Random time-changes and asymptotic results for a class of continuous-time Markov chains on integers with alternating rates        
        
    
        Volume 8, Issue 1 (2021), pp. 63–91
            
    
                    Pub. online: 21 December 2020
                    
        Type: Research Article
            
                
            
Open Access
        
            
    
                Received
3 September 2020
                                    3 September 2020
                Revised
12 November 2020
                                    12 November 2020
                Accepted
4 December 2020
                                    4 December 2020
                Published
21 December 2020
                    21 December 2020
Abstract
We consider continuous-time Markov chains on integers which allow transitions to adjacent states only, with alternating rates. This kind of processes are useful in the study of chain molecular diffusions. We give explicit formulas for probability generating functions, and also for means, variances and state probabilities of the random variables of the process. Moreover we study independent random time-changes with the inverse of the stable subordinator, the stable subordinator and the tempered stable subordinator. We also present some asymptotic results in the fashion of large deviations. These results give some generalizations of those presented in [Journal of Statistical Physics 154 (2014), 1352–1364].
            References
 Beghin, L.: On fractional tempered stable processes and their governing differential equations. J. Comput. Phys. 293, 29–39 (2015). MR3342454. https://doi.org/10.1016/j.jcp.2014.05.026
 Beghin, L., Macci, C.: Fractional discrete processes: compound and mixed Poisson representations. J. Appl. Probab. 51, 19–36 (2014). MR3189439. https://doi.org/10.1239/jap/1395771411
 Beghin, L., Orsingher, E.: Population processes sampled at random times. J. Stat. Phys. 163, 1–21 (2016). MR3472091. https://doi.org/10.1007/s10955-016-1475-2
 Benson, D.A., Wheatcraft, S.W., Meerschaert, M.M.: Application of a fractional advection-dispersion equation. Water Resour. Res. 36, 1403–1412 (2000). https://doi.org/10.1029/2000WR900031
 Bochner, S.: Diffusion equation and stochastic processes. Proc. Natl. Acad. Sci. USA 35, 368–370 (1949). MR0030151. https://doi.org/10.1073/pnas.35.7.368
 Conolly, B.W., Parthasarathy, P.R., Dharmaraja, S.: A chemical queue. Math. Sci. 22, 83–91 (1997). MR1484360
 Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications, 2nd edn. Springer (1998). MR1619036. https://doi.org/10.1007/978-1-4612-5320-4
 Di Crescenzo, A., Iuliano, A., Martinucci, B.: On a bilateral birth-death process with alternating rates. Ric. Mat. 61, 157–169 (2012). MR2929753. https://doi.org/10.1007/s11587-011-0122-0
 Di Crescenzo, A., Martinucci, B., Zacks, S.: Compound Poisson process with a Poisson subordinator. J. Appl. Probab. 52, 360–374 (2015). MR3372080. https://doi.org/10.1239/jap/1437658603
 Di Crescenzo, A., Macci, C., Martinucci, B.: Asymptotic results for random walks in continuous time with alternating rates. J. Stat. Phys. 154, 1352–1364 (2014). MR3176411. https://doi.org/10.1007/s10955-014-0928-8
 Ding, X., Giesecke, K., Tomecek, P.I.: Time-changed birth processes and multiname credit derivatives. Oper. Res. 57, 990–1005 (2009). MR2561338. https://doi.org/10.1287/opre.1080.0652
 D’Ovidio, M., Orsingher, E., Toaldo, B.: Time-changed processes governed by space-time fractional telegraph equations. Stoch. Anal. Appl. 32, 1009–1045 (2014). MR3270693. https://doi.org/10.1080/07362994.2014.962046
 Gajda, J., Magdziarz, M.: Large deviations for subordinated Brownian motion and applications. Stat. Probab. Lett. 88, 149–156 (2014). MR3178345. https://doi.org/10.1016/j.spl.2014.02.003
 Hahn, M.G., Kobayashi, K., Umarov, S.: Fokker-Planck-Kolmogorov equations associated with time-changed fractional Brownian motion. Proc. Am. Math. Soc. 139, 691–705 (2011). MR2736349. https://doi.org/10.1090/S0002-9939-2010-10527-0
 Houdré, C., Kawai, R.: On fractional tempered stable motion. Stoch. Process. Appl. 116, 1161–1184 (2006). MR2250807. https://doi.org/10.1016/j.spa.2006.01.008
 Iksanov, A., Kabluchko, Z., Marynych, A., Shevchenko, G.: Fractionally integrated inverse stable subordinators. Stoch. Process. Appl. 127, 80–106 (2017). MR3575536. https://doi.org/10.1016/j.spa.2016.06.001
 Kerss, A., Leonenko, N.N., Sikorskii, A.: Fractional Skellam processes with applications to finance. Fract. Calc. Appl. Anal. 17, 532–551 (2014). MR3181070. https://doi.org/10.2478/s13540-014-0184-2
 Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier (2006). MR2218073
 Kumar, A., Nane, E., Vellaisamy, P.: Time-changed Poisson processes. Stat. Probab. Lett. 81, 1899–1910 (2011). MR2845907. https://doi.org/10.1016/j.spl.2011.08.002
 Magdziarz, M., Schilling, R.L.: Asymptotic properties of Brownian motion delayed by inverse subordinators. Proc. Am. Math. Soc. 143, 4485–4501 (2015). MR3373947. https://doi.org/10.1090/proc/12588
 Meerschaert, M.M., Nane, E., Vellaisamy, P.: The fractional Poisson process and the inverse stable subordinator. Electron. J. Probab. 16, 1600–1620 (2011). MR2835248. https://doi.org/10.1214/EJP.v16-920
 Meerschaert, M.M., Straka, P.: Inverse stable subordinators. Math. Model. Nat. Phenom. 8, 1–16 (2013). MR3049524. https://doi.org/10.1051/mmnp/20138201
 Orsingher, E., Beghin, L.: Time-fractional telegraph equations and telegraph processes with Brownian time. Probab. Theory Relat. Fields 128, 141–160 (2004). MR2027298. https://doi.org/10.1007/s00440-003-0309-8
 Pacchiarotti, B.: Some large deviations principles for time-changed Gaussian processes. Lith. Math. J. 60, 513–529 (2020). MR4174665. https://doi.org/10.1007/s10986-020-09494-6
 Podlubny, I.: Fractional Differential Equations. Academic Press (1999). MR1658022
 Rosiński, J.: Tempering stable processes. Stoch. Process. Appl. 117, 677–707 (2007). MR2327834. https://doi.org/10.1016/j.spa.2006.10.003
 Sabzikar, F., Meerschaert, M.M., Chen, J.: Tempered fractional calculus. J. Comput. Phys. 293, 14–28 (2015). MR3342453. https://doi.org/10.1016/j.jcp.2014.04.024
 Sato, K.: Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press (1999). MR1739520
 Schilling, R.L.: Subordination in the sense of Bochner and a related functional calculus. J. Aust. Math. Soc. Ser. A 64, 368–396 (1998). MR1623282. https://doi.org/10.1017/S1446788700039239
 Stockmayer, W.H., Gobush, W., Norvich, R.: Local-jump models for chain dynamics. Pure Appl. Chem. 26, 555–561 (1971). https://doi.org/10.1351/pac197126030537
 Tarabia, A.M.K.: Analysis of random walks with an absorbing barrier and chemical rule. J. Comput. Appl. Math. 225, 612–620 (2009). MR2494729. https://doi.org/10.1016/j.cam.2008.08.043
 Tarabia, A.M.K., El-Baz, A.H.: Transient solution of a random walk with chemical rule. Phys. A 382, 430–438 (2007). https://doi.org/10.1016/j.physa.2007.04.022
 Tarabia, A.M.K., Takagi, H., El-Baz, A.H.: Transient solution of a non-empty chemical queueing system. Math. Methods Oper. Res. 70, 77–98 (2009). MR2529426. https://doi.org/10.1007/s00186-008-0232-y
 Wang, W., Chen, Z.: Large deviations for subordinated fractional Brownian motion and applications. J. Math. Anal. Appl. 458, 1678–1692 (2018). MR3724748. https://doi.org/10.1016/j.jmaa.2017.10.035