Gärtner–Ellis condition for squared asymptotically stationary Gaussian processes        
        
    
        Volume 2, Issue 3 (2015): PRESTO-2015, pp. 267–286
            
    
                    Pub. online: 2 October 2015
                    
        Type: Research Article
            
                
            
Open Access
        
            
    
                    1
                This research was supported by Laboratoire d’Excellence TOUCAN (Toulouse Cancer).
    
                Received
19 June 2015
                                    19 June 2015
                Revised
18 September 2015
                                    18 September 2015
                Accepted
18 September 2015
                                    18 September 2015
                Published
2 October 2015
                    2 October 2015
Abstract
We establish the Gärtner–Ellis condition for the square of an asymptotically stationary Gaussian process. The same limit holds for the conditional distribution given any fixed initial point, which entails weak multiplicative ergodicity. The limit is shown to be the Laplace transform of a convolution of gamma distributions with Poisson compound of exponentials. A proof based on the Wiener–Hopf factorization induces a probabilistic interpretation of the limit in terms of a regression problem.
            References
 Benitz, G.R., Bucklew, J.A.: Large deviation rate calculations for nonlinear detectors in Gaussian noise. IEEE Trans. Inf. Theory 36(2), 358–371 (1990). MR1052787. doi:10.1109/18.52482 
 Bingham, N.H.: Szegő’s theorem and its probabilistic descendants. Probab. Surv. 9, 287–324 (2012). MR2956573 
 Bondesson, L.: Generalized Gamma Convolutions and Related Classes of Distributions. Lect. Notes Stat., vol. 76. Springer (1992). MR1224674. doi:10.1007/978-1-4612-2948-3 
 Böttcher, A., Silbermann, B.: Introduction to Large Truncated Toeplitz Matrices. Springer (1999). MR1724795. doi:10.1007/978-1-4612-1426-7 
 Bryc, W., Dembo, A.: Large deviations for quadratic functionals of Gaussian processes. J. Theor. Probab. 10, 307–332 (1997). MR1455147. doi:10.1023/A:1022656331883 
 Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications, 2nd edn. Springer (1998). MR1619036. doi:10.1007/978-1-4612-5320-4 
 Feller, W.: An Introduction to Probability Theory and Its Applications vol. II, 2nd edn. Wiley, London (1971). MR0270403 
 Grenander, U., Szegő, G.: Toeplitz Forms and Their Applications, 2nd edn. Chelsea, New York (1984). MR0890515 
 Hannan, E.J.: Multiple Time Series. Wiley, New York (1970). MR0279952 
 Kallenberg, O.: Foundations of Modern Probability. Springer (1997). MR1464694 
 Kleptsyna, M.L., Le Breton, A., Viot, M.: New formulas concerning Laplace transforms of quadratic forms for general Gaussian sequences. J. Appl. Math. Stoch. Anal. 15(4), 309–325 (2002). MR1950568. doi:10.1155/S1048953302000266 
 Kleptsyna, M.L., Le Breton, A., Ycart, B.: Exponential transform of quadratic functional and multiplicative ergodicity of a Gauss–Markov process. Stat. Probab. Lett. 87, 70–75 (2014). MR3168937. doi:10.1016/j.spl.2013.12.023 
 Kontoyiannis, I., Meyn, S.P.: Spectral theory and limit theorems for geometrically ergodic Markov processes. Ann. Appl. Probab. 13(1), 304–362 (2003). MR1952001. doi:10.1214/aoap/1042765670 
 Krein, M.G.: Integral equations on the half-line with a kernel depending on the difference of the arguments. Usp. Mat. Nauk 13(5), 3–120 (1958). MR0102721 
 Louhichi, S., Ycart, B.: Exponential growth of bifurcating processes with ancestral dependence. Adv. Appl. Probab. 47(2), 545–564 (2015). MR3360389. doi:10.1239/aap/1435236987 
 Marcus, M.B., Rosen, J.: Existence of a critical point for the infinite divisibility of squares of Gaussian vectors in ${R}^{2}$ with non-zero mean. Electron. J. Probab. 14(48), 1417–1455 (2009). MR2519526 
 Muskhelishvili, N.I.: Singular Integral Equations: Boundary Problems of Function Theory and Their Application to Mathematical Physics, 3rd edn. Dover, New York (2008). MR1215485 
 Yurinsky, V.: Sums and Gaussian Vectors. Lect. Notes Math., vol. 1617. Springer (1995). MR1442713