∣∣
∫

T N

MN
α (y, y)q

|xN − y| dy

∣∣∣∣
∣∣∣∣
R

≤
∣∣∣∣
∣∣∣∣
∫

T N

c
q

4Nq/3

|xN − y|dy

∣∣∣∣
∣∣∣∣
R

= c
q

4Nq/3( log|xN − (
√

2 − Nγ )| − log|xN − (
√

2 + Nγ )|
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+ log|xN − (−√
2 − Nγ )| − log|xN − (−√

2 + Nγ )|)
= O(N

q
3 +γ ) → 0 as N → ∞. (4.21)

Here, we used the fact that q ≤ 1 and γ < −2/5 in (3.20) in the last line. Moreover,
from (3.22) and −1/2 < γ , we have∣∣∣∣

∣∣∣∣
∫

UN
2

MN
α (y, y)q

|xN − y| dy

∣∣∣∣
∣∣∣∣
R

≤
∣∣∣∣
∣∣∣∣
∫

UN
2

c
q

3

|xN − y|Nq |y2 − 2|2q
dy

∣∣∣∣
∣∣∣∣
R

→ 0 as N → ∞. (4.22)

Hence, from (4.21) and (4.22), we have (4.20).

Lemma 4.5. Equation (4.16) holds.

Proof. Our proof starts with the observation that (3.21) yields

lim
r→∞ lim sup

N→∞

∣∣∣∣
∣∣∣∣
∫

T N
x,r∩UN

1

MN
α (y, y)

xN − y
dy

∣∣∣∣
∣∣∣∣
R

= 0. (4.23)

Indeed, we see that

lim
N→∞

∣∣∣∣
∣∣∣∣
∫

T N
x,r∩UN

1

1

xN − y

√
2 − y2

π
dy

∣∣∣∣
∣∣∣∣
R

=
∣∣∣∣P.V.

∫ √
2

−√
2

1

y

√
2 − y2

π
dy

∣∣∣∣
= 0, (4.24)

and, from −1/2 < γ ,

lim
N→∞

∣∣∣∣
∣∣∣∣
∫

T N
x,r∩UN

1

1

|xN − y|
1

N1+2γ
dy

∣∣∣∣
∣∣∣∣
R

= 0. (4.25)

Moreover,

lim
N→∞

∣∣∣∣
∣∣∣∣
∫

T N
x,r∩UN

1

1

|xN − y|
1

N |y|dy

∣∣∣∣
∣∣∣∣
R

=
∣∣∣∣
∣∣∣∣ 1

x
log

x + r

r − x

∣∣∣∣
∣∣∣∣
R

. (4.26)

From (4.24), (4.25), and (4.26) with (3.21), we have (4.23). Therefore, (4.16) follows
from (4.20) with q = 1 and (4.23).

Applying the Schwartz inequality to (1.3), we have that KN
G,α(x, y)2 ≤

KN
G,α(x, x)KN

G,α(y, y), which yields

MN
α (x, y)2 ≤ MN

α (x, x)MN
α (y, y). (4.27)

From S̃R = {R−1 ≤ |x| ≤ R}, Lemma 3.3 yields

0 < inf
x∈S̃R

Kα(x, x).
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Then, since MN
α (xN, xN) = KN

α (x, x) and limN→∞ KN
α (x, x) = Kα(x, x) uni-

formly for x ∈ S̃R , we see that c9 below is finite for each R ∈ N:

c9 = sup
N∈N

sup
x∈S̃R

1

MN
α (xN, xN)

< ∞. (4.28)

Let f (N, y) ∈ O((N |y|)−1) as N |y| → ∞. Then, there exist positive constants
C and L such that |f (N, y)| ≤ C(N |y|)−1 for N, y satisfying N |y| > L. From this,
for sufficiently large r , we have

sup
y∈T N

x,r ,N∈N,x∈S̃R

|f (N, y)| < ∞.

Thus, from (3.25) and (3.27), there exists a positive constant c10 independent of N

and r such that

MN
α (y, y) ≤ c10 for any y ∈ T N

x,r ∩ UN, (4.29)

|MN
α (xN, y)| ≤ c10

N |xN − y||2 − y2|1/4 for any x ∈ S̃R, y ∈ T N
x,r ∩ UN,

(4.30)

|MN
α (y, z)| ≤ c10

N |y − z||2 − y2|1/4|2 − z2|1/4 for any y, z ∈ T N
x,r ∩ UN.

(4.31)

Lemma 4.6. The following (4.32) and (4.33) hold.

lim
r→∞ lim sup

N→∞

∣∣∣∣
∣∣∣∣
∫

T N
x,r

MN
α (xN, y)2

|xN − y|MN
α (xN, xN)

dy

∣∣∣∣
∣∣∣∣
R

= 0, (4.32)

lim
r→∞ lim sup

N→∞

∣∣∣∣
∣∣∣∣
∫

T N
x,r

MN
α (xN, y)

|xN − y|MN
α (xN, xN)

dy

∣∣∣∣
∣∣∣∣
R

= 0. (4.33)

In particular, (4.17) holds.

Proof. Equation (4.17) follows from (4.32) immediately. Then, we first prove (4.32).
From (4.27) and (4.20) with q = 1, we deduce that

lim
N→∞

∣∣∣∣
∣∣∣∣
∫

T N∪UN
2

MN
α (xN, y)2

|xN − y|MN
α (xN, xN)

dy

∣∣∣∣
∣∣∣∣
R

≤ lim
N→∞

∣∣∣∣
∣∣∣∣
∫

T N∪UN
2

MN
α (y, y)

|xN − y| dy

∣∣∣∣
∣∣∣∣
R

= 0. (4.34)

From (4.28) and (4.30), we have, for large r ,

lim sup
N→∞

∣∣∣∣
∣∣∣∣
∫

T N
x,r∩UN

1

MN
α (xN, y)2

|xN − y|MN
α (xN, xN)

dy

∣∣∣∣
∣∣∣∣
R

≤ lim sup
N→∞

∣∣∣∣
∣∣∣∣
∫

T N
x,r∩UN

1

c9c
2
10

N2|xN − y|3(2 − y2)1/2 dy

∣∣∣∣
∣∣∣∣
R

≤ c9c
2
10

r2 . (4.35)
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Here, we used the fact that |2−y2| ≥ Nγ for y ∈ UN
1 . Combining (4.34) with (4.35),

we get (4.32).
By the same argument as above, (4.28) and (4.30) yield that

lim sup
N→∞

∣∣∣∣
∣∣∣∣
∫

T N
x,r∩UN

1

MN
α (xN, y)

|xN − y|MN
α (xN, xN)

dy

∣∣∣∣
∣∣∣∣
R

≤ lim sup
N→∞

∣∣∣∣
∣∣∣∣
∫

T N
x,r∩UN

1

c9c10

N |xN − y|(2 − y2)1/4 dy

∣∣∣∣
∣∣∣∣
R

≤ 2c9c10

r
. (4.36)

Furthermore, from (4.27), (4.28), and (4.20) with q = 1/2, we see that

lim
N→∞

∣∣∣∣
∣∣∣∣
∫

T N∪UN
2

MN
α (xN, y)

|xN − y|MN
α (xN, xN)

dy

∣∣∣∣
∣∣∣∣
R

≤ lim
N→∞

∣∣∣∣
∣∣∣∣
∫

T N∪UN
2

c
1
2
9 MN

α (y, y)
1
2

|xN − y| dy

∣∣∣∣
∣∣∣∣
R

= 0. (4.37)

Hence, (4.37) and (4.36) yield (4.33).

Lemma 4.7. The following (4.38) and (4.39) hold:

lim
r→∞ lim sup

N→∞

∣∣∣∣
∣∣∣∣
∫

T N
x,r

MN
α (y, y)

N |xN − y|2 dy

∣∣∣∣
∣∣∣∣
R

= 0, (4.38)

lim
r→∞ lim sup

N→∞

∣∣∣∣
∣∣∣∣
∫

(T N
x,r )

2

MN
α (y, z)2

|xN − y||xN − z|dydz

∣∣∣∣
∣∣∣∣
R

= 0. (4.39)

In particular, (4.18) holds.

Proof. From (4.29), we see that

lim sup
N→∞

∣∣∣∣
∣∣∣∣
∫

T N
x,r∩UN

MN
α (y, y)

N |xN − y|2 dy

∣∣∣∣
∣∣∣∣
R

≤ 2c10

r
. (4.40)

Define a positive constant c11 as

c11 = lim sup
N→∞

sup
y∈T N

|| |xN − y|−1||R.

Clearly, c11 < ∞. From (3.26), we have

lim
N→∞

∣∣∣∣
∣∣∣∣
∫

T N
x,r∩T N

MN
α (y, y)

N |xN − y|2 dy

∣∣∣∣
∣∣∣∣
R

≤ lim
N→∞

4c4c
2
11N

1/3Nγ

N
= 0. (4.41)

Here, we used the fact that |T N | = 4Nγ and γ < −2/5. Therefore, (4.38) follows
from (4.40) and (4.41).
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Next we prove (4.39). First, we estimate the integration on UN ×UN . We can see

lim
r→∞ lim sup

N→∞

∣∣∣∣
∣∣∣∣
∫

(T N
x,r∩UN)2∩{|y−z|≥N−1}

MN
α (y, z)2

|xN − y||xN − z|dydz

∣∣∣∣
∣∣∣∣
R

= 0, (4.42)

lim
r→∞ lim sup

N→∞

∣∣∣∣
∣∣∣∣
∫

(T N
x,r∩UN)2∩{|y−z|≤N−1}

MN
α (y, z)2

|xN − y||xN − z|dydz

∣∣∣∣
∣∣∣∣
R

= 0. (4.43)

Actually, from (4.31) and the Schwartz inequality, we have∣∣∣∣
∣∣∣∣
∫

(T N
x,r∩UN)2∩{|y−z|≥N−1}

MN
α (y, z)2

|xN − y||xN − z|dydz

∣∣∣∣
∣∣∣∣
R

≤
∣∣∣∣
∣∣∣∣
∫

(T N
x,r∩UN)2∩{|y−z|≥N−1}

× c2
10

N2|y − z|2|2 − y2|1/2|2 − z2|1/2|xN − y||xN − z|dydz

∣∣∣∣
∣∣∣∣
R

≤
∣∣∣∣
∣∣∣∣
∫

(T N
x,r∩UN)2∩{|y−z|≥N−1}

c2
10

N2|y − z|2|2 − y2||xN − y|2 dydz

∣∣∣∣
∣∣∣∣
R

≤
∣∣∣∣
∣∣∣∣
∫

T N
x,r∩UN

c2
10

N2|2 − y2||xN − y|2
{∫

{|y−z|≥N−1}
1

|y − z|2 dz

}
dy

∣∣∣∣
∣∣∣∣
R

=
∣∣∣∣
∣∣∣∣
∫

T N
x,r∩UN

2c2
10

N |2 − y2||xN − y|2 dy

∣∣∣∣
∣∣∣∣
R

.

Hence, computation similar to (4.35) derives

lim sup
N→∞

∣∣∣∣
∣∣∣∣
∫

(T N
x,r∩UN)2∩{|y−z|≥N−1}

MN
α (y, z)2

|xN − y||xN − z|dydz

∣∣∣∣
∣∣∣∣
R

≤ 4c2
10

r
,

which implies (4.42). We next show (4.43). From (4.27) and (4.29), it holds that∣∣∣∣
∣∣∣∣
∫

(T N
x,r∩UN)2∩{|y−z|≤N−1}

MN
α (y, z)2

|xN − y||xN − z|dydz

∣∣∣∣
∣∣∣∣
R

≤
∣∣∣∣
∣∣∣∣
∫

(T N
x,r∩UN)2∩{|y−z|≤N−1}

c2
10

|xN − y||xN − z|dydz

∣∣∣∣
∣∣∣∣
R

≤
∣∣∣∣
∣∣∣∣
∫

(T N
x,r∩UN)2∩{|y−z|≤N−1}

c2
10

2

{ 1

|xN − y|2 + 1

|xN − z|2
}
dydz

∣∣∣∣
∣∣∣∣
R

≤ 2c2
10

N

∣∣∣∣
∣∣∣∣
∫

T N
x,r

1

|xN − y|2 dy

∣∣∣∣
∣∣∣∣
R

= 4c2
10

r
,

which implies (4.43). Then, (4.42) and (4.43) gives

lim
r→∞ lim sup

N→∞

∣∣∣∣
∣∣∣∣
∫

(T N
x,r∩UN)2

MN
α (y, z)2

|xN − y||xN − z|dydz

∣∣∣∣
∣∣∣∣
R

= 0. (4.44)
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We next consider the integration on T N × T N . From (3.26) and (4.27), we obtain

lim
N→∞

∣∣∣∣
∣∣∣∣
∫

(T N
x,r∩T N )2

MN
α (y, z)2

|xN − y||xN − z|dydz

∣∣∣∣
∣∣∣∣
R

≤ lim
N→∞ c2

4c
2
11N

2/3(4Nγ )2 = 0. (4.45)

Here, we used |T N | = 4Nγ and γ < −2/5.
Lastly, we consider the case UN × T N . A similar argument deduces

∣∣∣∣
∣∣∣∣
∫

(T N
x,r∩UN)×(T N

x,r∩T N )

MN
α (y, z)2

|xN − y||xN − z|dydz

∣∣∣∣
∣∣∣∣
R

≤
∣∣∣∣
∣∣∣∣
∫

(T N
x,r∩UN)×(T N

x,r∩T N )

MN
α (y, y)MN

α (z, z)

|xN − y||xN − z| dydz

∣∣∣∣
∣∣∣∣
R

=
∣∣∣∣
∣∣∣∣
∫

T N
x,r∩UN

MN
α (y, y)

|xN − y| dy

∫
T N

x,r∩T N

MN
α (z, z)

|xN − z| dz

∣∣∣∣
∣∣∣∣
R

= O(log N)O(N1/3+γ ) → 0 as N → ∞. (4.46)

Collecting (4.44), (4.45), and (4.46), we finally obtain (4.39). Clearly, (4.18) follows
from (4.38) and (4.39).

Lemma 4.8. Equation (4.19) holds.

Proof. We estimate three terms in (4.19).
The first term in (4.19) vanishes. Indeed, from (4.27) and (4.38), we obtain

lim
r→∞ lim sup

N→∞

∣∣∣∣
∣∣∣∣
∫

T N
x,r

1

N |xN − y|2
MN

α (xN, y)2

MN
α (xN, xN)

dy

∣∣∣∣
∣∣∣∣
R

≤ lim
r→∞ lim sup

N→∞

∣∣∣∣
∣∣∣∣
∫

T N
x,r

MN
α (y, y)

N |xN − y|2 dy

∣∣∣∣
∣∣∣∣
R

= 0. (4.47)

For the second term in (4.19), from the Schwartz inequality, we have

∣∣∣∣
∣∣∣∣
∫

(T N
x,r )

2

MN
α (y, z)MN

α (xN, y)MN
α (xN, z)

|xN − y||xN − z|MN
α (xN, xN)

dydz

∣∣∣∣
∣∣∣∣
R

=
∣∣∣∣
∣∣∣∣
∫

(T N
x,r )

2

MN
α (y, z)2

|xN − y||xN − z|dydz

∣∣∣∣
∣∣∣∣

1
2

R

∣∣∣∣
∣∣∣∣
∫

T N
x,r

MN
α (xN, y)2

|xN − y|MN
α (xN, xN)

dy

∣∣∣∣
∣∣∣∣
R

.

Thereby, (4.32) and (4.39) implies

lim
r→∞ lim sup

N→∞

∣∣∣∣
∣∣∣∣
∫

(T N
x,r )

2

MN
α (y, z)MN

α (xN, y)MN
α (xN, z)

|xN − y||xN − z|MN
α (xN, xN)

dydz

∣∣∣∣
∣∣∣∣
R

= 0. (4.48)
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Lastly, the third term in (4.19) converges to zero. Indeed, from (4.32), we see

lim
r→∞ lim sup

N→∞

∣∣∣∣
∣∣∣∣
∫

(T N
x,r )

2

MN
α (xN, y)2MN

α (xN, z)2

|xN − y||xN − z|MN
α (xN, xN)2 dydz

∣∣∣∣
∣∣∣∣
R

= lim
r→∞ lim sup

N→∞

∣∣∣∣
∣∣∣∣
∫

T N
x,r

MN
α (xN, y)2

|xN − y|MN
α (xN, xN)

dy

∣∣∣∣
∣∣∣∣
2

R

= 0. (4.49)

Therefore, we conclude (4.19) from (4.47), (4.48), and (4.49).

Proof of Theorem 2.11. It is easy to see (B1). Indeed, (4.1) is verified by (1.6),
and (4.2) follows from (1.9) and the Hadamard inequality. Additionally, (B2) holds
for p̂ = 2 under the setting of (4.6). (B2) (i) is clear, and direct computation with
(4.11) yields (4.3) in (ii). Furthermore, we have (B2) (iii), since (4.16)–(4.19) in
Lemma 4.3 are followed from Lemma 4.5, Lemma 4.6, Lemma 4.7, and Lemma 4.8,
respectively. Then, we have checked the all conditions in Lemma 4.1, which com-
pletes the proof of Theorem 2.11.

5 Quasi-Gibbs property

5.1 Sufficient conditions for the quasi-Gibbs property
To show Theorem 2.6, we use sufficient conditions for the quasi-Gibbs property of a
random point field μ with logarithmic interaction which is derived in [27]. We set the
following conditions (QG1)–(QG2):

(QG1) There exists a sequence of random point fields {μN }N∈N satisfying (B1) and
the following (i)–(iii):

(i) μN(s(S) = N) = 1 for each N ∈ N.

(ii) μN is a (�N,−β log |x−y|)-canonical Gibbs measure for each N ∈ N.

(iii) For each R, self-potential �N satisfies the following:

lim
N→∞ �N(x) = �(x) for a.e. x, inf

n∈N inf
x∈SR

�N(x) > −∞.

Let x = ∑
i δxi

. For l, r ∈ N, we define vl,r : S → R as

vl,r (x) = β
∑
xi∈Sc

r

1

xl
i

.

(QG2) There exists l0 ∈ N such that

sup
N∈N

{ ∫
1≤|x|<∞

1

|x|l0 ρN,1(x)dx
}

< ∞

and that, for each 1 ≤ l < l0,

lim
r→∞ sup

N∈N
||vl,r ||L1(S,μN ) = 0.

Lemma 5.1. [27, Theorem 2.2] Assume (QG1) and (QG2). Then, μ is a
(�,−β log |x − y|)-quasi-Gibbs measure.
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5.2 Proof of Theorem 2.6

We first check (QG2) to use Lemma 5.1.

Lemma 5.2. It holds that

sup
N∈N

{ ∫
1≤|x|<∞

1

x2 ρN,1
α (x)dx

}
< ∞, (5.1)

lim
r→∞ sup

N∈N
||v1,r ||L1(S,μN

α ) = 0. (5.2)

In particular, we have (QG2) for l0 = 2.

Proof. Recall ρN,1
α (x) = KN

α (x, x) = MN
α (x/N, x/N). Then, from (3.25), there

exists a positive constant c12 such that

sup
N∈N

sup
1≤|x|≤N

ρN,1
α (x) ≤ c12.

Therefore, we have

∫
1≤|x|<∞

1

|x|2 ρN,1
α (x)dx ≤ 2c12

∫ N

1

1

x2 dx + 2
∫ ∞

N

ρN,1
α (x)

x2 dx. (5.3)

Using
∫

S ρN,1
α (x)dx = N , we see that

∫ ∞

N

ρN,1
α (x)

x2 dx ≤ 1

N2

∫ ∞

N

ρN,1
α (x)dx ≤ 1

N
.

Thereby, combining this with (5.3), we obtain (5.1). Moreover, we see that

||v1,r ||L1(S,μN
α ) =

∫
|x|>r

2ρN,1
α (x)

x
dx =

∫
|x|> r

N

2MN
α (x, x)

x
dx.

Then, by arguments similar to that yield Lemma 4.5, we prove (5.2). Therefore, we
obtain (QG2) for l0 = 2.

Proof of Theorem 2.6. Taking μN = μN
α and μ = μα , we check assumption (QG1)

and (QG2). It is easily to see (QG1) with �N(x) = x2N−1−2α log |x|. Furthermore,
(QG2) holds for l0 = 2 from Lemma 5.2. Hence, we conclude Theorem 2.6 from
Lemma 5.1.

6 Strong uniqueness

6.1 General framework for strong uniqueness

Following [29], we introduce a framework of strong uniqueness of ISDEs in the case
when S = R and the diffusion coefficient σ = 1. In order not to make this paper
too long, several terminologies and symbols are not defined here. See [29] for precise
definitions.
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Recall that Ss,i is defined in (2.1). Let H and Ssde be Borel subsets of S such that

H ⊂ Ssde ⊂ Ss,i.

Define Ssde ⊂ SN and S[1]
sde ⊂ S × S as

Ssde = u−1(Ssde), S[1]
sde = u

−1
[1] (Ssde),

where u[1] : S × S → S is given by u[1](x, s) = δx + s.
Let (X, B) be an SN × R

N-valued continuous process defined on a filtered space
(�,F, P , {Ft }). We assume that (�,F, P ) is a standard probability space. Then, the
regular conditional probability Ps = P(·|X0 = s) exists for s, P ◦ X−1

0 -almost every-
where.

Let b : S[1]
sde → R be a Borel measurable function. Then, consider an ISDE of

X = (Xi)i∈N starting from l(H) with state space Ssde:

dXi
t = dBi

t + b(Xi
t , Xi♦

t )dt, (6.1)

X ∈ W(Ssde), (6.2)

X0 ∈ l(H).

For X = (Xi)i∈N, we set Xm∗
t = ∑∞

i=m+1 δXi
t
. For (u, v) ∈ Sm and v =∑m−1

i=1 δvi
, where v = (v1, . . . , vm−1), we define bm

X : [0,∞) × Sm → R as

bm
X (t, (u, v)) = b(u, v + Xm∗

t ).

Let

Sm
sde(t, w) = {sm = (s1, . . . , sm) ∈ Sm ; u(sm) + wm∗

t ∈ Ssde},
where wm∗

t = ∑∞
i=m+1 δwi

t
for wt = ∑∞

i=1 δwi
t
. Let Ym = (Y 1, . . . , Ym) be a solu-

tion to the following SDE with random environment X defined on (�,F, Ps, {Ft }):
dY

m,i
t = dBi

t + bm
X (t, (Y

m,i
t , Ym,i♦

t ))dt, (6.3)

Ym
t ∈ Sm

sde(t, X) for all t, (6.4)

Ym
t = sm. (6.5)

Here, we set Yi♦
t = (Ym,j )mj �=i and sm = (s1, . . . , sm) for s = (si) ∈ SN.

We formulate strong solution to (6.3)–(6.5) and its uniqueness. We set W0(R
m) =

{w ∈ W(Rm) ; w0 = 0}. Let Cm, Cm
t be σ -fields on W0(R

m) × W(SN) defined as in
[29, 1154 p.]. Let Bm

t = σ [ws ; 0 ≤ s ≤ t, w ∈ W(Rm)].
Definition 6.1 ([29, Definition 3.9]). We say that Ym a strong solution to (6.3)–(6.5)
for (X, B) under Ps if (Ym, Bm, Xm∗) satisfies (6.3)–(6.5) and there exists a function

Fm
s : W0(R

m) × W(SN) → W(Sm)

such that Cm-measurable and Cm
t /Bm

t -measurable for any t , and it holds that

Ym = Fm
s (Bm, Xm∗) for Ps-a.s.

Here, Bm = (B1, . . . , Bm) is the first m-components of the Brownian motion B.
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Definition 6.2 ([29, Definition 3.10]). SDE (6.3)–(6.5) is said to have a unique strong
solution for (X, B) under Ps if there exists a function Fm

s satisfying the same condi-
tion as in Definition 6.1 and, for any weak solution (Ŷm, Bm, Xm∗) to (6.3)–(6.5)
under Ps, we have

Ŷm = Fm
s (Bm, Xm∗).

Then, we introduce the IFC condition for (X, B) defined on (�,F, P , {Ft }).
(IFC) For each m ∈ N, SDE (6.3)–(6.5) has a unique strong solution Fm

s (Bm, Xm∗)
for (X, B) under Ps for P ◦ X−1

0 -a.s. s.

We next introduce several conditions for the strong uniqueness of solutions to
ISDEs. See [29, Section 3] for the definitions of solutions to ISDEs such as strong
solutions and unique strong solutions under constraints. For a process X = (Xi)i∈N ∈
W(SN), let Xt = ∑

i δXi
t
. We make assumptions for μ and X under P .

(TT) μ is tail trivial.

(μ-AC) P ◦ X−1
t ≺ μ for all 0 < t < ∞.

(SIN) P(X ∈ WNE(Ss,i)) = 1.

(NBJ) P(mr,T (X) < ∞) = 1 for each r, T ∈ N, where, for w ∈ W(SN),

mr,T (w) = inf{m ∈ N ; min
t∈[0,T ] |w

n
t | > r for all n ∈ N such that n > m}.

Let Fs : W0(R
N) → W(RN) be a strong solution to (6.1)–(6.2) starting at s for

P ◦ X−1
0 -a.s. s.

(MF) P(Fs(B) ∈ A) is B(SN)
P◦X−1

0 -measurable in s for any A ∈ B(W(SN)).

Lemma 6.3 ([29, Theorem 3.1]). Assume (TT). Assume that (6.1)–(6.2) has a weak
solution under P satisfying (IFC), (μ-AC), (SIN), and (NBJ). Then, (6.1)–(6.2) has
a family of unique strong solutions {Fs} starting at s for P ◦ X−1

0 -a.s. s under the
constraints of (MF), (IFC), (μ-AC), (SIN), and (NBJ).

6.2 Proof of Theorem 2.2

Let (X, {Ps}) be the diffusion associated with (Eμα ,Dμα ), which is obtained in Corol-
lary 2.7. We take X and P in Section 6.1 as X = lpath(X) and P = Pμα := ∫

Psdμα .

Proof of Theorem 2.2. We shall check assumptions of Lemma 6.3. Since μα is de-
terminantal, (TT) for μα is known [3, 18, 28]. From the fact that X is reversible with
respect to μα , (μα-AC) holds. Furthermore, (SIN) and (NBJ) hold from the same
argument as in [29, Section 10.].

We can check (IFC) for (X, B) using a result of [14]. We take aq(r) = C(q)r1+ε ,
where ε is a sufficiently small positive constant and {C(q)}q∈N is a increasing se-
quence. It is easy to see that there exists a sequence {C(q)} such that (5.17) and (5.41)
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in [14] holds. Using [14, Theorem 6.1], {B1} in [14] holds for (X, B). Remark that
the assumption

∫
χ̃dμα < ∞ in [14, Theorem 6.1] is proved by [14, Lemma 5.4].

Moreover, we see that {C1} and {C2} in [14] holds from Theorem 2.11. Then, [14,
Theorem 3.3] implies that (X, B) satisfies {B2} and {B3} in [14]. Therefore, from [14,
Theorem 3.2], (X, B) satisfies (IFC).

Finally, we have checked all assumptions in Lemma 6.3, which completes the
proof of Theorem 2.2.

7 Dynamical convergence

7.1 General theory of finite particle approximation to ISDEs

This subsection is devoted to prepare a general result for finite particle approxima-
tions to ISDEs. Recall that μN and μ satisfy (B1). Additionally, we suppose the
following:

(B3) For each m ∈ N,

lim
N→∞ μN ◦ (lNm)−1 = μ ◦ (lm)−1 weakly in Sm.

We shall later take μN ◦ (lN)−1 as an initial distribution of labelled processes for
finite particle systems. Hence, (B3) means weak convergence of the initial distribution
of the labelled dynamics.

For a labelled process XN = (XN,i)Ni=1 ∈ W(SN), we set

XN,♦i
t =

N∑
j �=i

δ
X

N,j
t

.

Recall that dμN
denotes the logarithmic derivative of μN . We introduce a finite-

dimensional SDE of XN = (XN,i)Ni=1: for 1 ≤ i ≤ N ,

dX
N,i
t = dBi

t + 1

2
dμN

(X
N,i
t , XN,♦i

t )dt. (7.1)

Then, we assume the following:

(B4) For each N , there exists the logarithmic derivative dμN
of μN and SDE (7.1)

with initial condition XN
0 = sN has a unique solution for μN ◦ (lN)−1-a.s. sN .

Furthermore, this solution does not explode.

(B5) There exists T > 0 such that, for each R > 0,

lim inf
r→∞ sup

N∈N

{ ∫
|x|≤r+R

ρN,1(x)dx
}

Erf
( r√

(r + R)T

)
= 0.

Moreover, we write si = lN,i(s) and, for each R, T ∈ N,

lim
L→∞ lim sup

N→∞

∑
i>L

∫
S

Erf
( |si | − R

T

)
μN(ds) = 0.
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We say {XN }N∈N is tight in W(SN) if each subsequence XN ′
of XN contains a

subsequence XN ′′
such that, for each m ∈ N, XN ′′,m = (XN ′′,i )mi=1 is convergent

weakly in W(Sm). The following theorem is a special case of [12, Theorem 2.2].

Lemma 7.1. Assume (A3), (A4), and (B1)–(B5). Assume that XN
0 = μN ◦ (lN)−1 in

distribution. Then, the following (1) and (2) hold:

(i) The family of processes {XN }N∈N is tight in W(SN), and each limit point X of
{XN }N∈N is a solution to

dXi
t = dBi

t + 1

2
dμ(Xi

t , Xi♦
t )dt

with initial distribution μ ◦ l−1.

(ii) If each limit point X satisfies (IFC), (SIN), and (NBJ), then, for each m ∈ N,

lim
N→∞(XN,1, XN,2, . . . , XN,m) = (X1, X2, . . . , Xm) (7.2)

weakly in W(Sm).

Proof. Claim (i) follows from [12, Theorem 2.2]. Since X is a limit of {XN } and∑
1≤i≤N δXN,i starts from reversible measure μN , each limit point X satisfies (μ-

AC). Then, from [29, Corollary 3.2], the distribution of each limit point X is unique.
Therefore, combining the uniqueness with the tightness proved in (i), we obtain (7.2).

7.2 Proof of Theorem 2.4

We use Lemma 7.1 (ii) for μ = μα and μN = μN
α to prove Theorem 2.4.

Proof of Theorem 2.4. We have already shown (B1) and (B2). Assumption (B3) cor-
responds (2.4). It is easy to see that (B4) holds. With the aid of [12, Lemma 4.6], we
can check (B5).

Let X be an arbitrary limit point of XN . From Lemma 7.1 (1), X is a weak solution
to (2.2) with initial distribution μα ◦ l−1. Since u(X) is reversible with respect to μα ,
X has the Lyons–Zheng type decomposition (see [14, Section 9]). Then, the non-
collision property holds from [14, Theorem 6.1]. It is easy to see the nonexplosion of
tagged particles. Therefore, we have (SIN) for X. Furthermore, the Lyons–Zheng type
decomposition makes it possible to use the same argument as in [29, Lemma 10.3],
which proves (NBJ). From the same argument as the proof of Theorem 2.2, X satis-
fies (IFC).

Thus, Lemma 7.1 (ii) completes the proof of Theorem 2.4.
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