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1 Introduction

We consider the following stochastic Burgers equation with multiplicative space-time
white noise, indexed by ε > 0, given by

∂uε

∂t
(t, x) = �uε(t, x) + 1

2

∂

∂x

(
uε(t, x)

)2

+ √
εσ

(
uε(t, x)

)
Ẇ (t, x), (t, x) ∈ [0, T ] × [0, 1], (1)

with Dirichlet’s boundary conditions uε(t, 0) = uε(t, 1) = 0 for t ∈ [0, T ], and
the initial condition uε(0, x) = u0(x) for x ∈ [0, 1]. We assume that u0 is contin-
uous on [0, 1] and σ is bounded and globally Lipschitz on R. The driving noise W

is a space-time Brownian sheet defined on some filtered probability space (Ω,F ,

(Ft )t∈[0,T ],P).
The deterministic Burgers equation was introduced in [7] as a simplified mathe-

matical model describing the turbulence phenomena in fluids. Its stochastic version
has been the subject of several works; see for instance [1, 17, 22], and the refer-
ences therein. In particular, a large deviation principle is established in [23] for an
“additive version” of (1), and in [8] and [14] for a class of Burgers’ type stochas-
tic partial differential equations (SPDEs for short) including (1). Generally speaking,
large deviations theory deals with determining how fast the probabilities P(Aε) of a
family of rare events (Aε) decay to 0 as ε tends to 0, and how to compute the precise
rate of decay as a function of the rare events. A related natural important question is
to study moderate deviations results which deals with probabilities of deviations of
“smaller order” than in large deviations. We will precise below the main difference
between moderate and large deviations principles in the context of stochastic Burgers
equation, and for a deeper description and detail about these two kinds of deviations
principles and their relationship, we refer the reader to [6].

Our first goal in this paper is to study the moderate deviations of uε from the
deterministic solution u0 of the equation (4) below. More precisely, we deal with the
deviations of the trajectory

ūε(t, x) := uε(t, x) − u0(t, x)

a(ε)
, (2)

where the deviation scale a : R+ −→ R
+ is such that

a(ε) −→ 0 and h(ε) := a(ε)√
ε

−→ ∞, as ε −→ 0, (3)

and u0 stands for the solution of the following deterministic partial differential equa-
tion

∂u0

∂t
(t, x) = ∂2u0

∂x2 (t, x) + 1

2

∂

∂x

(
u0(t, x)

)2
, (t, x) ∈ [0, T ] × [0, 1], (4)

with Dirichlet’s boundary conditions u0(t, 0) = u0(t, 1) = 0 for t ∈ [0, T ], and the
initial condition u0(0, x) = u0(x).
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The deviation scale a(ε) influences strongly the asymptotic behavior of ūε. In

fact, for certain norm ‖ · ‖, bounds of the probabilities P(
‖uε−u0‖√

ε
∈ ·) are dealt

with the central limit theorem, while probabilities P(‖uε − u0‖ ∈ ·) are estimated
by large deviations results. Furthermore, when we are interested in probabilities of

the form P(
‖uε−u0‖

a(ε)
∈ ·) under the condition (3) (e.g. a(ε) = ε1/4), then we are in

the framework of the so-called moderate deviations which fills the gap between the
central limit theorem scale (a(ε) = √

ε) and the large deviations scale (a(ε) = 1). In
this paper, we will establish the moderate deviations principle for (1). For the study of
this topic for various kind of stochastic processes, see for instance e.g. [10, 12, 16, 21].

Furthermore, there are basically two approaches to analyzing moderate and large
deviations for processes. The former, which is originally used by Freidlin and Wentzell
[15] for diffusions processes, relies on discretization and localization arguments that
allow to deduce the large deviations principle, for the solutions of equations under
study, using a general contraction principle from some Schilder type theorems for
the driving noises. The second one, which we are going to use in present paper, is
the so-called weak convergence approach. It was introduced in [13] and developed in
[2, 4] and [5], and its starting point is the equivalence between large deviations prin-
ciple and Laplace principle in the setting of Polish spaces. It consists in using certain
variational formulas that can be viewed as the minimal cost functions for associated
stochastic optimal problems. These minimal cost functions have a form to which the
theory of weak convergence of probability measures can be applied. We refer to [13]
for a more complete exposition on this approach.

We stress here that, in the present paper, we mainly use the weak convergence ap-
proach to establish moderate deviations for stochastic Burgers’ equations while in the
previous works ([8, 23, 14]) the authors studied the large deviations principle for this
equation. The most likely advantage in using the weak convergence approach is that
it allows one to avoid establishing technical exponential-type probability estimates
usually needed in the classical studies of large deviations principle, and reduces the
proofs to demonstrating qualitative properties like existence, uniqueness and tight-
ness of certain analogues of the original processes.

We also note that the greatest difficulty in studying any aspect of Burgers’ type
equations lies in their quadratic term. In fact, most of the techniques usually used
to deal with stochastic differential equations with Lipschitz drift coefficients don’t
longer work generally, and one resort to localization or tightness argument to circum-
vent this difficulty.

As pointed out before, we will prove a moderate deviations principle for the
stochastic Burgers equation (1), and two first-step results toward a central limit the-
orem. It is worth bearing in mind that the most difficulty we have encountered in
establishing a central limit theorem is mainly due to the quadratic term appearing in
the Burgers equation for which the classical conditions (namely, the Lipschitz condi-
tion on the drift coefficient, the boundedness and the differentiability of its derivative)
are no longer satisfied.

The paper is organized as follows. Section 2 is devoted to some preliminaries.
The framework of our moderate deviations result and its proof are given in Section
3. In Section 4, toward a central limit theorem for the stochastic Burgers equation,
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we prove the uniform boundedness and the convergence of uε to u0 in the space
Lq(Ω; C([0, T ]; L2([0, 1]))) for q � 2. Furthermore, some technical results needed
in our proofs are included in the Appendix.

In this paper all positive constants are denoted by c, and their values may change
from line to line. Also, for ρ � 1 and t ∈ [0, T ], the usual norms on Lρ([0, 1]) and
Ht := L2([0, t] × [0, 1]) are respectively denoted by ‖ · ‖ρ and ‖ · ‖Ht

.

2 Preliminaries

Let {W(t, x), t ∈ [0, T ], x ∈ [0, 1]} be a space-time Brownian sheet on a filtered
probability space (Ω,F ,Ft ,P), that is, a zero-mean Gaussian field with covariance
function given by

E
(
W(t, x)W(s, y)

) = (t ∧ s)(x ∧ y), s, t ∈ [0, T ], x, y ∈ [0, 1].
For each t ∈ [0, T ], Ft is the completion of the σ -field generated by the family

of random variables {W(s, x), 0 � s � t, x ∈ [0, 1]}.
A rigorous meaning to the solution of (1) is given by a jointly measurable and

Ft -adapted process uε := {uε(t, x); (t, x) ∈ [0, T ]× [0, 1]} satisfying, for almost all
ω ∈ Ω and all t ∈ [0, T ] the following evolution equation:

uε(t, x) =
∫ 1

0
Gt(x, y)u0(y)dy −

∫ t

0

∫ 1

0
∂yGt−s(x, y)

(
uε(s, y)

)2
dyds

+ √
ε

∫ t

0

∫ 1

0
Gt−s(x, y)σ

(
uε(s, y)

)
W(ds, dy), (5)

for dx-almost all x ∈ [0, T ], where Gt(·, ·) denotes the Green kernel corresponding
to the operator ∂

∂t
−� with the Dirichlet boundary conditions. The stochastic integral

in (5) is understood in the Walsh sense, see [25].
By Theorem 2.1 in [17], there exists a unique L2[0, 1]-valued continuous stochas-

tic process {uε(t, .), t ∈ [0, T ]} satisfying the equation (5).
The deterministic equation (4) obtained when the parameter ε tends to zero can

be written in the following integral form

u0(t, x) =
∫ 1

0
Gt(x, y)u0(y)dy −

∫ t

0

∫ 1

0
∂yGt−s(x, y)

(
u0(s, y)

)2
dyds. (6)

Since (6) corresponds to σ ≡ 0 in the degenerate case studied in [17], it admits a
unique solution u0 belonging to C([0, T ]; L2([0, 1])). Moreover, the continuity of u0

on the compact set [0, T ] implies that

sup
t∈[0,T ]

∥∥u0(t, ·)∥∥q

2 < ∞, (7)

for all q � 2.
We now recall some estimations of the Green kernel function G, as stated in [17]

and [22], that will be used in the sequel.
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Lemma 2.1. Let G denotes the Green kernel corresponding to the operator ∂
∂t

− �

with the Dirichlet boundary conditions. Then, we have

i) for any t ∈ [0, T ] and y ∈ [0, 1]:
∫ 1

0
Gt(x, y)dx = 1;

ii) for any t ∈ [0, T ] and
1

2
< β <

3

2
:

∫ t

0

∫ 1

0
|∂xGt−s(x, y)|βdxds � cβ,T ,

where cβ,T is a constant depending only on T and β.

Moreover, there exists a constant c, depending only on T , such that for all y, z ∈ [0, 1]
and t, t ′ ∈ [0, T ] such that 0 � t � t ′ � 1,

iii)
∫ t ′

t

∫ 1

0
G2

t ′−s(x, y)dxds � c
√

t ′ − t and
∫ t

0

∫ 1

0
G2

t−s(x, y)dxds � c;

iv)
∫ t ′

0

∫ 1

0
[Gt−s(x, y) − Gt ′−s(x, y)]2dxds � c

√
t ′ − t;

v)
∫ t

0

∫ 1

0
[Gs(x, y) − Gs(x, z)]2dxds � c|y − z|.

3 Moderate deviations

3.1 Framework and the main result
According to Varadhan [24] and [3], a crucial step toward the large deviations princi-
ple is the Laplace principle. Therefore, we will focus later on establishing this princi-
ple which we formulate in the following

Definition 3.1 (Laplace principle). A family of random variables {Xε; ε > 0} de-
fined on a Polish space E , is said to satisfy the Laplace principle with speed λ2(ε) and
rate function I : E −→ [0,∞] if for any bounded continuous function F : E → R,
we have

lim
ε→0

λ2(ε) log E
(

exp

[
− 1

λ2(ε)
F

(
Xε

)])
= − inf

f ∈E
{
F(f ) + I (f )

}
,

where E is the expectation with respect to P .

In the context of the weak convergence approach, the proof of the Laplace princi-
ple for functionals of the Brownian sheet is essentially based on the following varia-
tional representation formula, which was originally proved in [4].

Theorem 3.2. Let f ∈ C([0, T ] × [0, 1];R) −→ R be a bounded measurable map-
ping C([0, T ] × [0, 1];R) into R, and let P2 be the class of all predictable processes
u such that ‖u‖HT

< ∞, a.s. Then

− log E exp
{−f (B)

} = inf
u∈P2

(
1

2
‖u‖2

HT
+ f

(
Bu

))
, (8)

where

Bu(t, x) := B(t, x) +
∫ t

0

∫ x

0
u(s, y)dyds, for any (t, x) ∈ [0, T ] × [0, 1].



172 R. Belfadli et al.

3.1.1 Sufficient conditions for the general Laplace principle
Here, we briefly describe the result needed, in our context, for proving the Laplace
principle, and state our main result.

Let us first introduce some notations. For ε > 0, denote by Gε : E0 × C([0, T ] ×
[0, 1];R) → E a measurable map, where E0 stands for a compact subspace of E in
which the initial condition u0 takes values, and let

Xε,u0 := Gε
(
u0, h(ε)W

)
. (9)

Later, we will state sufficient conditions for the Laplace principle for Xε,u0 to hold
uniformly in u0 for compact subsets of E0.

For any positive integer N , we introduce

SN := {
φ ∈ HT : ‖φ‖2

HT
� N

}
and

PN
2 := {

v(ω) ∈ P2 : v(ω) ∈ SN, P -a.s.
}
.

It is worth noticing that the space SN is a compact metric space equipped with the
weak topology on L2([0, T ] × [0, 1]) and that PN

2 is the space of controls, which
plays a central role in the weak convergence approach.

For u ∈ HT , define the element I(u) in C([0, T ] × [0, 1];R) by

I(u)(t, x) :=
∫ t

0

∫ x

0
u(s, y)dsdy, t ∈ [0, T ], x ∈ [0, 1].

We are now in position to introduce the following result, due to Budhiraja et al.
[5], ensuring sufficient condition for the Laplacian principle to hold.

Proposition 3.1 (Theorem 7 in [5]). Assume that there exists a measurable

G0 : E0 × C
([0, T ] × [0, 1];R) → E,

such that the following hold:

(A1) For any integer M > 0, any family {vε; ε > 0} ⊂ P2
M and {uε

0} ⊂ E0 such
that vε → v and uε

0 → u0 in distribution (as SN -valued random elements),
as ε → 0. Then Gε(uε

0,W + h(ε)I(vε)) → G0(u0, I(u)), in distribution as
ε → 0;

(A2) For any integer M > 0 and compact set K ⊂ E0, the set ΓM,K := {G0(u0, I(u));
u ∈ SM, u0 ∈ K} is a compact subset of E .

Then, the family {Xε,u0; ε > 0} defined by (9) satisfies the Laplace principle on E
with speed λ2(ε) and rate function Iu0 given, for any h ∈ E and u0 ∈ E0, by

Iu0(h) := inf
{v∈HT :h=G0(u0,I(v))}

{
1

2
‖v‖2

HT

}
, (10)

where the infimum over an empty set is taken to be ∞.
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3.1.2 Controlled processes for SPDEs (1)
In this subsection, we adapt the general scheme described above to study moderate
deviations for the equation (1).

We denote by E = E0 := C([0, T ]; L2([0, 1])) the space of solutions of (1).
As we are interested in proving the Laplace principle for ūε(t, x) defined by (2), we
interpret ūε as a functional of the Brownian sheet W . Indeed, using (5) and (6) we
deduce that ūε(t, x) satisfies for all ω ∈ Ω and all t ∈ [0, T ] the following equation

ūε(t, x) = 1

h(ε)

∫ t

0

∫ 1

0
Gt−s(x, y)σ

(
u0(s, y) + √

εh(ε)ūε(s, y)
)
W(dy, ds)

− √
εh(ε)

∫ t

0

∫ 1

0
∂yGt−s(x, y)

[
ūε(s, y)

]2
dyds

− 2
∫ t

0

∫ 1

0
∂yGt−s(x, y)ūε(s, y)u0(s, y)dyds, (11)

for dx-almost all x ∈ [0, T ].
This implies (see Theorem IV.9.1. of [19]) the existence of a measurable mapping

Gε : C
([0, 1];R) × C

([0, T ] × [0, 1];R) → C
([0, T ]; L2([0, 1])),

such that
ūε = Gε(u0,W).

As a first step toward the conditions (A1) and (A2) stated in Proposition 3.1, we define
for vε ∈ PN

2 ,
ūε,vε := Gε

(
u0,W + h(ε)I

(
vε

))
. (12)

In Proposition 3.2 below we will establish that the map ūε,vε
is the unique solution of

the following stochastic controlled analogue of equation (11)

ūε,vε

(t, x) = 1

h(ε)

∫ t

0

∫ 1

0
Gt−s(x, y)σ

(
u0(s, y) + √

εh(ε)ūε,vε

(s, y)
)
W(ds, dy)

− √
εh(ε)

∫ t

0

∫ 1

0
∂yGt−s(x, y)

[
ūε,vε

(s, y)
]2

dyds

− 2
∫ t

0

∫ 1

0
∂yGt−s(x, y)ūε,vε

(s, y)u0(s, y)dyds

+
∫ t

0

∫ 1

0
Gt−s(x, y)σ

(
u0(s, y) + √

εh(ε)ūε,vε

(s, y)
)
vε(s, y)dyds.

(13)

We will call it the controlled process. Moreover, for any v ∈ SN , we associate to (13)
the following skeleton zero-noise equation:

ūv(t, x) = −2
∫ t

0

∫ 1

0
∂yGt−s(x, y)ūv(s, y)u0(s, y)dyds

+
∫ t

0

∫ 1

0
Gt−s(x, y)σ

(
u0(s, y)

)
v(s, y)dyds. (14)
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Existence and uniqueness of the solution ūv for (14) is obtained in Proposition 3.3
below, and thereby, we define the map

G0(u0, I(v)
) := ūv. (15)

With these notations in mind, the main result of this section is stated in the fol-
lowing

Theorem 3.3. Assume that u0 is continuous, σ is bounded and globally Lipschitz and
that (3) holds. Then the family of processes {ūε; ε > 0} satisfies a LDP on the space
C([0, T ]; L2([0, 1])) with speed λ2(ε) and rate function given by

I (f ) = inf

{
1

2
‖v‖2

HT
, v ∈ HT , G0(u0, I(v)

) := f

}
. (16)

Remark 3.4. Note that the conclusion of Theorem 3.3 is still valid for a quite large
class of SPDEs containing stochastic Burgers equation. Namely, consider the follow-
ing class of SPDEs introduced by Gyöngy in [17]:

∂uε

∂t
(t, x) = ∂2

∂x2 uε(t, x) + ∂

∂x
g
(
uε(t, x)

) + f
(
uε(t, x)

)
+ √

εσ
(
uε(t, x)

)
Ẇ (t, x), (t, x) ∈ [0, T ] × [0, 1], (17)

with Dirichlet’s boundary conditions uε(t, 0) = uε(t, 1) = 0 for t ∈ [0, T ], and the
initial condition uε(0, x) = u0(x) for x ∈ [0, 1]. Suitable conditions on the coef-
ficients f , g and σ , for instance, the quadratic growth assumption on the nonlinear
coefficient g, bring us back to the case of stochastic Burgers equation that we have
considered in our paper. Notice here that papers closest to ours are two recent works
by S. Hu, R. Li and X. Wang [18] and R. Zhang and J. Xiong [28]. In particular, these
authors established a moderate deviations principle for the class (17). We learned
about these works after we finished the first version of this paper.

3.2 Proof of the main result

We basically follow the same idea as in [5] and [23]. According to Proposition 3.1,
it suffices to check that the conditions (A1) and (A2) are fulfilled. For (A1), we will
establish well-posedness, tightness and convergence of controlled processes. The con-
dition (A2), which gives that I is a rate function, will follow from the continuity of
the map G0 with respect to the weak topology.

The proof of (A1) will be done in several steps.

Step 1: Existence and uniqueness of controlled and limiting processes.

Proposition 3.2. Assume that σ is bounded and globally Lipschitz, and that (3) holds.
Then, the L2([0, 1])-valued process {ūε,vε

(t), t ∈ [0, T ]} defined by (12) is the unique
solution of the equation (13).

Proof. For vε ∈ PN
2 , set

dQε,vε := exp

{
−√

h(ε)

∫ t

0

∫ 1

0
vε(s, y)W(ds, dy)
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− 1

2
h(ε)

∫ t

0

∫ 1

0
vε(s, y)2dyds

}
dP.

Since Qε,vε
is defined through an exponential martingale, it is a probability measure

on Ω . And thus, by the Girsanov theorem the process W̃ defined by

W̃ (dt, dx) = W(dt, dx) + h(ε)

∫ t

0

∫ 1

0
vε(s, y)dyds

is a space-time white noise under the probability measure Qε,vε
. Plugging W̃ (dt, dx)

in (13) we obtain (11) with W̃ (dt, dx) instead of W(dt, dx). Now, if u denotes the
unique solution of (11) with W̃ (dt, dx) on the space (Ω,F ,Qε,vε

), then u satisfies
(13), Qε,vε

a.s. And hence by equivalence of probabilities, u satisfies (13), P a.s.
For the uniqueness, if u1 and u2 are two solutions of (13) on (Ω,F , P ), then

u1 and u2 are solutions of (11) governed by W̃ (dt, dx) on (Ω,F ,Qε,vε
). By the

uniqueness of the solution of (13), we obtain u1 = u2, Qε,vε
a.s. And thus u1 = u2,

P a.s. by equivalence of probabilities.

Proposition 3.3. Assume that σ is bounded and globally Lipschitz. For any v ∈
SN , for some N ∈ N, the equation (14) admits a unique solution ūv belonging to
C([0, T ]; L2([0, 1])). Moreover, for any q � 2

sup
v∈SN

sup
0≤t≤T

∥∥ūv(t, ·)∥∥q

2 < ∞. (18)

Proof. The proof follows from a standard fixed point argument, and for the conve-
nience of the reader, we include it in the Appendix.

Step 2: Tightness of the family (uε,vε
)ε>0 in C([0, T ]; L2([0, 1])).

Let (vε)ε be a family of elements from P2
N such that vε → v in distribution, as

SN -valued random elements, when ε → 0.
We have the following proposition.

Proposition 3.4. Assume that u0 is continuous, σ is bounded and globally Lipschitz,
and that (3) holds. Then (ūε,vε

)ε is tight in C([0, T ]; L2([0, 1])).
Proof. Recall that

ūε,vε

(t, x) = 1

h(ε)

∫ t

0

∫ 1

0
Gt−s(x, y)σ

(
u0(s, y) + √

εh(ε)ūε,vε

(s, y)
)
W(ds, dy)

− √
εh(ε)

∫ t

0

∫ 1

0
∂yGt−s(x, y)

[
ūε,vε

(s, y)
]2

dyds

− 2
∫ t

0

∫ 1

0
∂yGt−s(x, y)ūε,vε

(s, y)u0(s, y)dyds

+
∫ t

0

∫ 1

0
Gt−s(x, y)σ

(
u0(s, y) + √

εh(ε)ūε,vε

(s, y)
)
vε(s, y)dyds

=:
4∑

i=1

I
ε,vε

i (t, x), (19)
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where I
ε,vε

i (t, x), i = 1, 2, 3, 4, stands for the ith summand of the RHS of the above
equation.

In view of (19), in order to prove the claim of Proposition 3.4, we will state
and prove the next two lemmas which give the tightness of each summand I

ε,vε

i ,
i = 1, 2, 3, 4.

We first consider the cases where i = 1 and i = 4. Using Theorem 4.10 of
Chapter 2 in [20], the following lemma states sufficient conditions for tightness.

Lemma 3.5. Assume the same conditions as in Proposition 3.4. For i = 1 or 4, we
have

lim
ζ−→+∞ sup

ε>0
P

(∣∣I ε,vε

i (t, x)
∣∣ > ζ

) = 0, for any (t, x) ∈ [0, T ] × [0, 1], (20)

and for any ζ > 0

lim
δ−→0

sup
ε>0

P
(

sup
|t−t ′|+|x−y|�δ

∣∣I ε,vε

i (t, x) − I
ε,vε

i

(
t ′, y

)∣∣ > ζ
)

= 0. (21)

In particular, the families (I
ε,vε

1 )ε and (I
ε,vε

4 )ε are tight in C([0, T ]; L2([0, 1])).
Proof. Let x, y ∈ [0, 1] and t, t ′ ∈ [0, T ] such that t ′ � t . To prove (20) and
(21), it is enough to exhibit upper bounds for the square moments of I

ε,vε

i (t, x) and

I
ε,vε

i (t, x) − I
ε,vε

i (t ′, y) for i = 1 and i = 4.
Using the Burkholder–Davis–Gundy inequality, the boundedness of σ , Lemma

2.1 and the condition (3) we infer that

E
(∣∣I ε,vε

1 (t, x)
∣∣2)

� c.h−2(ε).E
∫ t

0

∫ 1

0
G2

t−s(x, y)σ 2(u0(s, y) + √
εh(ε)ūε,vε

(s, y)
)
dyds

� c.

∫ t

0

∫ 1

0
G2

t−s(x, y)dyds, (22)

which is finite. On the other hand, the same arguments as above yield

E
(∣∣I ε,vε

1 (t, x) − I
ε,vε

1

(
t ′, y

)∣∣2)
= h−2(ε).E

{∫ t ′

0

∫ 1

0

[
Gt−s(x, z) − Gt ′−s(y, z)

]
× σ

(
u0(s, y) + √

εh(ε)ūε,vε

(s, y)
)
W(ds, dz)

+
∫ t

t ′

∫ 1

0
Gt−s(y, z)σ

(
u0(s, y) + √

εh(ε)ūε,vε

(s, y)
)
W(ds, dz)

}2

� c

{∫ t ′

0

∫ 1

0

[
Gt−s(x, z) − Gt ′−s(y, z)

]2
dzds +

∫ t

t ′

∫ 1

0
G2

t−s(y, z)dzds

}

� c
(∣∣t − t ′

∣∣ 1
2 + ∥∥x − x′∥∥ 1

2
)
. (23)
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Therefore, (20) and (21) hold by (22) and (23), respectively.
To deal with (I

ε,vε

4 )ε, we use the Cauchy–Schwarz inequality and Lemma 2.1 to
write

E
(∣∣I ε,vε

4 (t, x)
∣∣2) � cE

(∫ t

0

∫ 1

0

∣∣Gt−s(x, y)vε(s, y)
∣∣dyds

)2

� c
∥∥vε

∥∥2
HT

.

∫ t

0

∫ 1

0
G2

t−s(x, y)dyds

� c(N), (24)

where c(N) is a constant depending on N . Similarly,

E
(∣∣I ε,vε

4 (t, x) − I
ε,vε

4

(
t ′, y

)∣∣2)
= E

{∫ t ′

0

∫ 1

0

[
Gt−s(x, z) − Gt ′−s(y, z)

]
σ
(
uε,vε

(s, z)
)
vε(s, y)dzds

+
∫ t

t ′

∫ 1

0
Gt−s(y, z)σ

(
uε,vε

(s, z)
)
vε(s, y)dzds

}2

� c

{∫ t ′

0

∫ 1

0

[
Gt−s(x, z) − Gt ′−s(y, z)

]2
dzds +

∫ t

t ′

∫ 1

0
G2

t−s(y, z)dzds

}

� c
(∣∣t − t ′

∣∣ 1
2 + ∥∥x − x′∥∥ 1

2
)
. (25)

Therefore, (20) and (21) hold by (24) and (25), respectively.

For the tightness of (I
ε,vε

2 )ε, we follow an idea introduced in [17] which is essen-
tially based on Lemma 4.3 in the Appendix. More precisely, we state the following

Lemma 3.6. Assume the same conditions as in Proposition 3.4. Then, the families
(I

ε,vε

2 )ε and (I
ε,vε

3 )ε are uniformly tight in C([0, T ]; L2([0, 1])).
Proof. The proof of the tightness of (I

ε,vε

3 )ε will be omitted since it can be done

similarly to this of (I
ε,vε

2 )ε.

To show the tightness of (I
ε,vε

2 )ε, we will apply Lemma 4.3 with q = 1, ρ = 2
and ζε(t, ·) := √

εh(ε)(ūε,vε
)2(t, ·). Set

θε := √
εh(ε) sup

0�t�T

∥∥(
ūε,vε)2

(t, ·)∥∥1 = √
εh(ε) sup

0�t�T

∥∥ūε,vε

(t, ·)∥∥2
2.

According to Lemma 4.3, it suffices to show that (θε)ε is bounded in probability. i.e.

lim
c−→+∞ sup

ε>0
P(θε � c) = 0. (26)

Taking into account the condition (3), there exists ε0 > 0 such that
√

εh(ε) � 1 for
all ε � ε0. Consequently

sup
ε�ε0

P(θε � c) = sup
ε�ε0

P

(
sup

0�t�T

∥∥ūε,vε

(t, ·)∥∥2
2 � c√

εh(ε)

)
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� sup
ε�ε0

P

(
sup

0�t�T

∥∥ūε,vε

(t, ·)∥∥2
2 � c

)
.

Then, to prove (26), it is enough to show that

lim
c−→+∞ sup

ε�ε0

P

(
sup

0�t�T

∥∥ūε,vε

(t, ·)∥∥2 � c
)

= 0. (27)

For this purpose, returning to (19) we note that ūε,vε
corresponds to the following

SPDE

∂ūε,vε

∂t
(t, x) = �ūε,vε

(t, x) + ∂gε

∂x

(
t, x, uε,vε

(t, x)
) + fε

(
t, x, uε,vε

(t, x)
)

+ σε

(
t, x, ūε,vε

(t, x)
)
Ẇ (t, x), (28)

where

gε(t, x, r) := −√
εh(ε)r2 − 2ru0(t, x),

fε(t, x, r) := σ(u0(t, x) + √
εh(ε)r)vε(t, x) and

σε(t, x, r) := 1

h(ε)
σ (u0(t, x) + √

εh(ε)r).

According to Theorem 2.1 in [17], the continuity of the initial condition u0 im-
plies the continuity of the solution u0 of the equation (4) on the compact set [0, T ] ×
[0, 1]. Consequently, u0 is bounded.

This fact combined with the condition (3) allows us to consider the function gε

as a sum of two functions g1
ε and g2

ε satisfying major quadratic and linear conditions
respectively, uniformly in ε being less than certain ε0.

Using again the condition (3) and the hypotheses on the function σ , we see that
σε is bounded and globally Lipschitzian, uniformly in ε being less than certain ε0.

Thus, the equation (28) belongs to the class of semi-linear SPDE studied in [17],
and for which the existence and uniqueness of the solution ūε,vε

is showed by an
approximation procedure. This procedure is to define a sequence of truncated equa-
tions, and to establish existence and some convergence results for the corresponding
sequence of solutions (ū

ε,vε

n )n, see [17, 14, 23]. In fact, in the course of the proof of
Theorem 2.1 in [17] it was shown that

lim
c−→∞ sup

0<ε�ε0

P

(
sup

0�t�T

∥∥ūε,vε

n (t, ·)∥∥2 � c

2

)
= 0, (29)

and that (ū
ε,vε

n )n converges in probability in C([0, T ]; L2([0, 1])) to the solution ūε,vε

of (19).
Now, observe that

sup
0<ε�ε0

P

{(
sup

0�t�T

∥∥ūε,vε

(t, ·)∥∥2

)
� c

}

� sup
0<ε�ε0

P

(
sup

0�t�T

∥∥ūε,vε

(t, ·) − ūε,vε

n (t, ·)∥∥2 � c

2

)
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+ sup
0<ε�ε0

P

(
sup

0�t�T

∥∥ūε,vε

n (t, ·)∥∥2 � c

2

)
.

Then, as c tends to infinity, the estimate (29) yields

lim
c−→+∞ sup

0<ε�ε0

P

{(
sup

0�t�T

∥∥ūε,vε

(t, ·)∥∥2

)
� c

}

� lim
c−→+∞ sup

0<ε�ε0

P

(
sup

0�t�T

∥∥ūε,vε

(t, ·) − ūε,vε

n (t, ·)∥∥2 � c

2

)
.

By letting n tend to infinity and using the convergence in probability of ū
ε,vε

n to ūε,vε

we get

lim
c−→+∞ sup

0<ε�ε0

P

{(
sup

0�t�T

∥∥ūε,vε

(t, ·)∥∥2

)
� c

}
= 0.

Hence, by applying Lemma 4.3 we obtain the tightness property for (I
ε,vε

2 )ε.

Step 3: Convergence to the limit equation.

Having shown the tightness of each I
ε,vε

i for i = 1, 2, 3, 4, by Prohorov’s the-
orem, we can extract a subsequence, that we continue to denote by ε, and along
which each of these processes and ūε,vε

converge in distribution (as SN -valued ran-
dom elements) in C([0, T ]; L2([0, 1])) to limits denoted respectively by I

0,v
i for

i = 1, 2, 3, 4, and ū0,v . We will show that

I
0,v
1 = 0,

I
0,v
2 = 0,

I
0,v
3 = −2

∫ t

0

∫ 1

0
∂yGt−s(x, y)u0,v(s, y)u0(s, y)dyds,

I
0,v
4 =

∫ t

0

∫ 1

0
Gt−s(x, y)σ

(
u0(s, y)

)
v(s, y)dyds,

and the proof will be completed by the uniqueness result given in Proposition 3.3.
For i = 1, Lemma 3 in [5] ensures the convergence of (I

ε,vε

1 )ε to 0 in probability
in C([0, T ] × [0, 1]). And, while the convergence in probability in C([0, T ] × [0, 1])
implies the one in C([0, T ]; L2([0, 1])), hence (I

ε,vε

1 )ε converges to 0 in probability
in C([0, T ]; L2([0, 1])) too.

To handle the convergence of each of the other terms, we invoke the Skorohod
representation theorem and assume the almost sure convergence on a larger common
probability space.

For i = 2, applying Lemma 4.1 with ρ = 2 and λ = 1, we deduce there exists a
constant c > 0 such that

∥∥I
ε,vε

2 (t, ·)∥∥2 � c
√

εh(ε)

∫ t

0
(t − s)−

3
4 ‖ūε,vε

(s, ·)‖2
2ds.
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And since (ūε,vε
)ε converges a.s. in C([0, T ]; L2([0, 1])) to ū0,v , then there exists

ε0 > 0 small enough such that

sup
ε∈]0,ε0]

sup
s∈[0,T ]

∥∥ūε,vε

(s, ·)∥∥2 < ∞, a.s. (30)

Further, there exists a constant c > 0 such that for all 0 < ε � ε0

sup
t∈[0,T ]

∥∥I
ε,vε

2 (t, ·)∥∥2 � c
√

εh(ε), a.s.

Thus, (I
ε,vε

2 )ε converges a.s. to 0 in C([0, T ]; L2([0, 1])) as ε tends to 0.

For i = 3, let Ĩ
0,v
3 denote the RHS term of I

0,v
3 . Applying again Lemma 4.1 and

the Cauchy–Schwarz inequality, we conclude that there exists a constant c > 0 such
that

∥∥I
ε,vε

3 (t, ·) − Ĩ
0,v
3 (t, ·)∥∥2 � c

∫ t

0
(t − s)−

3
4
∥∥(

ūε,vε

(s, ·) − ū0,v(s, ·))u0(s, ·)∥∥1ds

� c

∫ t

0
(t − s)−

3
4
∥∥ūε,vε

(s, ·) − ū0,v(s, ·)∥∥2

∥∥u0(s, ·)∥∥2ds.

Using the estimation (7) and the boundedness of ūε,vε
and ū0,v in C([0, T ];

L2([0, 1])), we get∥∥I
ε,vε

3 (t, ·) − Ĩ
0,v
3 (t, ·)∥∥2

� c sup
s∈[0,T ]

∥∥ūε,vε

(s, ·) − ū0,v(s, ·)∥∥2 sup
s∈[0,T ]

∥∥u0(s, ·)∥∥2

∫ t

0
(t − s)−

3
4 ds

� c sup
s∈[0,T ]

∥∥ūε,vε

(s, ·) − ū0,v(s, ·)∥∥2.

Again, since (ūε,vε
)ε converges a.s. in C([0, T ]; L2([0, 1])) to ū0,v , we obtain the a.s.

convergence of I
ε,vε

3 to Ĩ
0,v
3 in C([0, T ]; L2([0, 1])). And by the uniqueness of the

limit and the continuity of Ĩ
0,v
3 , we conclude that I

0,v
3 = Ĩ

0,v
3 .

Concerning i = 4, let Ĩ
0,v
4 denote the RHS term of I

0,v
4 . We have

I
ε,vε

4 (t, ·) − Ĩ
0,v
4 (t, ·)

=
∫ t

0

∫ 1

0
Gt−s(x, y)

[
σ
(
u0(s, y) + √

εh(ε)ūε,vε

(s, y)
)
vε(s, y)

− σ
(
u0(s, y)

)
v(s, y)

]
dyds

=
∫ t

0

∫ 1

0
Gt−s(x, y)

[
σ
(
u0(s, y) + √

εh(ε)ūε,vε

(s, y)
)

− σ
(
u0(s, y)

)]
vε(s, y)dyds

+
∫ t

0

∫ 1

0
Gt−s(x, y)

[
vε(s, y) − v(s, y)

]
σ
(
u0(s, y)

)
dyds

=: J ε
4,1(t, x) + J ε

4,2(t, x).
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Then, ∥∥I
ε,vε

4 (t, ·) − Ĩ
(0,v)
4 (t, ·)∥∥2 �

∥∥J ε
4,1(t, ·)

∥∥
2 + ∥∥J ε

4,2(t, ·)
∥∥

2.

For J ε
4,1, we use Lemma 4.1, the Lipschitz condition on σ and the Cauchy–Schwarz

inequality to obtain∥∥J ε
4,1(t, ·)

∥∥
2

� c

∫ t

0
(t − s)−

3
4
∥∥(

σ
(
u0(s, ·) + √

εh(ε)ūε,vε

(s, ·)) − σ
(
u0(s, ·)))vε(s, ·)∥∥1ds

� c
√

εh(ε)

∫ t

0
(t − s)−

3
4
∥∥ūε,vε

(s, ·)∥∥2

∥∥vε(s, ·)∥∥2ds.

Since (vε) ⊂ PN
2 , the estimation (30) implies that there exists a constant c depending

on N such that for all 0 < ε � ε0

sup
t∈[0,T ]

∥∥J ε
4,1(t, ·)

∥∥
2 � c

√
εh(ε), a.s.

Therefore, J ε
4,1 converges to 0 in C([0, T ]; L2[0, 1]) as ε goes to 0.

The proof of the convergence of J ε
4,2 to 0 in C([0, T ]; L2[0, 1]) as ε goes to 0

will be omitted since it can be treated similarly to the case of the family {Kn, n � 1}
defined below by (35).

Consequently, I ε,vε

4 converges to Ĩ
0,v
4 in C([0, T ]; L2([0, 1])), and by the unique-

ness of the limit and the continuity of Ĩ
0,v
4 , we conclude that I

0,v
4 = Ĩ

0,v
4 .

Thus, by the convergence of both the process (ūε,vε
)ε and each term I

ε,,vε

i

for i = 1, 2, 3, 4 along a subsequence, and by the uniqueness of the solution
of the equation (14), we conclude that the condition (A1) in Proposition 3.1
holds.

Now, let us prove the condition (A2). As it was mentioned before, it suffices to
check the continuity of the map G0 : E0 × SN −→ C([0, T ]; L2([0, 1])) with respect
to the weak topology. Let v, (vn) ⊂ SN such that for any g ∈ HT ,

lim
n−→+∞〈v − vn, g〉HT

= 0.

We claim that
lim

n−→+∞ sup
t∈[0,T ]

∥∥uvn(t) − uv(t)
∥∥

2 = 0. (31)

Let (t, x) ∈ [0, T ] × [0, 1]. The equation (14) implies

ūvn(t, x) − ūv(t, x) = −2
∫ t

0

∫ 1

0
∂yGt−s(x, y)u0(s, y)

(
ūvn(s, y) − ūv(s, y)

)
dyds

+
∫ t

0

∫ 1

0
Gt−s(x, y)σ

(
u0(s, y)

)(
vn(s, y) − v(s, y)

)
dyds.

(32)
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Hence,∥∥ūvn(t, ·) − ūv(t, ·)∥∥2

� c

{∥∥∥∥
∫ t

0

∫ 1

0
∂yGt−s(·, y)u0(s, y)

(
ūvn(s, y) − ūv(s, y)

)
dyds

∥∥∥∥
2

+
∥∥∥∥
∫ t

0

∫ 1

0
Gt−s(·, y)σ

(
u0(s, y)

)(
vn(s, y) − v(s, y)

)
dyds

∥∥∥∥
2

}
. (33)

On one hand, using Lemma 4.1, the Cauchy–Schwarz inequality and estimation
(7) we get∥∥∥∥

∫ t

0

∫ 1

0
∂yGt−s(·, y)u0(s, y)

(
ūvn(s, y) − ūv(s, y)

)
dyds

∥∥∥∥
2

� c

∫ t

0
(t − s)−3/4

∥∥u0(s, ·)(ūvn(s, ·) − ūv(s, ·))∥∥1ds

� c

∫ t

0
(t − s)−3/4

∥∥u0(s, ·)∥∥2

∥∥ūvn(s, ·) − ūv(s, ·)∥∥2ds

� c

∫ t

0
(t − s)−3/4

∥∥u0(s, ·)∥∥2

∥∥ūvn(s, ·) − ūv(s, ·)∥∥2ds

� c

∫ t

0
(t − s)−3/4 sup

s∈[0,T ]
∥∥u0(s, ·)∥∥2

∥∥ūvn(s, ·) − ūv(s, ·)∥∥2ds

� c

∫ t

0
(t − s)−3/4

∥∥ūvn(s, ·) − ūv(s, ·)∥∥2ds. (34)

On the other hand, in order to handle the second term in the right hand side of
(33), we define, for any (t, x) ∈ [0, T ] × [0, 1], the sequence

Kn(t, x) :=
∫ t

0

∫ 1

0
Gt−s(x, y)σ

(
u0(s, y)

)(
vn(s, y) − v(s, y)

)
dyds, (35)

whose properties are given in Lemma 4.4 in the Appendix. Then, summing up (33)–
(34), we obtain for any 0 � t � T

∥∥ūvn(t, ·) − ūv(t, ·)∥∥2 � c
∥∥Kn(t)

∥∥
2 + c

∫ t

0
(t − s)−3/4

∥∥ūvn(s, ·) − ūv(s, ·)∥∥2ds.

(36)

Applying Gronwall’s lemma, we get the estimate

sup
t∈[0,T ]

∥∥ūvn(t, ·) − ūv(t, ·)∥∥2 � c sup
t∈[0,T ]

∥∥Kn(t, ·)
∥∥

2, (37)

which implies together with (63) the claim (31), and henceforth the condition (A2)
holds.

Finally, the proof of Theorem 3.3 is completed since conditions of Proposition
3.1 are fulfilled.
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4 Toward a central limit theorem

Many results on central limit theorem has been recently established for various kinds
of parabolic SPDEs under strong assumptions on the drift coefficient. More specifi-
cally, under the linear growth condition, the differentiability and the global Liptschitz
condition on both the drift coefficient and its derivative, some central limit theorems
have been established in [26, 27]. And while these conditions are not all fulfilled for
the stochastic Burgers equation, it is not surprising that classical tools do not apply
to establish a central limit theorem. Nevertheless, we will prove in this section two
first-step results toward a central limit theorem. More specifically, the uniform bound-
edness and the convergence of uε to u0 in Lq(Ω; C([0, T ]; L2([0, 1]))) for q � 2.
We hope that our current estimates could be helpful for future works in this direction.

We begin with the following result.

Proposition 4.1. Assume that σ is bounded and globally Lipschitz. Then for all q �
2, we have

sup
ε∈]0,1]

E
(

sup
t∈[0,T ]

∥∥uε(t, ·)∥∥q

2

)
< ∞. (38)

Proof. We will use similar arguments as in Cardon-Weber and Millet [9] and Gyöngy
[17]. For 0 < ε � 1, set

ηε(t, x) := √
ε

∫ t

0

∫ 1

0
Gt−s(x, y)σ

(
uε(s, y)

)
W(dy, ds),

and

ϑε(t, x) := uε(t, x) − ηε(t, x)

=
∫ 1

0
Gt(x, y)u0(y)dy −

∫ t

0

∫ 1

0
∂yGt−s(x, y)

(
uε(s, y)

)2
dyds

=
∫ 1

0
Gt(x, y)u0(y)dy −

∫ t

0

∫ 1

0
∂yGt−s(x, y)

(
ϑε(s, y) + ηε(s, y)

)2
dyds.

Then, ϑε is a solution of the equation

∂ϑε

∂t
(t, x) = �ϑε(t, x)+ ∂

∂x

(
ϑε(t, x)+ηε(t, x)

)2
, (t, x) ∈ [0, T ]×[0, 1], (39)

with Dirichlet’s boundary conditions and initial condition ϑε(0, x) = u0(x).
Since σ ◦ uε is bounded uniformly in ε, arguing as in the proof of Theorem 2.1 in

[17], page 286, by the Garsia–Rodemich–Rumsey lemma, one can deduce that

sup
ε

E
(

sup
0�t�T

sup
0�x�1

∣∣η̃ε(t, x)
∣∣q)

< ∞,

where η̃ε(t, x) := 1√
ε
ηε(t, x). Consequently, there exists a universal constant C(q)

depending only on q such that

E
(

sup
0�t�T

sup
0�x�1

∣∣ηε(t, x)
∣∣q)

� C(p)εq/2. (40)
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In particular, the random variable η̄ε := sup0�t�T sup0�x�1 |ηε(t, x)| is well defined
a.s.

Moreover, using the SPDE (39) satisfied by ϑε and following the same arguments
as in the proof of Theorem 2.1 in [17], we deduce the existence of a constant c inde-
pendent of ε and ω (see [17] pages 286–289) such that

sup
0�t�T

∥∥ϑε
(
t,·

)∥∥2
2 � ‖u0‖2

2 + cT
(
1 + η̄4

ε

)
e(cT (1+η̄2

ε )). (41)

Consequently, for any q � 2

sup
0�t�T

∥∥uε(t, ·)∥∥q

2 = sup
0�t�T

∥∥ϑε(t, ·) + ηε(t, ·)
∥∥q

2

� 2q−1
(

sup
0�t�T

∥∥ϑε(t, ·)∥∥q

2 + sup
0�t�T

∥∥ηε(t, ·)
∥∥q

2

)

� 2q−1
(

‖u0‖q
2 + cT

(
1 + η̄2q

ε

)
e(cT (1+η̄2

ε ))

+ sup
0�t�T

(∫ 1

0

∣∣ηε(t, x)
∣∣2

dx

)q/2)

� 2q−1(‖u0‖q

2 + cT
(
1 + η̄2q

ε

)
e(cT (1+η̄2

ε )) + η̄q
ε

)
� c

(‖u0‖q

2 + cT
(
1 + η̄2q

ε

)
e(cT (1+η̄2

ε ))
)
.

Hence, to prove (38) it suffices to show that

sup
ε∈]0,1]

E
((

1 + η̄2q
ε

)
ecT (1+η̄2

ε )
)

is finite. (42)

For this purpose, note first that

sup
0�s�T

sup
0�x�1

∣∣√εσ
(
uε(s, x)

)∣∣ � √
ε‖σ‖∞, where ‖σ‖∞ := sup

x∈R

∣∣σ(x)
∣∣.

Thus, by Lemma 4.2, there exist two positive constants C1 and C2, independent of ε,
such that for any M � C1‖σ‖∞

P(η̄ε � M) � C1‖σ‖∞ exp

(
− M2

εC2(1 + T
1
8 )

)
. (43)

Setting ϕ(x) := (1 + x2q)ecT (1+x2), which is a positive, continuous and increasing
function on [0,+∞[, we get for any A � C1‖σ‖∞

E
(
ϕ(η̄ε)

) =
∫ +∞

0
P

(
ϕ(η̄ε) > x

)
dx

=
∫ A

0
P(η̄ε > x)ϕ′(x)dx +

∫ +∞

A

P (η̄ε > x)ϕ′(x)dx

� ϕ(A) + cC1‖σ‖∞
∫ +∞

A

(
1 + x2q+1) exp

(
cT x2 − x2

εC2(1 + T
1
8 )

)
dx
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� ϕ(A) + cC1‖σ‖∞
∫ +∞

A

(
1 + x2q+1) exp

(
cT x2 − x2

C2(1 + T
1
8 )

)
dx,

where the last integral is finite provided that cT C2(1 + T
1
8 ) < 1. This implies that

there exists T0 > 0, independent of u0 and ε, such that (42) holds for 0 < T � T0.
Using (41), and iterating the procedure finitely many times we conclude the proof.

Now, we can announce and state the following proposition.

Proposition 4.2. Assume that σ is bounded and globally Lipschitz. Then, for all
q � 2, we have

lim
ε−→0

E
(

sup
t∈[0,T ]

∥∥uε(t, ·) − u0(t, ·)∥∥q

2

)
= 0. (44)

Proof. We will use a localization argument. For 0 � t � T , ε ∈]0, 1] and M > 0,
set

ΩM
ε (t) :=

{
w ∈ Ω : sup

s∈[0,t]
∥∥uε(s)

∥∥
2 ∨ sup

s∈[0,t]
∥∥u0(s)

∥∥
2 � M

}
. (45)

We have

uε(t, x) − u0(t, x) = √
ε

∫ t

0

∫ 1

0
Gt−s(x, y)σ

(
uε(s, y)

)
W(ds, dy)

−
∫ t

0

∫ 1

0
∂yGt−s(x, y)

((
uε(s, y)

)2 − (
u0(s, y)

)2)
dyds

:= ηε(t, x) + I ε(t, x). (46)

Then, for any q � 2,∥∥uε(t, ·) − u0(t, ·)∥∥q

2 � 2q−1(∥∥ηε(t, ·)∥∥q + ∥∥I ε(t, ·)∥∥q)
. (47)

For ηε(t, ·), by the Hölder inequality we have

E
(

sup
0�s�t

∥∥ηε(s, ·)∥∥q
)
� E

(
sup

0�s�t

∫ 1

0

∣∣ηε(s, x)
∣∣qdx

)

�
∫ 1

0
E

(
sup

0�s�t

∣∣ηε(s, x)
∣∣q)

dx

� E
(

sup
0�x�1

sup
0�s�t

∣∣ηε(s, x)
∣∣q)

� C(q)εq/2,

where the last inequality follows from (40).
For I ε(t, ·), according to Lemma 4.1 in the Appendix with ρ = 2 and λ = 1, we

have

∥∥I ε(t, ·)∥∥2 � c

∫ t

0
(t − s)−

3
4
∥∥(

uε(s, ·) − u0(s, ·))(uε(s, ·) + u0(s, ·))∥∥1ds, (48)
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and using the following form of Hölder’s inequality

∣∣∣∣
∫ t

0
f (s)g(s)ds

∣∣∣∣
q

�
(∫ t

0

∣∣f (s)
∣∣ds

)q−1 ∫ t

0

∣∣f (s)
∣∣∣∣g(s)

∣∣qds,

with f (s) := (t − s)− 3
4 and g(s) := ‖(uε(s, ·) − u0(s, ·))(uε(s, ·) + u0(s, ·))‖1, we

get

∥∥I ε(t, ·)∥∥q

2 � c

∫ t

0
(t − s)−

3
4
∥∥(

uε(s, ·) − u0(s, ·))(uε(s, ·) + u0(s, ·))∥∥q

1ds. (49)

Now, taking the supremum up to time t ∈ [0, T ], and setting Φ(s) := ‖(uε(s, ·)−
u0(s, ·))(uε(s, ·) + u0(s, ·))‖q

1 , and Ψ (s) := sup0�r�s Φ(r), (49) implies

sup
0�s�t

∥∥I ε(s, ·)∥∥q

2 � c sup
0�s�t

∫ s

0
(s − r)−

3
4 Φ(r)dr

� c sup
0�s�t

∫ s

0
(s − r)−

3
4 sup

0�r ′�r

Φ
(
r ′)dr

� c sup
0�s�t

∫ s

0
(s − r)−

3
4 Ψ (r)dr

= c sup
0�s�t

∫ s

0
r− 3

4 Ψ (s − r)dr. (50)

Since
Ψ (s − r) = sup

0�r ′�s−r

Φ(r ′) � sup
0�r ′�t−r

Φ(r ′) = Ψ (t − r),

then

sup
0�s�t

∥∥I ε(s, ·)∥∥q

2 � c sup
0�s�t

∫ s

0
r− 3

4 Ψ (t − r)dr

= c

∫ t

0
r− 3

4 Ψ (t − r)dr

= c

∫ t

0
(t − r)−

3
4 Ψ (r)dr.

Introducing the expectation on ΩM
ε (t) and taking into account the facts that ΩM

ε (t) ∈
Ft and ΩM

ε (t) ⊂ ΩM
ε (s) for 0 � s � t , we get

E
(

1ΩM
ε (t) sup

0�s�t

∥∥I ε(s, ·)∥∥q

2

)
� c

∫ t

0
(t − s)−

3
4 E

(
1ΩM

ε (s)Ψ (s)
)
ds. (51)

Notice that

1ΩM
ε (s)Ψ (s) � 1ΩM

ε (s) sup
0�r�s

∥∥(
uε(r, ·) − u0(r, ·))(uε(r, ·) + u0(r, ·))∥∥q

1
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� 1ΩM
ε (s) sup

0�r�s

∥∥uε(r, ·) − u0(r, ·)∥∥q

2

∥∥uε(r, ·) + u0(r, ·)∥∥q

2

� 1ΩM
ε (s) sup

0�r�s

∥∥uε(r, ·) − u0(r, ·)∥∥q

2

(∥∥uε(r, ·)∥∥q

2 + ∥∥u0(r, ·)∥∥q

2

)
� 2Mq1ΩM

ε (s) sup
0�r�s

∥∥uε(r, ·) − u0(r, ·)∥∥q

2 .

This, together with (51), gives

E
(

1ΩM
ε (t) sup

0�s�t

∥∥I ε(s, ·)∥∥q

2

)

� 2cMq

∫ t

0
(t − s)−

3
4 E

(
1ΩM

ε (s) sup
0�r�s

∥∥uε(r, ·) − u0(r, ·)∥∥q

2

)
ds. (52)

Combining (47)–(52) we get for any 0 � t � T

E
(

1ΩM
ε (t) sup

0�s�t

∥∥uε(s, ·) − u0(s, ·)∥∥q

2

)

� c

[
εq/2 + 2Mq

∫ t

0
(t − s)−

3
4 E

(
1ΩM

ε (s) sup
0�r�s

∥∥uε(r, ·) − u0(r, ·)∥∥q

2

)
ds

]
. (53)

Using Gronwall’s lemma we deduce that, for all t ∈ [0, T ],

E
(

1ΩM
ε (t) sup

0�s�t

∥∥uε(s, ·) − u0(s, ·)∥∥q

2

)
� cεq/2e2cMq

. (54)

Therefore, for any fixed M > 0 we have

E
(

sup
0�t�T

∥∥uε(t, ·) − u0(t, ·)∥∥q

2

)
= E

(
1ΩM

ε (T ) sup
0�t�T

∥∥uε(t, ·) − u0(t, ·)∥∥q

2

)
+ E

(
1Ω\ΩM

ε (T ) sup
0�t�T

∥∥uε(t, ·) − u0(t, ·)∥∥q

2

)

� cεq/2e2cMq + (
P

(
Ω \ ΩM

ε (T )
))1/2

(
E

(
sup

0�t�T

∥∥uε(t, ·) − u0(t, ·)∥∥2q

2

))1/2
.

To deal with the second term of the last inequality, on one hand, estimations (7) and
(38) imply that there exists c > 0 such that

sup
ε∈]0,1]

E
(

sup
0�t�T

∥∥uε(t, ·) − u0(t, ·)∥∥q

2

)
< c. (55)

On the other hand, by the Markov inequality and using again the estimations (7) and
(38) we have

P
(
Ω \ ΩM

ε (T )
)
� P

(
sup

t∈[0,T ]
∥∥uε(t, ·)∥∥q

2 > Mq
)

+ P
(

sup
t∈[0,T ]

∥∥u0(t, ·)∥∥q

2 > Mq
)
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�
E(supt∈[0,T ] ‖uε(t, ·)‖q

2)

Mq
+ E(supt∈[0,T ] ‖u0(t, ·)‖q

2)

Mq

�
supε∈]0,1] E(supt∈[0,T ] ‖uε(t, ·)‖q

2)

Mq
+ supt∈[0,T ] ‖u0(t, ·)‖q

2

Mq

� c

Mq
. (56)

Then

E
(

sup
0�t�T

∥∥uε(t, ·) − u0(t, ·)∥∥q

2

)
� cεq/2e2cMq + c

Mq/2 . (57)

Letting ε tends to zero and taking into account the fact that ε and M are indepen-
dent, we obtain

lim sup
ε−→0

E
(

sup
0�t�T

∥∥uε(t, ·) − u0(t, ·)∥∥q

2

)
� c

Mq/2 .

Finally, since M is arbitrary, we conclude that (44) holds.

Appendix

This section contains some technical results needed in the proof of the main theorem
of the paper.

First, we recall the following result proved in Lemma 3.1 in [17].
For H(t, s; x, y) := G(t − s, x, y) or H(t, s; x, y) := (∂/∂y)G(t − s, x, y),

where 0 � s � t � T and x, y ∈ [0, 1], define the linear operator J by

J (v)(t, x) :=
∫ t

0

∫ 1

0
H(r, t; x, y)v(r, y)dydr, t ∈ [0, T ], x ∈ [0, 1],

for every v ∈ L∞([0, T ], L1([0, 1])).
Lemma 4.1. Let ρ > 1, λ ∈ [1, ρ[ and set κ := 1 + 1

ρ
− 1

λ
. Then, J is a bounded

linear operator from Lγ ([0, T ], Lλ([0, 1])) into C([0, T ], Lρ([0, 1])) for γ > 2κ−1.
Moreover, there exists a positive constant c such that for all t ∈ [0, T ],

∥∥J (v)(t, ·)∥∥
ρ
� c

∫ t

0
(t − r)

κ
2 −1

∥∥v(r, ·)∥∥
λ
dr. (58)

The following lemma is a consequence of Lemma 3.1 in [11], its proof is omitted.

Lemma 4.2. Let Ft = σ(W(s, x); 0 � s � t; 0 � x � 1) and let Z : Ω × [0, T ] ×
[0, 1] −→ R be a Ft -predictable process such that

sup
0�s�T

sup
0�y�1

|Z(s, y)| � ρ.

Set I (t, x) := ∫ t

0

∫ 1
0 Gt−u(y, z)Z(u, z)W(du, dz). Then, there exist positive con-

stants C1 and C2 such that for M > C1ρ,

P
(

sup
0�s�T

sup
0�y�1

∣∣I (s, y)
∣∣ � M

)
� C1 exp

(
− M2

ρ2C2(1 + T
1
8 )

)
. (59)
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Proof of Proposition 3.3. To use a fixed point argument, we consider, for any given
L2([0, 1])-valued function {w(t), t ∈ [0, T ]}, the following operator

(Aw)(t, x) := −2
∫ t

0

∫ 1

0
∂yGt−s(x, y)w(s, y)u0(s, y)dyds

+
∫ t

0

∫ 1

0
Gt−s(x, y)σ

(
u0(s, y)

)
v(s, y)dyds.

We are going to prove that A is a contraction operator on the Banach space H of
L2([0, 1])-valued functions {w(t), t ∈ [0, T ]} such that u(0) = 0 equipped with the
norm

‖w‖ :=
∫ T

0
e−λt

∥∥w(t, ·)∥∥2
2dt, where λ > 0 will be fixed later. (60)

Step 1. Let t ∈ [0, T ]. We first prove that if w satisfies sup0�s�t ‖w(s, ·)‖q

2 < ∞
then Aw satisfies also this estimate. By Lemma 4.1, the Cauchy–Schwarz inequality
and the hypothesis on w we have(

sup
0�s�t

∥∥Aw(t, ·)∥∥q

2

)
� c

[
1 +

∫ t

0
(t − s)

−3
4

(
sup

0�r�s

∥∥w(r, ·)u0(r, ·)∥∥q

1

)
ds

]

� c

[
1 +

∫ t

0
(t − s)

−3
4

(
sup

0�r�s

∥∥w(r, ·)∥∥q

2

∥∥u0(r, ·)∥∥q

2

)
ds

]

� c

[
1 +

∫ t

0
(t − s)

−3
4

(
sup

0�r�s

∥∥w(r, ·)∥∥q

2

)
ds

]

� c

[
1 +

∫ t

0
(t − s)

−3
4 ds

]
,

which is clearly finite.
Step 2. Let w1 and w2 be two elements in H. For any t ∈ [0, T ] we have

(∥∥Aw1(t, ·) − Aw2(t, ·)
∥∥q

2

)
� c

∫ t

0
(t − s)

−3
4

(∥∥(
w1(r, ·) − w2(r, ·)

)
u0(r, ·)∥∥q

1

)
ds

� c

∫ t

0
(t − s)

−3
4

(∥∥w1(s, ·) − w2(s, ·)
∥∥q

2

∥∥u0(r, ·)∥∥q

2

)
ds

� c

∫ t

0
(t − s)

−3
4

(∥∥w1(s, ·) − w2(s, ·)
∥∥q

2

)
ds. (61)

Then, using Fubini’s theorem we have∫ T

0
e−λt

(∥∥Aw1(t, ·) − Aw2(t, ·)
∥∥q

2

)
dt

� c

∫ T

0
e−λt

∫ t

0
(t − s)

−3
4

(∥∥w1(s, ·) − w2(s, ·)
∥∥q

2

)
dsdt

� c

∫ T

0

∫ T

s

e−λt (t − s)
−3
4

(∥∥w1(s, ·) − w2(s, ·)
∥∥q

2

)
dsdt
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� c

∫ T

0

(∥∥w1(s, ·) − w2(s, ·)
∥∥q

2

) ∫ T

s

e−λt (t − s)
−3
4 dsdt

� c

(∫ T

0
e−λrr

−3
4 dr

)
‖w1 − w2‖q

H
.

Take λ and T0 > 0 such that

c

∫ T0

0
e−λrr

−3
4 dr < 1.

Then, for T � T0, the operator A is a contraction on H. Consequently, for any v ∈
SN , it admits a unique fixed point uv ∈ H which satisfies the equation (14). By
concatenation we can construct a solution on every interval [0, T ].

The continuity of the solution uv follows from the continuity of the integrals.
For the estimation (18), one can use for uv the same computations as in (61) and
Gronwall’s lemma.

In order to prove Lemma 3.6 we have used the following lemma whose proof can
be found in Lemma 3.3 in [17].

Lemma 4.3. For v ∈ L∞([0, T ]; L1([0, 1])), set

J (v)(t, x) :=
∫ t

0

∫ 1

0
∂yG(t, s, x, y)v(s, y)dyds, t ∈ [0, T ], x ∈ [0, 1].

Let ρ ∈ [1,+∞[ and q ∈ [1, ρ[. Moreover, let ζε(t, x) be a family of random fields
on [0, T ] × [0, 1] such that supt�T ‖ζε(t, ·)‖q � θε, where θε is a finite random
variable for every ε. Assume that the family θε is bounded in probability, i.e.,

lim
c−→+∞ sup

ε
P{θε � c} = 0.

Then, the family (J (ζε))ε>0 is uniformly tight in C([0, T ]; Lρ([0, 1])).
We summarize some important proprieties of the sequence {Kn, n � 1} in the

following lemma.

Lemma 4.4. Let (vn) ⊂ SN be a sequence converging weakly in HT to an element
v in SN . The sequence {Kn, n � 1} defined in (35) satisfies the following:

i) the sequence {Kn(t, x), n � 1} converges to zero, for any fixed (t, x) ∈ [0, T ]×
[0, 1];

ii) there exists a constant c(N, T ) depending on N and T such that

sup
n�1

sup
t∈[0,T ]

∥∥Kn(t, ·)
∥∥

2 � c(N, T ); (62)

iii)
lim

n−→∞ sup
t∈[0,T ]

∥∥Kn(t, ·)
∥∥

2 = 0. (63)
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Proof. First notice that since∥∥1[0,t](·)Gt−·(x, ∗)σ
(
u0(·, ∗)

)∥∥2
HT

:=
∫ T

0

∫ 1

0
1[0,t](s)G2

t−s(x, y)σ 2(u0(s, y)
)
dyds

� c sup
x∈[0,1]

∫ t

0

∫ 1

0
G2

t−s(x, y)dyds < +∞,

we have 1[0,t](·)Gt−·(x, ∗)σ (u0(·, ∗)) ∈ HT and hence

Kn(t, x) = 〈
1[0,t](·)Gt−·(x, ∗)σ

(
u0(·, ∗)

)
, vn − v

〉
HT

.

Therefore by the weak convergence of (vn) to v in HT , we get the point i) of
Lemma 4.4.

Now, let us show (62) and (63). Using the Cauchy–Schwarz inequality, the bound-
edness of σ , the facts that vn, v ∈ SN and Lemma 2.1, we have for any 0 � t � T ,

∥∥Kn(t, ·)
∥∥2

2 =
∫ 1

0

∣∣∣∣
∫ t

0

∫ 1

0
Gt−s(x, y)σ

(
u0(s, y)

)(
vn(s, y) − v(s, y)

)
dyds

∣∣∣∣
2

dx

� ‖vn − v‖2
HT

(
sup

x∈[0,1]

∫ t

0

∫ 1

0

(
Gt−s(x, y)σ

(
u0(s, y)

))2
dyds

)

� c(N, T )

(
sup

x∈[0,1]

∫ t

0

∫ 1

0
G2

t−s(x, y)dyds

)
� c(N, T ), (64)

for some constant c(N, T ) depending only on N and T , and not on n. This yields
(62).

It remains to prove (63). Following similar arguments as above, we have, for any
t, t ′ ∈ [0, T ] such that t � t ′,
∥∥Kn(t, ·) − Kn

(
t ′, ·)∥∥2

2 � c(N, T )

(
sup

x∈[0,1]

∫ t

0

∫ 1

0

(
Gt−s(x, y) − Gt ′−s(x, y)

)2
dyds

+ sup
x∈[0,1]

∫ t ′

t

∫ 1

0
G2

t ′−s(x, y)dyds

)

� c(N, T )
∣∣t − t ′

∣∣1/2
. (65)

According to (64) and (65), the sequence {Kn, n � 1} is a bounded and Hölder con-
tinuous family in C([0, T ]; L2([0, 1])); hence it is a bounded equicontinuous family
and therefore by i) of Lemma 4.4 and the Arzelà–Ascoli theorem we get (63).
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