Moderate deviations for a stochastic Burgers equation        
        
    
        Volume 6, Issue 2 (2019), pp. 167–193
            
    
                    Pub. online: 16 May 2019
                    
        Type: Research Article
            
                
             Open Access
Open Access
        
            
    
                Received
29 October 2018
                                    29 October 2018
                Revised
29 March 2019
                                    29 March 2019
                Accepted
17 April 2019
                                    17 April 2019
                Published
16 May 2019
                    16 May 2019
Abstract
A moderate deviations principle for the law of a stochastic Burgers equation is proved via the weak convergence approach. In addition, some useful estimates toward a central limit theorem are established.
            References
 Bertini, L., Cancrini, N., Jona-Lasinio, G.: The stochastic Burgers equation. Commun. Math. Phys. 165(2), 211–232 (1994). MR1301846
 Boué, M., Dupuis, P.: A variational representation for certain functionals of Brownian motion. Ann. Probab. 26(4), 1641–1659 (1998). MR1675051. https://doi.org/10.1214/aop/1022855876
 Budhiraja, A., Dupuis, P.: A variational representation for positive functionals of infinite dimensional Brownian motion. Probab. Math. Stat., Wroclaw Univ. 20(1), 39–61 (2000). MR1785237
 Budhiraja, A., Dupuis, P., Maroulas, V.: Large deviations for infinite dimensional stochastic dynamical systems. Ann. Probab., 1390–1420 (2008). MR2435853. https://doi.org/10.1214/07-AOP362
 Budhiraja, A., Dupuis, P., Ganguly, A., et al.: Moderate deviation principles for stochastic differential equations with jumps. Ann. Probab. 44(3), 1723–1775 (2016). MR3502593. https://doi.org/10.1214/15-AOP1007
 Cardon-Weber, C.: Large deviations for a Burgers-type SPDE. Stoch. Process. Appl. 84(1), 53–70 (1999). MR1720097. https://doi.org/10.1016/S0304-4149(99)00047-2
 Cardon-Weber, C., Millet, A.: A support theorem for a generalized Burgers SPDE. Potential Anal. 15(4), 361–408 (2001). MR1856154. https://doi.org/10.1023/A:1011857909744
 Chen, Y., Gao, H.: Well-posedness and large deviations for a class of SPDEs with Lévy noise. J. Differ. Equ. 263(9), 5216–5252 (2017). MR3688413. https://doi.org/10.1016/j.jde.2017.06.016
 Chenal, F., Millet, A.: Uniform large deviations for parabolic SPDEs and applications. Stoch. Process. Appl. 72(2), 161–186 (1997). MR1486551. https://doi.org/10.1016/S0304-4149(97)00091-4
 De Acosta, A.: Moderate deviations and associated Laplace approximations for sums of independent random vectors. Trans. Am. Math. Soc. 329(1), 357–375 (1992). MR1046015. https://doi.org/10.2307/2154092
 Dupuis, P., Ellis, R.S.: A Weak Convergence Approach to the Theory of Large Deviations, vol. 902. John Wiley & Sons (2011). MR1431744. https://doi.org/10.1002/9781118165904
 Foondun, M., Setayeshgar, L.: Large deviations for a class of semilinear stochastic partial differential equations. Stat. Probab. Lett. 121, 143–151 (2017). MR3575422. https://doi.org/10.1016/j.spl.2016.10.019
 Freidlin, M., Wentzell, A.: Random perturbations of dynamical systems. Springer (1984). MR0722136. https://doi.org/10.1007/978-1-4684-0176-9
 Gao, F.-Q.: Moderate deviations for martingales and mixing random processes. Stoch. Process. Appl. 61(2), 263–275 (1996). MR1386176. https://doi.org/10.1016/0304-4149(95)00078-X
 Gyöngy, I.: Existence and uniqueness results for semilinear stochastic partial differential equations. Stoch. Process. Appl. 73(2), 271–299 (1998). MR1608641. https://doi.org/10.1016/S0304-4149(97)00103-8
 Hu, S., Li, R., Wang, X.: Central limit theorem and moderate deviations for a class of semilinear SPDEs. arXiv preprint arXiv:1811.05611 (2018)
 Ikeda, N., Watanabe, S.: Stochastic Differential Equations and Diffusion Processes vol. 24. Elsevier (2014). MR0892528
 Karatzas, I., Shreve, S.: Brownian Motion and Stochastic Calculus, vol. 113. Springer (2012). MR1121940. https://doi.org/10.1007/978-1-4612-0949-2
 Liming, W.: Moderate deviations of dependent random variables related to CLT. Ann. Probab., 420–445 (1995). MR1330777
 Morien, P.-L.: On the density for the solution of a Burgers-type SPDE. In: Annales de l’Institut Henri Poincare (B) Probability and Statistics, vol. 35, pp. 459–482 (1999). Elsevier. MR1702238. https://doi.org/10.1016/S0246-0203(99)00102-8
 Setayeshgar, L.: Large deviations for a stochastic Burgers equation. Commun. Stoch. Anal. 8, 141–154 (2014). MR3269841. https://doi.org/10.31390/cosa.8.2.01
 Varadhan, S.S.: Asymptotic probabilities and differential equations. Commun. Pure Appl. Math. 19(3), 261–286 (1966). MR0203230. https://doi.org/10.1002/cpa.3160190303
 Walsh, J.B.: An introduction to stochastic partial differential equations. In: École d’Été de Probabilités de Saint Flour XIV-1984, pp. 265–439. Springer (1986). MR0876085. https://doi.org/10.1007/BFb0074920
 Wang, R., Zhang, T.: Moderate deviations for stochastic reaction-diffusion equations with multiplicative noise. Potential Anal. 42(1), 99–113 (2015). MR3297988. https://doi.org/10.1007/s11118-014-9425-6
 Yang, J., Jiang, Y.: Moderate deviations for fourth-order stochastic heat equations with fractional noises. Stoch. Dyn. 16(06), 1650022 (2016). MR3568726. https://doi.org/10.1142/S0219493716500222
 Zhang, R., Xiong, J.: Semilinear stochastic partial differential equations: central limit theorem and moderate deviations. arXiv preprint arXiv:1904.00299 (2019)
 
            