A class of Cannings models is studied, with population size N having a mixed multinomial offspring distribution with random success probabilities ${W_{1}},\dots ,{W_{N}}$ induced by independent and identically distributed positive random variables ${X_{1}},{X_{2}},\dots $ via ${W_{i}}:={X_{i}}/{S_{N}}$, $i\in \{1,\dots ,N\}$, where ${S_{N}}:={X_{1}}+\cdots +{X_{N}}$. The ancestral lineages are hence based on a sampling with replacement strategy from a random partition of the unit interval into N subintervals of lengths ${W_{1}},\dots ,{W_{N}}$. Convergence results for the genealogy of these Cannings models are provided under assumptions that the tail distribution of ${X_{1}}$ is regularly varying. In the limit several coalescent processes with multiple and simultaneous multiple collisions occur. The results extend those obtained by Huillet [J. Math. Biol. 68 (2014), 727–761] for the case when ${X_{1}}$ is Pareto distributed and complement those obtained by Schweinsberg [Stoch. Process. Appl. 106 (2003), 107–139] for models where sampling is performed without replacement from a supercritical branching process.
We study the frequency process $f_{1}$ of the block of 1 for a Ξ-coalescent Π with dust. If Π stays infinite, $f_{1}$ is a jump-hold process which can be expressed as a sum of broken parts from a stick-breaking procedure with uncorrelated, but in general non-independent, stick lengths with common mean. For Dirac-Λ-coalescents with $\varLambda =\delta _{p}$, $p\in [\frac{1}{2},1)$, $f_{1}$ is not Markovian, whereas its jump chain is Markovian. For simple Λ-coalescents the distribution of $f_{1}$ at its first jump, the asymptotic frequency of the minimal clade of 1, is expressed via conditionally independent shifted geometric distributions.