Existence and uniqueness of weak solution to a three-dimensional stochastic modified-Leray-alpha model of fluid turbulence        
        
    
        Volume 8, Issue 1 (2021), pp. 115–137
            
    
                    Pub. online: 16 March 2021
                    
        Type: Research Article
            
                
             Open Access
Open Access
        
            
    
                Received
9 August 2020
                                    9 August 2020
                Revised
27 February 2021
                                    27 February 2021
                Accepted
27 February 2021
                                    27 February 2021
                Published
16 March 2021
                    16 March 2021
Abstract
In this paper, we study the stochastic three-dimensional modified Leray-alpha model arising from the turbulent flows of fluids. We prove the existence of the probabilistic weak solution under the non-Lipschitz condition for the nonlinear forcing terms. We also discuss its uniqueness.
            References
 Bensoussan, A.: Some existence results for stochastic partial differential equation. Stochastic Partial Differential Equations and Applications (Trento, 1990), Pitman Res. Notes Math. Ser., vol. 268. Longman Sci. Tech., Harlow, UK, 37–53 (1992). MR1222687
 Bensoussan, A.: Stochastic Navier-Stokes equations. Acta Appl. Math. 38, 267–304 (1995). MR1326637. https://doi.org/10.1007/BF00996149
 Bensoussan, A., Temam, R.: Équations stochastiques du type Navier-Stokes. J. Funct. Anal. 13, 195–222 (1973). MR0348841. https://doi.org/10.1016/0022-1236(73)90045-1
 Billingsley, P.: Probability and Measure, 3rd edn. Wiley (1995). MR1324786
 Caraballo, T., Real, J., Taniguchi, T.: The existence and uniqueness of solutions to stochastic three-dimensional Lagrangian averaged Navier-Stokes equations. Proc. R. Soc. A 462, 459–479 (2006). MR2269674. https://doi.org/10.1098/rspa.2005.1574
 Chaabani, A., Nasfi, R., Selmi, R., Zaabi, M.: Well-posedness and convergence results for strong solution to a 3D-regularized Boussinesq system. Math. Methods Appl. Sci. (2016). https://doi.org/10.1002/mma.3950
 Chen, S., Foias, C., Holm, D.D., Olson, E., Titi, E.S., Wynne, S.: A connection between the Camassa-Holm equations and turbulent flows in channels and pipes. Phys. Fluids 11, 2343–2353 (1999). MR1719962. https://doi.org/10.1063/1.870096
 Cheskidov, A., Holm, D.D., Olson, E., Titi, E.S.: On a Leray-α model of turbulence. Proc. R. Soc. A 461, 629–649 (2005). MR2121928. https://doi.org/10.1098/rspa.2004.1373
 Constantin, P., Foias, C.: Navier-Stokes Equations. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL (1988). MR0972259
 Deugoué, G., Sango, M.: On the stochastic 3D Navier-Stokes-α model of fluids turbulence. Abstr. Appl. Anal., Article ID 723236 (2009). 27 pp. MR2563999. https://doi.org/10.1155/2009/723236
 Fang, S., Qiu, H.: Stochastic simplified Bardina turbulent model: existence of weak solution. Acta Math. Sci. 34, 1041–1054 (2014). MR3209660. https://doi.org/10.1016/S0252-9602(14)60068-0
 Ilyin, A.A., Lunasin, E.M., Titi, E.S.: A modified-Leray-α subgrid scale model of turbulence. Nonlinearity 19, 879–897 (2006). MR2214948. https://doi.org/10.1088/0951-7715/23/9/006
 Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus. Graduate Texts in Mathematics, vol. 113. Springer, New York (1988). MR0917065. https://doi.org/10.1007/978-1-4684-0302-2
 Krylov, N.V., Rozovskii, B.L.: Stochastic evolution equations. J. Sov. Math. 16, 1233–1277 (1981). MR570795. https://doi.org/10.1007/BF01084893
 Langa, J.A., Real, J., Simon, J.: Existence and regularity of the pressure for the stochastic Navier-Stokes equations. Appl. Math. Optim. 48, 195–210 (2003). MR2004282. https://doi.org/10.1007/s00245-003-0773-7
 Li, P.: Geometric Analysis. Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge (2012). MR2962229. https://doi.org/10.1017/CBO9781139105798
 Mohan, M.T.: Global strong solutions of the stochastic three dimensional inviscid simplified bardina turbulence model. Commun. Stoch. Anal. 12 (2019). Article 3. MR3939455. https://doi.org/10.31390/cosa.12.3.03
 Prévôt, C., Röckner, M.: A Concise Course on Stochastic Partial Difierential Equations. Lecture notes in Mathematics, vol. 1905. Springer, Berlin (2007). MR2329435
 Prohorov, Y.V.: Convergence of random processes and limit theorems in probability theory (in russian). Teor. Veroâtn. Primen. 1, 177–238 (1956). MR0084896. https://doi.org/10.1137/1101016
 Rudin, W.: Real and Complex Analysis, 3rd edn. McGraw-Hill Book Co., New York (1987). MR0924157
 Selmi, R.: Global well-posedness and convergence results for the 3D-regularized Boussinesq system. Can. J. Math. 64, 1415–1435 (2012). MR2994672. https://doi.org/10.4153/CJM-2012-013-5
 Selmi, R., Nasfi, R.: Mixing and limit theorems for a damped nonlinear wave equation with space-time localised noise. Analysis, Probability, Applications, and Computation, Trends in Mathematics. Birkhäuser, Cham, 221–229 (2019). https://doi.org/10.1007/978-3-030-04459-6_21
 Selmi, R., Zaabi, M.: Analytical study to a 3D-regularized Boussinesq system. Mem. Differ. Equ. Math. Phys. 79, 93–105 (2020). https://www.emis.de/journals/MDEMP/vol79/vol79-6.pdf. MR4088039
 Skorokhod, A.V.: Limit theorems for stochastic processes. Teor. Veroâtn. Primen. 1, 289–319 (1956). MR0084897. https://doi.org/10.1137/1101022
 Temam, R.: Navier-Stokes Equations. Theory and Numerical Analysis. Studies in Mathematics and its Applications, vol. 2. North-Holland publishing company, Amsterdam (1977). MR0609732
 
            