Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 3, Issue 3 (2016)
  4. On spectra of probability measures gener ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • Cited by
  • More
    Article info Full article Related articles Cited by

On spectra of probability measures generated by GLS-expansions
Volume 3, Issue 3 (2016), pp. 213–221
Marina Lupain  

Authors

 
Placeholder
https://doi.org/10.15559/16-VMSTA61
Pub. online: 26 October 2016      Type: Research Article      Open accessOpen Access

Received
5 August 2016
Revised
27 September 2016
Accepted
27 September 2016
Published
26 October 2016

Abstract

We study properties of distributions of random variables with independent identically distributed symbols of generalized Lüroth series (GLS) expansions (the family of GLS-expansions contains Lüroth expansion and $Q_{\infty }$- and ${G_{\infty }^{2}}$-expansions). To this end, we explore fractal properties of the family of Cantor-like sets $C[\mathit{GLS},V]$ consisting of real numbers whose GLS-expansions contain only symbols from some countable set $V\subset N\cup \{0\}$, and derive exact formulae for the determination of the Hausdorff–Besicovitch dimension of $C[\mathit{GLS},V]$. Based on these results, we get general formulae for the Hausdorff–Besicovitch dimension of the spectra of random variables with independent identically distributed GLS-symbols for the case where all but countably many points from the unit interval belong to the basis cylinders of GLS-expansions.

References

[1] 
Arroyo, A.: Generalized Lüroth expansions and a family of Minkowski’s question-mark functions. Math. Acad. Sci. Paris 353, 943–946 (2015). MR3411226. doi:10.1016/j.crma.2015.08.008
[2] 
Baranovskyi, O., Pratsiovytyi, M., Torbin, G.: Ostrogradsky–Sierpinski–Pierce Series and Their Applications. Naukova Dumka, Kyiv (2013)
[3] 
Barrionuevo, J., Burton, R.M., Dajani, K., Kraaikamp, C.: Ergodic properties of generalized Lüroth series. Acta Arith. 74, 311–327 (1996). MR1378226
[4] 
Dajani, K., Kraaikamp, C.: Ergodic Theory of Numbers. The Mathematic Association of America, Washington (2002). MR1917322
[5] 
Falconer, K.: Fractal Geometry: Mathematical Foundations and Applications. John Wiley and Sons, New York (1990). MR1102677
[6] 
Lupain, M.: Fractal properties of random variables with independent GLS-symbols. Trans. Dragomanov Pedagog. Univ., Ser. 1, Phys.-Math. Sci. 16(1), 279–295 (2014)
[7] 
Lupain, M., Torbin, G.: On new fractal phenomena related to distributions of random variables with independent GLS-symbols. Trans. Dragomanov Pedagog. Univ., Ser. 1, Phys.-Math. Sci. 16(2) (2014)
[8] 
Nikiforov, R., Torbin, G.: On the Hausdorf-f-Besicovitch dimension of generalized self-similar sets generated by infinite IFS. Trans. Dragomanov Pedagog. Univ., Ser. 1, Phys.-Math. Sci. 13(1), 151–163 (2012)
[9] 
Nikiforov, R., Torbin, G.: Fractal properties of random variables with independent $\text{Q}_{\infty }$-symbols. Theory Probab. Math. Stat. 86, 169–182 (2013). MR2986457. doi:10.1090/S0094-9000-2013-00896-5
[10] 
Pratsiovytyi, M.: Fractal Approach in Investigations of Singular Distributions. Dragomanov Pedagogical University, Kyiv (1998)
[11] 
Pratsiovytyi, M., Feshchenko, O.: Topological, metric and fractal properties of probability distributions on the set of incomplete sums of positive series. Theory Stoch. Process. 13, 205–224 (2007). MR2343824
[12] 
Torbin, G.: Fractal properties of the distributions of random variables with independent Q-symbols. Trans. Dragomanov Pedagog. Univ., Ser. 1, Phys.-Math. Sci. 3, 241–252 (2002)
[13] 
Torbin, G.: Multifractal analysis of singularly continuous probability measures. Ukr. Math. J. 57, 837–857 (2005). MR2209816. doi:10.1007/s11253-005-0233-4
[14] 
Torbin, G.: Probability distributions with independent Q-symbols and transformations preserving the Hausdorff dimension. Theory Stoch. Process. 13, 281–293 (2007). MR2343830
[15] 
Torbin, G., Pratsiovytyi, M.: Random variables with independent ${\text{Q}}^{\ast }$-symbols. In: Random Evolutions: Theoretical and Applied Problems, pp. 95–104, Institute for Mathematics of NASU (1992)

Full article Related articles Cited by PDF XML
Full article Related articles Cited by PDF XML

Copyright
© 2016 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Random variables with independent GLS-symbols Q∞-expansion N-self-similar sets Hausdorff–Besicovitch dimension

MSC2010
11K55 28A80

Metrics
since March 2018
457

Article info
views

174

Full article
views

322

PDF
downloads

143

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy