Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 3, Issue 3 (2016)
  4. On spectra of probability measures gener ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • Cited by
  • More
    Article info Full article Related articles Cited by

On spectra of probability measures generated by GLS-expansions
Volume 3, Issue 3 (2016), pp. 213–221
Marina Lupain  

Authors

 
Placeholder
https://doi.org/10.15559/16-VMSTA61
Pub. online: 26 October 2016      Type: Research Article      Open accessOpen Access

Received
5 August 2016
Revised
27 September 2016
Accepted
27 September 2016
Published
26 October 2016

Abstract

We study properties of distributions of random variables with independent identically distributed symbols of generalized Lüroth series (GLS) expansions (the family of GLS-expansions contains Lüroth expansion and $Q_{\infty }$- and ${G_{\infty }^{2}}$-expansions). To this end, we explore fractal properties of the family of Cantor-like sets $C[\mathit{GLS},V]$ consisting of real numbers whose GLS-expansions contain only symbols from some countable set $V\subset N\cup \{0\}$, and derive exact formulae for the determination of the Hausdorff–Besicovitch dimension of $C[\mathit{GLS},V]$. Based on these results, we get general formulae for the Hausdorff–Besicovitch dimension of the spectra of random variables with independent identically distributed GLS-symbols for the case where all but countably many points from the unit interval belong to the basis cylinders of GLS-expansions.

1 Introduction

During the last 20 years, many authors studied singularly continuous probability measures generated by different expansions of real numbers (see, e.g., [2, 9, 10, 12–15]). All these measures are the distributions of random variables of the form
\[\xi ={\varDelta _{\xi _{1}\xi _{2}\dots \xi _{k}\dots }^{F}},\]
where $\{\xi _{k}\}$ are independent or Markovian, and F stands for some expansion of real numbers. For the case of expansions over finite alphabets, fractal properties of the spectra of the corresponding measures are relatively well studied. For the case of infinite alphabets, the situation is essentially more complicated. In [8] and [9], it has been shown that even for self-similar $Q_{\infty }$-expansion and for i.i.d. case, the Hausdorff–Besicovitch dimension of the corresponding spectra cannot be calculated in a traditional way (as a root of the corresponding equation), and formulae for the Hausdorff dimension of the measure $\mu _{\xi }$ are also unknown.
In this paper, we generalize results from [8] and [9] for the case of distributions of random variables with independent identically distributed GLS digits
\[\xi ={\varDelta _{\xi _{1}\xi _{2}\dots \xi _{k}\dots }^{\mathit{GLS}}}\]
and get general formulae for the determination of the Hausdorff–Besicovitch dimension of spectra of ξ for the case where all but countably many points from the unit interval belong to the basis cylinders of GLS-expansion.

2 On GLS-expansion and fractal properties of related probability measures

Let $Q_{\infty }=(q_{0},q_{1},\dots ,q_{n},\dots \hspace{0.1667em})$ be an infinite stochastic vector with positive coordinates. Let us consider a countable sequence $\varDelta _{i}=[a_{i},b_{i}]$ of intervals such that $\mathit{Int}(\varDelta _{i})\cap \mathit{Int}(\varDelta _{j})=\varnothing \hspace{2.5pt}(i\ne j)$ and $|\varDelta _{i}|=q_{i}$. The sets $\varDelta _{i}$ are said to be cylinders of GLS-expansion (generalized Lüroth series).
Let us remark that the placement of cylinders of rank 1 is completely determined by the preselected procedure.
For every cylinder $\varDelta _{i_{1}}$ of rank 1, we consider a sequence of nonoverlapping closed intervals $\varDelta _{i_{1}i_{2}}\subset \varDelta _{i_{1}}$ such that
\[\frac{|\varDelta _{i_{1}i_{2}}|}{|\varDelta _{i_{1}}|}=q_{i_{2}}\]
and the placement of $\varDelta _{i_{1}i_{2}}$ in $\varDelta _{i_{1}}$ is the same as $\varDelta _{i_{1}}$ in $[0;1]$. The closed intervals $\varDelta _{i_{1}i_{2}}$ are said to be cylinders of rank 2 of the GLS-expansion.
Similarly, for every cylinder of rank $(n-1)$ $\varDelta _{i_{1}i_{2}\dots i_{n-1}}$, we consider the sequence of nonoverlapping closed intervals $\varDelta _{i_{1}i_{2}\dots i_{n}}\subset \varDelta _{i_{1}i_{2}\dots i_{n-1}}$ such that
\[\frac{|\varDelta _{i_{1}i_{2}\dots i_{n}}|}{|\varDelta _{i_{1}i_{2}\dots i_{n-1}}|}=q_{i_{n}},\hspace{1em}i\in N\cup \{0\},\]
and the placement of $\varDelta _{i_{1}i_{2}\dots i_{n}}$ in $\varDelta _{i_{1}i_{2}\dots i_{n-1}}$ is the same as $\varDelta _{i_{1}}$ in $[0;1]$.
The closed intervals $\varDelta _{i_{1}i_{2}\dots i_{n}}$ are said to be cylinders of rank n of the GLS-expansion. From the construction it follows that
\[|\varDelta _{i_{1}i_{2}...i_{n}}|=q_{i_{1}}\cdot q_{i_{2}}\cdot \dots \cdot q_{i_{n}}\le {(q_{\max })}^{n}\to 0\hspace{1em}(n\to \infty ),\]
where $q_{\max }:=\max _{i}q_{i}$.
So, for any sequence of indices $\{i_{k}\}$ ($i_{k}\in N\cup \{0\})$, there exists the sequence of embedded closed intervals
\[\varDelta _{i_{1}}\subset \varDelta _{i_{1}i_{2}}\subset \varDelta _{i_{1}i_{2}i_{2}}\subset \cdots \subset \varDelta _{i_{1}i_{2}\dots i_{k}}\subset \cdots \]
with $|\varDelta _{i_{1}i_{2}\dots i_{k}}|\to 0,\hspace{2.5pt}k\to \infty $. Therefore, there exists a unique point $x\in [0,1]$ that belongs to all these cylinders.
Conversely, if $x\in [0,1]$ belongs to some cylinder of rank k for any $k\in N$ and x is not an end-point for any cylinder, then there exists a unique sequence of the cylinders
\[\varDelta _{i_{1}(x)}\supset \varDelta _{i_{1}(x)i_{2}(x)}\supset \varDelta _{i_{1}(x)i_{2}(x)i_{3}(x)}\supset \cdots \supset \varDelta _{i_{1}(x)i_{2}(x)\dots i_{k}(x)}\supset \cdots \]
containing x, and
\[x=\bigcap \limits_{k=1}^{\infty }\varDelta _{i_{1}(x)i_{2}(x)\dots i_{k}(x)}=\varDelta _{i_{1}(x)i_{2}(x)\dots i_{k}(x)\dots }.\]
The latter expression is called the GLS-expansion of x (see, e.g., [1, 3, 4, 6, 7] for details).
Let us remark that the Lüroth expansion and $Q_{\infty }$-expansion [8, 9] are particular cases of the GLS-expansion. For the case where the ratio of lengths of two embedded cylinders of successive ranks depends on the last index and it is a power of $\varphi =\frac{1+\sqrt{5}}{2}$, we get the ${G_{\infty }^{2}}$-expansion of x [11].
Let $Q_{\infty }=(q_{0},q_{1},\dots ,q_{n},\dots \hspace{0.1667em})$ be a stochastic vector with positive coordinates, and let $x={\varDelta _{i_{1}(x)i_{2}(x)\dots i_{k}(x)\dots }^{\mathit{GLS}}}$ be the GLS-expansion of $x\in [0,1]$.
Let $\{\xi _{k}\}$ be a sequence of independent identically distributed random variables:
\[P(\xi _{k}=i):=p_{i}\ge 0,\]
where
\[\sum \limits_{i=0}^{\infty }p_{i}=1.\]
Using the sequence $\{\xi _{k}\}$ and a given GLS-expansion, let us consider the random variable
\[\xi ={\varDelta _{\xi _{1}\xi _{2}...\xi _{k}...}^{\mathit{GLS}}},\]
which is said to be the random variable with independent identically distributed GLS-symbols. Let $\mu _{\xi }$ be the corresponding probability measure.
To investigate metric, topological, and fractal properties of the spectrum of the random variable with independent identically distributed GLS-symbols, let us study properties of the following family of sets. Let V be a subset of $N_{0}:=\{0,1,2,\dots \hspace{0.1667em}\}$, and let
\[C[\mathit{GLS},V]=\big\{x:x={\varDelta _{\alpha _{1}(x)\dots \alpha _{k}(x)\dots }^{\mathit{GLS}}},\alpha _{k}\in V\big\}.\]
If the set V is finite, then $C[\mathit{GLS},V]$ is a self-similar set satisfying the open set condition (see, e.g., [5]). So, its Hausdorff–Besicovitch dimension coincides with the root of the equation
(1)
\[\sum \limits_{i\in V}{q_{i}^{x}}=1.\]
If the set V is countable, then the situation is essentially more complicated. In particular, there exist stochastic vectors $Q_{\infty }$ and subsets V such that equation (1) has no roots on the unit interval.
For example, if $q_{i}=\frac{A}{(i+2){\ln }^{2}(i+2)}$ and $V=N$, then the equation $\sum _{i\in V}{q_{i}^{x}}=1$ has no roots on $[0;1]$.
Theorem 1.
If a stochastic vector $Q_{\infty }$ and a set $V\subset N_{0}$ are such that the equation $\sum _{i\in V}{q_{i}^{x}}=1$ has a root $\alpha _{0}$ on $[0,1]$, then
\[\dim _{H}\big(C[\mathit{GLS},V]\big)=\alpha _{0}.\]
Proof.
First, let us show that for any $k\in N$, the set $C[\mathit{GLS},V]$ can be covered by cylinders of rank k and that the $\alpha _{0}$-volume of this covering is equal to 1.
For $k=1$, the set $C[\mathit{GLS},V]$ can be covered by cylinders of rank 1. It easy to see that the $\alpha _{0}$-volume is equal to 1:
\[\sum \limits_{i_{1}\in V}|\varDelta _{i_{1}}{|}^{\alpha _{0}}=\sum \limits_{i_{1}\in V}{q_{i_{1}}^{\alpha _{0}}}=1.\]
Suppose that for $k=n-1$, the $\alpha _{0}$-volume of the covering of $C[\mathit{GLS},V]$ by cylinders of rank $n-1$ is equal to 1. Let us show that for $k=n$, the $\alpha _{0}$-volume of the covering of $C[\mathit{GLS},V]$ by cylinders of rank n will not change. We have
\[\begin{array}{r@{\hskip0pt}l}\displaystyle \sum \limits_{i_{j}\in V}|\varDelta _{i_{1}i_{2}...i_{n-1}i_{n}}{|}^{\alpha _{0}}& \displaystyle =\sum \limits_{i_{j}\in V}{(q_{i_{1}}q_{i_{2}}\dots q_{n-1}q_{n})}^{\alpha _{0}}\\{} & \displaystyle =\sum \limits_{i_{1}\in V}{q_{i_{1}}^{\alpha _{0}}}\cdot \sum \limits_{i_{j}\in V}{(q_{i_{1}}q_{i_{2}}\dots q_{n-1})}^{\alpha _{0}}=1.\end{array}\]
So, for any $\varepsilon >0$, we get
\[{H_{\varepsilon }^{\alpha _{0}}}\big(C[\mathit{GLS},V]\big)\le 1.\]
Hence,
\[{H}^{\alpha _{0}}\big(C[\mathit{GLS},V]\big)\le 1.\]
By the definition of the Hausdorff–Besicovitch dimension we get
\[\dim _{H}\big(C[\mathit{GLS},V]\big)\le \alpha _{0}.\]
Let us show that $\dim _{H}(C[\mathit{GLS},V])\ge \alpha _{0}$. To this end, let us consider sets $V=\{i_{1},\dots ,i_{k},\dots \hspace{0.1667em}\}$, $V_{k}=\{i_{1},\dots ,i_{k}\},\hspace{2.5pt}k\ge 2,\hspace{2.5pt}k\in N$, and the sequence $C[\mathit{GLS},V_{k}]$ of subsets of $C[\mathit{GLS},V]$. For all $k\ge 2,\hspace{2.5pt}k\in N$, we have
\[C[\mathit{GLS},V_{k}]\subset C[\mathit{GLS},V_{k+1}],\]
and, therefore,
\[\dim _{H}\big(C[\mathit{GLS},V_{k}]\big)\le \dim _{H}\big(C[\mathit{GLS},V_{k+1}]\big).\]
Let $\dim _{H}(C[\mathit{GLS},V_{k}])=\alpha _{k}$. The sets $C[\mathit{GLS},V_{k}]$ are self-similar and satisfy the open set condition (OSC). Hence, the Hausdorff–Besicovitch dimension $\alpha _{k}$ of $C[\mathit{GLS},V_{k}]$ coincides with the solution of the equation
\[\sum \limits_{i\in V_{k}}{q_{i}^{x}}=1.\]
It is clear that $\alpha _{2}<\alpha _{3}<\cdots <\alpha _{k}<\cdots \hspace{0.1667em}$ and $\alpha _{k}<\alpha _{0}$. So, the sequence $\{\alpha _{k}\}$ is increasing and bounded. Therefore, there exists a limit $\lim _{k\to \infty }\alpha _{k}={\alpha }^{\ast }$.
It is clear that ${\alpha }^{\ast }\le \alpha _{0}$ because $\alpha _{k}<\alpha _{0}\hspace{2.5pt}(\forall k\in N)$. Let us prove that ${\alpha }^{\ast }=\alpha _{0}$.
Assume the opposite: let ${\alpha }^{\ast }<\alpha _{0}$. Then there exists ${\alpha ^{\prime }}$ such that ${\alpha }^{\ast }<{\alpha ^{\prime }}<\alpha _{0}$. Then $\sum _{i\in V_{k}}{q_{i}^{{\alpha ^{\prime }}}}<1$ for all $k\in N$. Since $\sum _{i\in V_{k}}{q_{i}^{\alpha _{k}}}=1$, we get $\sum _{i\in V_{k}}{q_{i}^{{\alpha ^{\prime }}}}<1$ for all $k\in N$. Let us consider the series ${\sum _{k=1}^{\infty }}{q_{i_{k}}^{{\alpha ^{\prime }}}}$. It is clear that ${\sum _{k=1}^{n}}{q_{i_{k}}^{{\alpha ^{\prime }}}}<1$ for all $n\in N$. So $\lim _{n\to \infty }{\sum _{k=1}^{n}}{q_{i_{k}}^{{\alpha ^{\prime }}}}\le 1$. Therefore, $\sum _{i\in V}{q_{i}^{{\alpha ^{\prime }}}}\le 1$.
Since ${q_{i}^{{\alpha ^{\prime }}}}>{q_{i}^{\alpha _{0}}}$ for all $i\in V$ and $\sum _{i\in V}{q_{i}^{\alpha _{0}}}=1$, we get $\sum _{i\in V}{q_{i}^{{\alpha ^{\prime }}}}>\sum _{i\in V}{q_{i}^{\alpha _{0}}}=1$, which contradicts the already proven inequality $\sum _{i\in V}{q_{i}^{{\alpha ^{\prime }}}}\le 1$. This proves that ${\alpha }^{\ast }=\alpha _{0}$.
Since for any $k\ge 2,\hspace{2.5pt}k\in N$,
\[\alpha _{k}=\dim _{H}\big(C[\mathit{GLS},V_{k}]\big)\le \dim _{H}\big(C[\mathit{GLS},V]\big),\]
we get
\[\alpha _{0}\le \dim _{H}\big(C[\mathit{GLS},V]\big).\]
Thus,
\[\alpha _{0}=\dim _{H}\big([\mathit{GLS},V]\big).\]
 □
Theorem 2.
If the matrix $Q_{\infty }$ and the set $V=\{i_{1},i_{2},\dots ,i_{k},i_{k+1},\dots \hspace{0.1667em}\}$ are such that equation $\sum _{i\in V}{q_{i}^{x}}=1$ has no roots on $[0,1]$, then
\[\dim _{H}\big(C[\mathit{GLS},V]\big)=\underset{k\to \infty }{\lim }\dim _{H}\big([\mathit{GLS},V_{k}]\big),\]
where $V_{k}=\{i_{1},i_{2},\dots ,i_{k}\},\hspace{2.5pt}k\in N,\hspace{2.5pt}k\ge 2$.
Proof.
The sets $C[\mathit{GLS},V_{k}]$ are self-similar and satisfy the OSC. Thus the dimension $\alpha _{k}$ can be obtained as a solution of the equation $\sum _{i\in V_{k}}{q_{i}^{x}}=1$. It is easy to see that
\[\alpha _{2}<\alpha _{3}<\cdots <\alpha _{k-1}<\alpha _{k}<1.\]
Therefore, there exists the limit
\[\underset{k\to \infty }{\lim }\alpha _{k}={\alpha }^{\ast }.\]
It is clear that ${\alpha }^{\ast }\le \dim _{H}(C[\mathit{GLS},V])$ because $C[\mathit{GLS},V_{k}]\subset C[\mathit{GLS},V]$ for all $k\ge 2$. Suppose that ${\alpha }^{\ast }<\dim _{H}(C[\mathit{GLS},V])$. Then there exists a number ${\alpha ^{\prime }}$ such that ${\alpha }^{\ast }<{\alpha ^{\prime }}<\dim _{H}(C[\mathit{GLS},V])$. It is clear that
\[\sum \limits_{i\in V_{2}}{q_{i}^{{\alpha ^{\prime }}}}<\sum \limits_{i\in V_{3}}{q_{i}^{{\alpha ^{\prime }}}}<\cdots <\sum \limits_{i\in V_{k}}{q_{i}^{{\alpha ^{\prime }}}}<1.\]
So, $\sum _{i\in V}{q_{i}^{{\alpha ^{\prime }}}}\le 1$.
On the other hand, ${H}^{{\alpha ^{\prime }}}(C[\mathit{GLS},V])=\infty $ by the definition of the Hausdorff–Besicovitch dimension (because ${\alpha ^{\prime }}<\dim _{H}(C[\mathit{GLS},V])$). Then the ${\alpha ^{\prime }}$-dimensional Hausdorff measure of the set $C[\mathit{GLS},V]$ with respect to the family Φ of coverings that are generated by the GLS-expansion of the unit segment is equal to ${H}^{{\alpha ^{\prime }}}(C[\mathit{GLS},\varPhi ])=\infty $ (where the family Φ is a locally fine system of the coverings of the unit segment, i.e., for any $\varepsilon >0$, there exists such a covering of $[0,1]$ by the subsets $E_{j}\in \varPhi $ such that $|E_{j}|<\varepsilon $ and $[0,1]=\bigcup _{j}E_{j}$). Since the set $C[\mathit{GLS},V]$ can be covered by cylindrical segments of the GLS-expansion with indices from V, we deduce that for any $M>0$, there exists $k(M)$ such that for all $k>k(M)$, we have the inequality
\[\begin{array}{r@{\hskip0pt}l}\displaystyle \sum \limits_{i_{q}\in V,q\in \{1,\dots ,k\}}|\varDelta _{i_{1}i_{2}\dots i_{k}}{|}^{{\alpha ^{\prime }}}& \displaystyle >M,\\{} \displaystyle \sum \limits_{i_{q}\in V,q\in \{1,\dots ,k\}}|\varDelta _{i_{1}i_{2}\dots i_{k}}{|}^{{\alpha ^{\prime }}}& \displaystyle =\sum \limits_{i_{q}\in V,q\in \{1,\dots ,k-1\}}|\varDelta _{i_{1}i_{2}\dots i_{k-1}}{|}^{{\alpha ^{\prime }}}\cdot \sum \limits_{i_{k}\in V}{\varDelta _{i_{k}}^{{\alpha ^{\prime }}}}\\{} & \displaystyle <\sum \limits_{i_{q}\in V,q\in \{1,\dots ,k-1\}}|\varDelta _{i_{1}i_{2}\dots i_{k-1}}{|}^{{\alpha ^{\prime }}}\\{} & \displaystyle =\sum \limits_{i_{q}\in V,q\in \{1,\dots ,k-2\}}|\varDelta _{i_{1}i_{2}\dots i_{k-2}}{|}^{{\alpha ^{\prime }}}\cdot \sum \limits_{i_{k-1}\in V}{q_{i_{k-1}}^{{\alpha ^{\prime }}}}\\{} & \displaystyle <\sum \limits_{i_{q}\in V,q\in \{1,\dots ,k-2\}}|\varDelta _{i_{1}i_{2}\dots i_{k-2}}{|}^{{\alpha ^{\prime }}}<\cdots \\{} & \displaystyle <\sum \limits_{i_{1}\in V}|\varDelta _{i_{1}}{|}^{{\alpha ^{\prime }}}=\sum \limits_{i_{1}\in V}{q_{i_{1}}^{{\alpha ^{\prime }}}}<1.\end{array}\]
From the obtained contradiction it follows that
\[\underset{k\to \infty }{\lim }\alpha _{k}=\dim _{H}\big(C[\mathit{GLS},V]\big),\]
where $\alpha _{k}=\dim _{H}(C[\mathit{GLS},V_{k}])$.  □
Remark 1.
Theorems 1 and 2 can be considered as natural generalizations of results from [8].
Theorem 3.
The Hausdorff–Besicovitch dimension can be calculated as follows:
\[\dim _{H}\big(C[\mathit{GLS},V]\big)=\sup \bigg\{x:\sum \limits_{i\in V}{q_{i}^{x}}\ge 1\bigg\}\]
for any $Q_{\infty }$ and $V=\{i_{1},i_{2},\dots ,i_{k},i_{k+1},\dots \hspace{0.1667em}\}$.
Proof.
Let $\alpha _{0}=\dim _{H}(C[\mathit{GLS},V])$. Show that $\sup \{x:\sum _{i\in V}{q_{i}^{x}}\ge 1\}\ge \alpha _{0}$. Let us consider the function
\[\varphi (x)=\sum \limits_{i\in V}{q_{i}^{x}}\]
and denote the set
\[A_{+}=\big\{x:\varphi (x)\ge 1\big\}.\]
Let $\alpha _{k}$ and $\alpha _{k+1}$ be the solutions of the equations
\[\sum \limits_{i\in V_{k}}{q_{i}^{x}}=1\]
and
\[\sum \limits_{i\in V_{k+1}}{q_{i}^{x}}=1,\]
respectively.
Let us show that $\alpha _{k}<\alpha _{k+1}<\alpha _{0}$. If $\alpha _{0}$ is the solution of $\sum _{i\in V}{q_{i}^{x}}=1$, then it is easy to see that $\alpha _{k}<\alpha _{k+1}<\alpha _{0}$. If $\sum _{i\in V}{q_{i}^{x}}=1$ has no roots on $[0,1]$, then
\[\alpha _{0}=\underset{k\to \infty }{\lim }\alpha _{k}\]
and $\alpha _{k}<\alpha _{k+1}$, so that $\alpha _{k}<\alpha _{k+1}<\alpha _{0}$.
Express the function $\varphi (x)$ as follows:
\[\varphi (x)=\underset{\ge 1}{\underbrace{{q_{i_{1}}^{x}}+\cdots +{q_{i_{k}}^{x}}+{q_{i_{k+1}}^{x}}}}+\sum \limits_{j=k+1}^{\infty }{q_{i_{j}}^{x}}.\]
It is easy to see that for all $x\in [\alpha _{k},\alpha _{k+1}]$ $(x<\alpha _{0},\hspace{2.5pt}k\in N)$, $\varphi (x)\ge 1$. Then $A_{+}\supset (-\infty ;\alpha _{0})$ and $\sup A_{+}\ge \alpha _{0}$.
Let us show that $\sup A_{+}\le \alpha _{0}$. Suppose the opposite. If $\sup A_{+}>\alpha _{0}$, then there exists $x_{1}$ such that $x_{1}\in (\alpha _{0};\sup A_{+}]$, $x_{1}\in A_{+}$, and $\varphi (x_{1})\ge 1$. So
\[\sum \limits_{i\in V}{q_{i}^{x_{1}}}\ge 1.\]
Since $\alpha _{k}$ is a solution of $\sum _{i\in V_{k}}{q_{i}^{x}}=1$ and $\alpha _{k}<\alpha _{0}$, we get
\[\sum \limits_{i\in V_{k}}{q_{i}^{\alpha _{k}}}=1\]
and
\[\sum \limits_{i\in V_{k}}{q_{i}^{\alpha _{0}}}\le 1.\]
It is clear that
\[\sum \limits_{i\in V}{q_{i}^{\alpha _{0}}}<1\]
and
\[\sum \limits_{i\in V}{q_{i}^{x_{1}}}\le 1.\]
So, from the obtained contradiction it follows that $\sup A_{+}=\alpha _{0}$.  □
Let ${\varDelta _{\infty }^{\mathit{GLS}}}$ be the set of those $x\in [0;1]$ that do not belong to any cylinder of the first rank of the GLS-expansion. The set ${\varDelta _{\infty }^{\mathit{GLS}}}$ can be empty, countable, or of continuum cardinality.
Let us recall that the nonempty and bounded set E is called N-self-similar if it can be represented as a union of a countably many sets $E_{j}\hspace{2.5pt}(\dim _{H}(E_{i}\cap E_{j})<\dim _{H}E,i\ne j)$ such that the set E is similar to the sets $E_{j}$ with coefficient $k_{j}$.
Since the spectrum $S_{\xi }$ of the distribution of a random variable ξ with independent identically distributed GLS-symbols is a self-similar or N-self-similar set and $S_{\xi }={(C[\mathit{GLS},V])}^{\mathit{cl}}$, we can apply the above results to calculate the Hausdorff–Besicovitch dimension of the spectrum $S_{\xi }$ for the case where ${\varDelta _{\infty }^{\mathit{GLS}}}$ is an at most countable set.
So, we get the following theorem, which can be considered as a corollary of Theorems 1 and 2.
Theorem 4.
Let $V:=\{i:p_{i}>0\}$. If ${\varDelta _{\infty }^{\mathit{GLS}}}$ is at most countable, then the Hausdorff–Besicovitch dimension of the spectrum of the distribution of a random variable ξ with independent identically distributed $\mathit{GLS}$-symbols can be calculated in the following way.
1) If the equation $\sum _{i\in V}{q_{i}^{x}}=1$ has one root $\alpha _{0}$ on $[0,1]$, then
\[\dim _{H}S_{\xi }=\alpha _{0}.\]
2) If the equation $\sum _{i\in V}{q_{i}^{x}}=1$ has no roots on $[0,1]$, then
\[\dim _{H}S_{\xi }=\underset{k\to \infty }{\lim }\alpha _{k},\]
where $\alpha _{k}$ are the roots of the equations $\sum _{i\in V_{k}}{q_{i}^{x}}=1,\hspace{2.5pt}V_{k}=\{i_{1},i_{2},\dots ,i_{k}\}\subset V$.

Acknowledgments

The author expresses her sincere gratitude to the referee for useful comments and remarks.

References

[1] 
Arroyo, A.: Generalized Lüroth expansions and a family of Minkowski’s question-mark functions. Math. Acad. Sci. Paris 353, 943–946 (2015). MR3411226. doi:10.1016/j.crma.2015.08.008
[2] 
Baranovskyi, O., Pratsiovytyi, M., Torbin, G.: Ostrogradsky–Sierpinski–Pierce Series and Their Applications. Naukova Dumka, Kyiv (2013)
[3] 
Barrionuevo, J., Burton, R.M., Dajani, K., Kraaikamp, C.: Ergodic properties of generalized Lüroth series. Acta Arith. 74, 311–327 (1996). MR1378226
[4] 
Dajani, K., Kraaikamp, C.: Ergodic Theory of Numbers. The Mathematic Association of America, Washington (2002). MR1917322
[5] 
Falconer, K.: Fractal Geometry: Mathematical Foundations and Applications. John Wiley and Sons, New York (1990). MR1102677
[6] 
Lupain, M.: Fractal properties of random variables with independent GLS-symbols. Trans. Dragomanov Pedagog. Univ., Ser. 1, Phys.-Math. Sci. 16(1), 279–295 (2014)
[7] 
Lupain, M., Torbin, G.: On new fractal phenomena related to distributions of random variables with independent GLS-symbols. Trans. Dragomanov Pedagog. Univ., Ser. 1, Phys.-Math. Sci. 16(2) (2014)
[8] 
Nikiforov, R., Torbin, G.: On the Hausdorf-f-Besicovitch dimension of generalized self-similar sets generated by infinite IFS. Trans. Dragomanov Pedagog. Univ., Ser. 1, Phys.-Math. Sci. 13(1), 151–163 (2012)
[9] 
Nikiforov, R., Torbin, G.: Fractal properties of random variables with independent $\text{Q}_{\infty }$-symbols. Theory Probab. Math. Stat. 86, 169–182 (2013). MR2986457. doi:10.1090/S0094-9000-2013-00896-5
[10] 
Pratsiovytyi, M.: Fractal Approach in Investigations of Singular Distributions. Dragomanov Pedagogical University, Kyiv (1998)
[11] 
Pratsiovytyi, M., Feshchenko, O.: Topological, metric and fractal properties of probability distributions on the set of incomplete sums of positive series. Theory Stoch. Process. 13, 205–224 (2007). MR2343824
[12] 
Torbin, G.: Fractal properties of the distributions of random variables with independent Q-symbols. Trans. Dragomanov Pedagog. Univ., Ser. 1, Phys.-Math. Sci. 3, 241–252 (2002)
[13] 
Torbin, G.: Multifractal analysis of singularly continuous probability measures. Ukr. Math. J. 57, 837–857 (2005). MR2209816. doi:10.1007/s11253-005-0233-4
[14] 
Torbin, G.: Probability distributions with independent Q-symbols and transformations preserving the Hausdorff dimension. Theory Stoch. Process. 13, 281–293 (2007). MR2343830
[15] 
Torbin, G., Pratsiovytyi, M.: Random variables with independent ${\text{Q}}^{\ast }$-symbols. In: Random Evolutions: Theoretical and Applied Problems, pp. 95–104, Institute for Mathematics of NASU (1992)
Reading mode PDF XML

Table of contents
  • 1 Introduction
  • 2 On GLS-expansion and fractal properties of related probability measures
  • Acknowledgments
  • References

Copyright
© 2016 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Random variables with independent GLS-symbols Q∞-expansion N-self-similar sets Hausdorff–Besicovitch dimension

MSC2010
11K55 28A80

Metrics
since March 2018
457

Article info
views

174

Full article
views

322

PDF
downloads

143

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

  • Theorems
    4
Theorem 1.
Theorem 2.
Theorem 3.
Theorem 4.
Theorem 1.
If a stochastic vector $Q_{\infty }$ and a set $V\subset N_{0}$ are such that the equation $\sum _{i\in V}{q_{i}^{x}}=1$ has a root $\alpha _{0}$ on $[0,1]$, then
\[\dim _{H}\big(C[\mathit{GLS},V]\big)=\alpha _{0}.\]
Theorem 2.
If the matrix $Q_{\infty }$ and the set $V=\{i_{1},i_{2},\dots ,i_{k},i_{k+1},\dots \hspace{0.1667em}\}$ are such that equation $\sum _{i\in V}{q_{i}^{x}}=1$ has no roots on $[0,1]$, then
\[\dim _{H}\big(C[\mathit{GLS},V]\big)=\underset{k\to \infty }{\lim }\dim _{H}\big([\mathit{GLS},V_{k}]\big),\]
where $V_{k}=\{i_{1},i_{2},\dots ,i_{k}\},\hspace{2.5pt}k\in N,\hspace{2.5pt}k\ge 2$.
Theorem 3.
The Hausdorff–Besicovitch dimension can be calculated as follows:
\[\dim _{H}\big(C[\mathit{GLS},V]\big)=\sup \bigg\{x:\sum \limits_{i\in V}{q_{i}^{x}}\ge 1\bigg\}\]
for any $Q_{\infty }$ and $V=\{i_{1},i_{2},\dots ,i_{k},i_{k+1},\dots \hspace{0.1667em}\}$.
Theorem 4.
Let $V:=\{i:p_{i}>0\}$. If ${\varDelta _{\infty }^{\mathit{GLS}}}$ is at most countable, then the Hausdorff–Besicovitch dimension of the spectrum of the distribution of a random variable ξ with independent identically distributed $\mathit{GLS}$-symbols can be calculated in the following way.
1) If the equation $\sum _{i\in V}{q_{i}^{x}}=1$ has one root $\alpha _{0}$ on $[0,1]$, then
\[\dim _{H}S_{\xi }=\alpha _{0}.\]
2) If the equation $\sum _{i\in V}{q_{i}^{x}}=1$ has no roots on $[0,1]$, then
\[\dim _{H}S_{\xi }=\underset{k\to \infty }{\lim }\alpha _{k},\]
where $\alpha _{k}$ are the roots of the equations $\sum _{i\in V_{k}}{q_{i}^{x}}=1,\hspace{2.5pt}V_{k}=\{i_{1},i_{2},\dots ,i_{k}\}\subset V$.

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy