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Abstract We establish the Gärtner–Ellis condition for the square of an asymptotically sta-
tionary Gaussian process. The same limit holds for the conditional distribution given any fixed
initial point, which entails weak multiplicative ergodicity. The limit is shown to be the Laplace
transform of a convolution of gamma distributions with Poisson compound of exponentials.
A proof based on the Wiener–Hopf factorization induces a probabilistic interpretation of the
limit in terms of a regression problem.
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1 Introduction

The convergence of the scaled cumulant generating functions of a sequence of ran-
dom variables implies a large deviation principle; this is known as the Gärtner–Ellis
condition [6, p. 43]. Our main result is that condition for the square of an asymptoti-
cally stationary Gaussian process. Reasons for studying squared Gaussian processes
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come from different fields: large deviation theory [19, 5], time series analysis [10],
or ancestry-dependent branching processes [16]. Since only nonnegative real-valued
random variables are considered here, we shall use logarithms of Laplace transforms
instead of cumulant generating functions.

Theorem 1. Let (Xt )t∈N be a Gaussian process with mean m = (m(t)) and covari-
ance kernel K = (K(t, s)): for all t, s ∈ Z,

E[Xt ] = m(t) and E
[(

Xt − m(t)
)(

Xs − m(s)
)] = K(t, s).

Assume:
sup
t∈Z

∣∣m(t)
∣∣ < +∞; (H1)

sup
t�1

t−1
max
s=0

t−1∑
r=0

∣∣K(s, r)
∣∣ < +∞. (H2)

Assume that there exist a constant m∞ and a positive definite symmetric function k

such that: ∑
t∈Z

∣∣k(t)
∣∣ < ∞; (H3)

lim
t→+∞

1

t

t−1∑
s=0

∣∣m(s) − m∞
∣∣ = 0; (H4)

lim
t→+∞

1

t

t−1∑
s,r=0

∣∣K(s, r) − k(r − s)
∣∣ = 0. (H5)

Denote by f the spectral density of k:

f (λ) =
∑
t∈Z

eiλt k(t). (1)

For t � 0, consider the following Laplace transform:

Lt(α) = E

[
exp

(
−α

t−1∑
s=0

X2
s

)]
. (2)

Then for all α � 0,

lim
t→+∞

1

t
log

(
Lt(α)

) = −�(α) = −�0(α) − �1(α) (3)

with

�0(α) = 1

4π

∫ 2π

0
log

(
1 + 2αf (λ)

)
dλ (4)

and
�1(α) = m2∞α

(
1 + 2αf (0)

)−1
. (5)
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Theorem 1 yields as a particular case the following result of weak multiplicative
ergodicity.

Proposition 1. Under the hypotheses of Theorem 1 and assuming K(0, 0) positive,
consider

Lx,t (α) = Ex

[
exp

(
−α

t−1∑
s=0

X2
s

)]
, (6)

where Ex denotes the conditional expectation given X0 = x.
Then for all α � 0 and x ∈ R,

lim
t→+∞

1

t
log

(
Lx,t (α)

) = −�(α),

where � is defined by (3), (4), and (5).

The analogue for finite-state Markov chains has long been known [6, p. 72]. It
was extended to strong multiplicative ergodicity of exponentially converging Markov
chains by Meyn and his coworkers; see [14]. In [13], the square of a Gauss–Markov
process was studied, strong multiplicative ergodicity was proved, and the limit was
explicitly computed. This motivated the present generalization.

The particular case of a centered stationary process (m(t) = 0, K(t, s) =
k(t−s)) can be considered as classical: in that case, the limit (4) follows from Szegő’s
theorem on Toeplitz matrices: see [9, 4] as a general reference on Toeplitz matrices
and [2] for a review of probabilistic applications of Szegő’s theory. The extension
to the centered asymptotically stationary case follows from the notion of asymptot-
ically equivalent matrices in the L2 sense; see Section 7.4, p. 104, of [9], and [8].
The noncentered stationary case (m(t) = m∞ and K(s, t) = k(s − t)) has received
much less attention. In Proposition 2.2 of [5], the large deviation principle is obtained
for a squared noncentered stationary Gaussian process. There, the centered case is
deduced from Szegő’s theorem, whereas the noncentered case follows from the con-
traction principle. A similar approach to the general case can be found in [1].

We propose here a different method. Instead of the spectral decomposition and
Szegő’s theorem, a Wiener–Hopf factorization is used. The limits (4) and (5) are
both deduced from the asymptotics of that factorization. The technique is close to
those developed in [12] and used in [13]. One advantage is that the coefficients of
the Wiener–Hopf factorization can be given a probabilistic interpretation in terms of
a regression problem. This approach will be detailed in Section 2.

To go from the stationary to the asymptotically stationary case, the asymptotic
equivalence of matrices is needed. But the classical L2 definition of [8, Sect. 2.3]
does not suffice for the noncentered case. A stronger notion, linked to the L1 norm of
vectors instead of the L2 norm, will be developed in Section 3.

Joining the stationary case to asymptotic equivalence, we get the conclusion of
Theorem 1, but only for small enough values of α. To deduce that the convergence
holds for all α � 0, an extension of Lévy’s continuity theorem will be used: if both
(Lt (α))1/t and e−�(α) are the Laplace transforms of probability distributions on R

+,
then the convergence over an interval implies the weak convergence of measures and
hence the convergence of Laplace transforms for all α � 0. In fact, (Lt (α))1/t and
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e−�(α) both are the Laplace transforms of infinitely divisible distributions, more pre-
cisely, convolutions of gamma distributions with Poisson compounds of exponen-
tials. Details will be given in Section 4, together with the particular case of a Gauss–
Markov process.

2 The stationary case

This section treats the stationary case: m(t) = m∞ and K(s, t) = k(t − s). We shall
denote by ct = (m∞)s=0,...,t−1 the constant vector with coordinates all equal to m∞
and by Ht the Toeplitz matrix with symbol k: Ht = (k(s − r))s,r=0,...,t−1. The main
result of this section is a particular case of Theorem 1. It entails Proposition 2.2 of
Bryc and Dembo [5].

Proposition 2. Assume that k is a positive definite symmetric function such that∑
t∈Z

∣∣k(t)
∣∣ = M < +∞,

and denote by f the corresponding spectral density:

f (λ) =
∑
t∈Z

eiλt k(t).

Let Z = (Zt )t∈Z be a centered stationary process with covariance function k. Let
m∞ be a real. For all α such that 0 � α < 1/(2M),

lim
t→+∞

1

t
log

(
E

[
exp

(
−α

t−1∑
s=0

(Zs + m∞)2
)])

= −�0(α) − �1(α),

where �0(α) and �1(α) are defined by (4) and (5).

Denote by mt and Kt the mean and covariance matrix of the vector (Xs)s=0,...,t−1.
The Laplace transform of the squared norm of a Gaussian vector has a well-known
explicit expression; see, for instance, [19, p. 6]. The identity matrix indexed by 0, . . . ,

t − 1 is denoted by It , and the transpose of a vector m is denoted by m∗. Then

Lt(α) = (
det(It + 2αKt)

)−1/2 exp
(−αm∗

t (It + 2αKt)
−1mt

)
, (7)

In the stationary case, mt = ct and Kt = Ht . From (7) we must prove that the
following two limits hold:

lim
t→+∞

1

2t
log

(
det(It + 2αHt)

) = �0(α) = 1

4π

∫ 2π

0
log

(
1 + 2αf (λ)

)
dλ (8)

and
lim

t→+∞
α

t
c∗
t (It + 2αHt)

−1ct = �1(α) = m2∞α
(
1 + 2αf (0)

)−1
. (9)
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Here, It + 2αHt will be interpreted as the covariance matrix of the random vector
(Ys)s=0,...,t−1 from the process

Y = ε + √
2αZ, (10)

where ε = (εt )t∈Z is a sequence of i.i.d. standard normal random variables, indepen-
dent from Z. The limits (8) and (9) will be deduced from a Cholesky decomposition
of It + 2αHt . We begin with an arbitrary positive definite matrix A. The Cholesky
decomposition writes it as the product of a lower triangular matrix by its transpose.
Thus, A−1 is the product of an upper triangular matrix by its transpose. Write it as
A−1 = T ∗DT , where T is a unit lower triangular matrix (the diagonal coefficients
equal to 1), and D is a diagonal matrix with positive coefficients. Denote by G the
lower triangular matrix DT . Then GA = (T ∗)−1 is a unit upper triangular matrix.
Hence, the coefficients G(s, r) of G are uniquely determined by the following system
of linear equations: for 0 � s � t ,

t∑
r=0

G(t, r)A(r, s) = δt,s , (11)

where δt,s denotes the Kronecker symbol equal to 1 if t = s and 0 else. Notice that
A−1 = G∗D−1G, and T AT ∗ = D−1, where D is the diagonal matrix with diagonal
entries G(s, s). In particular,

det(A) =
(∏

s

G(s, s)

)−1

, (12)

and for any vector m = (m(r)),

m∗A−1m =
∑

s

1

G(s, s)

( s∑
r=0

G(s, r)m(r)

)2

. (13)

Here is the probabilistic interpretation of the coefficients G(t, s). Consider a centered
Gaussian vector Y with covariance matrix A. For t = 0, . . . , n, denote by Y�0,t � the
σ -algebra generated by Y0, . . . , Yt , and by νt the partial innovation

νt = Yt − E[Yt |Y�0,t−1�]
with the convention ν0 = Y0. Using elementary properties of Gaussian vectors, it is
easy to check that

νt = 1

G(t, t)

t∑
r=0

G(t, r) Yr . (14)

Moreover, the νt are independent, and the variance of νt is 1/G(t, t).
When this is applied to A = It + 2αHt , another interesting interpretation arises.

For t = 0, . . . , n, (G(t, s))s=0,...,t is the unique solution to the system

G(t, s) + 2α

t∑
r=0

G(t, r) k(r − s) = δt,s . (15)
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Observe that Eqs. (15) are the normal equations of the regression of the εt over the Yt

in the model (10). Actually, since E[YrYs] = δs,r + 2αk(r − s) and E[εtYs] = δt,s ,
setting

μt = G(t, t) νt =
t∑

r=0

G(t, r) Yr , (16)

Eq. (15) says that for s = 0, . . . , t ,

E[μtYs] = E[εtYs].
This means that

μt = E[εt |Y�0,t � ].
Obviously, the μt are independent, the variance of μt is G(t, t), and the filtering error
is

E
[
(εt − μt)

2] = 1 − G(t, t).

In particular, it follows that 0 < G(t, t) < 1.
The asymptotics of G(t, s) will now be related to the spectral density f . Denote

gt (s) = G(t, t − s). A change of index in (15) shows that (gt (s))s=0,...,t is the unique
solution to the system

gt (s) + 2α

t∑
r=0

gt (r) k(s − r) = δs,0. (17)

Proposition 3. Assume that k is a positive definite symmetric function such that∑
t∈Z

∣∣k(t)
∣∣ = M < +∞,

and denote by f the corresponding spectral density:

f (λ) =
∑
t∈Z

eiλt k(t).

For all α such that 0 � α < 1/(2M), the following equation has a unique solution in
L1(Z):

g(s) + 2α

+∞∑
r=0

g(r) k(s − r) = δs,0. (18)

We have:

g(0) = exp

(
− 1

2π

∫ 2π

0
log

(
1 + 2αf (λ)

)
dλ

)
(19)

and

+∞∑
s=0

g(s) = exp

(
−1

2
log

(
1 + 2αf (0)

) − 1

4π

∫ 2π

0
log

(
1 + 2αf (λ)

)
dλ

)
. (20)
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Moreover, if gt (s) is defined for all 0 � s � t by (17), then for all s � 0,

lim
t→+∞ gt (s) = g(s) (21)

and

lim
t→+∞

t∑
s=0

gt (s) =
+∞∑
s=0

g(s). (22)

The proof is equivalent to writing the Wiener–Hopf factorization of the operator
I + 2αH : compare with Section 1.5 of [4], in particular, with the proof of Theo-
rem 1.14 on p. 17. The main idea is to reduce Eq. (18) to the problem of finding a
sectionally holomorphic function satisfying a boundary condition on the unit circle.
This idea is originally due to Krein [15].

Proof. Conditions of invertibility for Toeplitz operators are well known. They are
treated in Sections 2.3 and 7.2 of [4]. Here, the L1 norm of the Toeplitz operator H

with symbol k is M , and the condition 0 � α < 1/(2M) permits to write the inverse
as

(I + 2αH)−1 =
+∞∑
n=0

(−2αH)n.

This property implies the existence and uniqueness of the solution to Eq. (18). The
convergence of the truncated inverse (It + 2αHt)

−1 to (I + 2αH)−1 is deduced for
the L2 case from [4, p. 42]. The convergence of entries follows, and hence (21). To
obtain (22), consider 
t(s) = g(s) − gt (s). From (17) and (18) we have


t(s) = −2α

t∑
r=0

k(r − s)
t (r) − 2α

+∞∑
r=t+1

g(r)k(r − s).

Hence,

t∑
s=0

∣∣
t(s)
∣∣ � 2α

( t∑
r=0

∣∣
t(r)
∣∣)( +∞∑

s=−∞

∣∣k(s)
∣∣)

+ 2α

( +∞∑
s=−∞

∣∣k(s)
∣∣)( +∞∑

r=t+1

∣∣g(r)
∣∣).

Thus, we obtain the following bound:

t∑
s=0

∣∣
t(s)
∣∣ � 2αM

1 − 2αM

+∞∑
r=t+1

∣∣g(r)
∣∣,

which yields (22).
Now we prove identities (19) and (20). The generating function of (g(s))s�0 will

be first related to the spectral density f . Define for all s ∈ Z,

g+(s) =
{

g(s) if s � 0,

0 else,
and g−(s) =

{
g(s) if s < 0,

0 else.
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Denote by F+ and F− the Fourier transforms of g+ and g−:

F±(λ) =
∑
s∈Z

eisλg±(s).

Take the Fourier transforms in both members of (18):

F+(λ) + F−(λ) + 2αF+(λ)f (λ) = 1

or
F+(λ)

(
1 + 2αf (λ)

) = 1 − F−(λ). (23)

Let us define the sectionally holomorphic function ϕ as follows (see [18]):

ϕ(ζ ) =
{

ϕ+(ζ ) = ∑
s�0 ζ sg+(s) if |ζ | < 1,

ϕ−(ζ ) = 1 − ∑
s<0 ζ sg−(s) if |ζ | > 1.

Then:

F+(λ) = lim
ζ→eiλ

|ζ |<1

ϕ(ζ )

F−(λ) = lim
ζ→eiλ

|ζ |>1

1 − ϕ(ζ ),

and Eq. (23) expresses the boundary condition

ϕ+(ζ ) = 1

1 + 2αf̃ (ζ )
ϕ−(ζ ), |ζ | = 1, (24)

where f̃ (ζ ) denotes the value of f (λ) for ζ = eiλ. Problem (24) is a well-known
homogeneous Riemann problem. Since by construction ϕ is bounded near infinity
and for |ζ | = 1, 1 + 2αf̃ (ζ ) > 0, the solution of (24) can be written explicitly [18,
§35]. Assuming for a moment that f̃ satisfies the Hölder condition on the unit circle,
we have that for all ζ0,

ϕ(ζ0) = exp

(
− 1

2π i

∮
|ζ |=1

log(1 + 2αf̃ (ζ ))

ζ − ζ0
dζ

)
. (25)

Observe that the choice of a branch for the logarithm does not change the result. From
now on, the principal branch will be taken.

Equation (25) for ζ0 = 0 implies immediately that

g+(0) = exp

(
− 1

2π i

∮
|ζ |=1

log(1 + 2αf̃ (ζ ))

ζ
dζ

)
= exp

(
− 1

2π

∫ 2π

0
log

(
1 + 2αf (λ)

)
dλ

)
,

which is (19).
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To prove (20), we will calculate

lim
ζ0→1
|ζ0|<1

− 1

2π i

∮
|ζ |=1

log(1 + 2αf̃ (ζ ))

ζ − ζ0
dζ

= lim
ζ0→1
|ζ0|<1

− 1

2π i

∮
|ζ |=1

log(1 + 2αf̃ (1))

ζ − ζ0
dζ

− lim
ζ0→1
|ζ0|<1

1

2π i

∮
|ζ |=1

log(1 + 2αf̃ (ζ )) − log(1 + 2αf̃ (1))

ζ − ζ0
dζ.

The first integral does not depend on ζ0: it is equal to

− log
(
1 + 2αf̃ (1)

) = − log
(
1 + 2αf (0)

)
. (26)

Still assuming that f̃ satisfies a Hölder condition on the unit circle, the second limit
exists and is equal to Cauchy’s principal value integral [18]:

1

2π i

∮
|ζ |=1

log(1 + 2αf̃ (ζ )) − log(1 + 2αf̃ (1))

ζ − 1
dζ

= lim
ε→0

1

2π i

∮
|ζ |=1

|arg(ζ )|>ε

log(1 + 2αf̃ (ζ )) − log(1 + 2αf̃ (1))

ζ − 1
dζ

= lim
ε→0

1

2π

∫
[−π,π]
|λ|>ε

log(1 + 2αf (λ)) − log(1 + 2αf (0))

1 − eiλ
dλ.

Now for ε < |λ| < π ,

1

1 − e−iλ
= 1

2
+ i

sin(λ)

2(1 − cos(λ))
.

The imaginary part is an odd function of λ, which is multiplied by an even function
inside the integral. Hence, the imaginary part in the last integral vanishes. Therefore,

1

2π i

∮
|ζ |=1

log(1 + 2αf̃ (ζ )) − log(1 + 2αf̃ (1))

ζ − 1
dζ

= −1

2
log

(
1 + 2αf (0)

) + 1

4π

∫ π

−π

log
(
1 + 2αf (λ)

)
dλ.

Substracting the last equation from (26) and taking exponential, we get

ϕ+(1) = lim
ζ→1
|ζ |<1

ϕ(ζ )

= exp

(
−1

2
log

(
1 + 2αf (0)

) − 1

4π

∫ 2π

0
log

(
1 + 2αf (λ)

)
dλ

)
,

which is (20).
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To finish the proof, we must explain how the extra Hölder condition on f̃ can be
removed. It must be emphasized here that the problem is not to obtain the solution
of a Riemann problem without Hölder condition on the boundary, but only the values
of ϕ(0) and ϕ+(1). For this, a truncation argument can be used. From the covariance
function k on Z, define

kN(s) =
{

k(s) if |s| � N,

0 else.

Replace k by kN in (18) and denote the solution by gN . The spectral density fN ,
which is the Fourier transform of kN , is smooth. Therefore, the Hölder condition on
the unit circle is satisfied for f̃N . The previous proof shows that Eqs. (19) and (20)
hold for gN and fN . But gN converges to g in L1(Z), and fN converges uniformly
to f . Taking the limit in N yields the desired result.

Here is the probabilistic interpretation. Consider a centered stationary process
(Yt )t∈Z with covariance function A(t, s) = a(t − s). For s � t , denote by Y�s,t �

the σ -algebra generated by (Yr)r=s,...,t . Consider again the partial innovation νt =
Yt −E[Yt |Y�0,t−1�]. From (14) and using stationarity, νt has the same distribution as

ηt = 1

G(t, t)

t∑
r=0

G(t, t − r) Y−r ,

which is
ηt = Y0 − E[Y0 |Y�−t,−1�].

As t tends to infinity, ηt converges almost surely to

η∞ = Y0 − E[Y0 |Y�−∞,−1�].
Observe by stationarity that for all r ,

η∞
D= Yr − E[Yr |Y�−∞,r−1�],

which is the innovation process associated to Y . Now the variance of νt , 1/G(t, t),
tends to the variance of η∞. By the Szegő–Kolmogorov formula (see, e.g., Theorem 3
on p. 137 of [10]) that variance is

exp

(
1

2π

∫ 2π

0
log

(
φ(λ)

)
dλ

)
,

where φ(λ) is the spectral density of Y . Let X be a centered stationary process with
covariance function k, ε be a standard Gaussian noise, and Y = ε + √

2αX. The
spectral densities φ of Y and f of X are related by φ(λ) = 1 + 2αf (λ). Hence,

lim
t→+∞ var(νt ) = lim

t→+∞
1

G(t, t)
= exp

(
1

2π

∫ 2π

0
log

(
1 + 2αf (λ)

)
dλ

)
,

which is equivalent to (19).
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Alternatively, observe that, due to stationarity, μt defined by (16) has the same
distribution as

ξt =
t∑

r=0

G(t, t − r) Y−r ,

which is
ξt = E[ε0 |Y�−t,0�].

As t tends to infinity, ξt converges a.s. to

ξ∞ = E[ε0 |Y�−∞,0�].
Of course, since E[ε−sY−r ] = δs,r for all s = 0, . . . , t ,

E[ξt ε−s] = G(t, t − s).

Hence, the limiting property (21) says that

E[ξ∞ ε−s] = lim
t→+∞ G(t, t − s) = g(s).

In fact, ξ∞ admits the representation

ξ∞ =
+∞∑
s=0

g(s) Y−s .

Similarly, for all t ,

E[εt |Y�−∞,t �] =
+∞∑
s=0

g(s) Yt−s ,

which means that (g(s)) realizes the optimal causal Wiener filter of εt from the Yt−s .
Now, Proposition 2 is a straightforward consequence of Proposition 3.

Proof. Let the coefficients gτ (s) be defined by (17). Applying (12) to A = It +2αHt ,
we get (

det(It + 2αHt)
)−1/2 =

( t−1∏
τ=0

gτ (0)

)1/2

.

Therefore,

1

t
log

((
det(It + 2αHt)

)−1/2) = 1

2t

t−1∑
τ=0

log
(
gτ (0)

)
.

From Proposition 3 we have

lim
τ→+∞ gτ (0) = g(0) = exp

(
− 1

2π

∫ 2π

0
log

(
1 + 2αf (λ)

)
dλ

)
.

Hence,

lim
t→+∞

1

t
log

((
det(It + 2αHt)

)−1/2) = −�0(α).
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Applying now (13) to A = It + 2αHt , we get

c∗
t G

∗
t D

−1
t Gtct = m2∞

t−1∑
τ=0

1

gτ (0)

( τ∑
s=0

gτ (s)

)2

.

From Proposition 3 we have

lim
τ→+∞

1

gτ (0)

( τ∑
s=0

gτ (s)

)2

= 1

g(0)

(+∞∑
s=0

g(s)

)2

= (
1 + 2αf (0)

)−1
.

Hence,
lim

t→+∞
α

t
c∗
t (It + 2αHt)

−1ct = �1(α).

3 Asymptotic equivalence

Proposition 2 only treats the stationary case. To extend the result under the hypotheses
of Theorem 1, a notion of asymptotic equivalence of matrices and vectors is needed.
It is developed in this section.

From (7), we must prove that, under the hypotheses of Theorem 1,

lim
t→+∞

1

2t
log

(
det(It + 2αKt)

) = �0(α) = 1

4π

∫ 2π

0
log

(
1 + 2αf (λ)

)
dλ (27)

and
lim

t→+∞
α

t
m∗

t (It + 2αKt)
−1mt = �1(α) = m2∞α

(
1 + 2αf (0)

)−1
. (28)

If Kt = Ht (centered stationary case), then (27) is (8). It can also be obtained by
a straightforward application of Szegő’s theorem; see [4, 2]. Relation (27) (cen-
tered asymptotically stationary case) is a consequence of the theory of asymptotically
Toeplitz matrices; see Section 7.4 on p. 104 of [9] and also [8, Theorem 4 on p. 178].
Asymptotic equivalence of matrices in Szegő’s theory is taken in the L2 sense, which
is weaker than that considered here. In other words, (27) holds under weaker hypothe-
ses than (H1–H5). In order to prove (28), we shall develop asymptotic equivalence
of matrices and vectors along the same lines as [8, Sect. 2.3], but in a stronger sense,
replacing L2 by L∞ and L1, for boundedness and convergence. The norms used here
for a vector v = (v(s))s=0,...,t−1 are

‖v‖∞ = t−1
max
s=0

∣∣v(s)
∣∣ and ‖v‖1 =

t−1∑
s=0

∣∣v(s)
∣∣.

For symmetric matrices, the norm subordinate to ‖ · ‖∞ is equal to the norm subor-
dinate to ‖ · ‖1. It will be denoted by ‖ · ‖ and referred to as the strong norm. For
A = (A(s, r))s,r=0,...,t−1 such that A∗ = A,

‖A‖ = t−1
max
s=0

t−1∑
r=0

∣∣A(s, r)
∣∣ = max

‖v‖∞=1
‖Av‖∞
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= t−1
max
r=0

t−1∑
s=0

∣∣A(s, r)
∣∣ = max

‖v‖1=1
‖Av‖1.

The following weak norm will be denoted by |A|:

|A| = 1

t

t−1∑
s,r=0

∣∣A(s, r)
∣∣.

Clearly, |A| � ‖A‖. Moreover, the following bounds hold.

Lemma 1. Let A and B be two symmetric matrices. Then

|AB| � ‖A‖ |B| and |AB| � |A| ‖B‖.

Proof. |AB| is the arithmetic mean of the L1 norms of column vectors of AB. If b is
any column vector of B, then

‖Ab‖1 � ‖A‖ ‖b‖1

because the strong norm is subordinate to the L1 norm of vectors. Hence, the first
result. For the second result, replace columns by rows.

Here is a definition of asymptotic equivalence for vectors.

Definition 1. Let (vt )t�0 and (wt )t�0 be two sequences of vectors such that for
all t � 0, vt = (vt (s))s=0,...,t−1 and wt = (wt (s))s=0,...,t−1. They are said to be
asymptotically equivalent if:

1. ‖vt‖∞ and ‖wt‖∞ are uniformly bounded,

2. limt→+∞ 1
t
‖vt − wt‖1 = 0.

The asymptotic equivalence of (vt ) and (wt ) will be denoted by vt ∼ wt .

Hypotheses (H1) and (H4) imply that mt ∼ ct .
Asymptotic equivalence for matrices is defined as follows (compare with [8,

p. 172]).

Definition 2. Let (At )t�0 and (Bt )t�0 be two sequences of symmetric matrices,
where for all t � 0, At = (At (s, r))s,t=0,...,t−1 and Bt = (Bt (s, r))s,t=0,...,t−1. They
are said to be asymptotically equivalent if:

1. ‖At‖ and ‖Bt‖ are uniformly bounded,

2. limt→+∞ |At − Bt | = 0.

The asymptotic equivalence of (At ) and (Bt ) will still be denoted by At ∼ Bt .

Here are some elementary results, analogous to those stated in Theorem 1 on
p. 172 of [8].
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Lemma 2. Let (At ), (Bt ), (Ct ), (Dt ) be four sequences of symmetric matrices.

1. If At ∼ Bt and Bt ∼ Ct , then At ∼ Ct .

2. If At ∼ Bt and Ct ∼ Dt , then At + Ct ∼ Bt + Dt .

3. If At ∼ Bt and Ct ∼ Dt , then AtCt ∼ BtDt .

4. If At ∼ Bt and F is an analytic function with radius R such that R >

max ‖At‖, max ‖Bt‖, then F(At ) ∼ F(Bt ).

Proof. Points 1 and 2 follow from the triangle inequality for the weak norm. For
point 3, because ‖ · ‖ is a norm of matrices, ‖AtCt‖ � ‖At‖ ‖Ct‖, and ‖BtDt‖ �
‖Bt‖ ‖Dt‖ are uniformly bounded. Moreover by Lemma 1,

|AtCt − BtDt | �
∣∣(At − Bt)Ct

∣∣ + ∣∣Bt(Ct − Dt)
∣∣

� |At − Bt | ‖Ct‖ + ‖Bt‖ |Ct − Dt |.
Since ‖Ct‖ and ‖Bt‖ are uniformly bounded and

lim
t→∞ |At − Bt | = lim

t→∞ |Ct − Dt | = 0,

the result follows. For point 4, let F be analytic with radius of convergence R. For
|z| < R, let

F(z) =
+∞∑
k=0

ak zk

and

Fn(z) =
n∑

k=0

ak zk.

The matrices F(At ), F(Bt ) are defined as the limits of Fn(At ), Fn(Bt ); from the
hypothesis it follows that the convergence is uniform in t . Because ‖ · ‖ is a matrix
norm, ‖F(At )‖ � F(‖At‖), and the same holds for Bt : ‖F(At )‖ and ‖F(Bt )‖ are
uniformly bounded. Let ε be a positive real. Fix n such that for all t ,∥∥F(At ) − Fn(At )

∥∥ <
ε

3
and

∥∥F(Bt ) − Fn(Bt )
∥∥ <

ε

3
.

By induction on n using points 2 and 3, Fn(At ) ∼ Fn(Bt ). There exists t0 such that
for all t > t0, ∣∣Fn(At ) − Fn(Bt )

∣∣ <
ε

3
.

Thus, for all t > t0,∣∣F(At ) − F(Bt )
∣∣ � ∣∣F(At ) − Fn(At )

∣∣ + ∣∣Fn(At ) − Fn(Bt )
∣∣ + ∣∣Fn(Bt ) − F(Bt )

∣∣
�

∥∥F(At ) − Fn(At )
∥∥ + ∣∣Fn(At ) − Fn(Bt )

∣∣ + ∥∥Fn(Bt ) − F(Bt )
∥∥

< ε.

Hence the result.
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Hypothesis (H3) implies that ‖Ht‖ is uniformly bounded, (H2) and (H5) that
Kt ∼ Ht . Point 4 will be applied to F(z) = (1 + 2αz)−1, which has the radius of
convergence R = 1/2α. Let M be defined as

M = max

{
max
t�1

‖Kt‖,
∑
t∈Z

∣∣k(t)
∣∣}.

For all α < α0 = 1/(2M),

(It + 2αKt)
−1 ∼ (It + 2αHt)

−1. (29)

Here is the relation between asymptotic equivalence of vectors and matrices.

Lemma 3. 1. If At ∼ Bt and ‖vt‖∞ is uniformly bounded, then Atvt ∼ Btvt .

2. If vt ∼ wt and ‖At‖ is uniformly bounded, then Atvt ∼ Atwt .

Proof. The norms ‖Atvt‖∞, ‖Btvt‖∞, ‖Atwt‖∞ are uniformly bounded because of
the fact that ‖ · ‖ is subordinate to ‖ · ‖∞. Next, for point 1,

1

t

∥∥(At − Bt)vt

∥∥
1 � ‖vt‖∞|At − Bt |.

For point 2,
1

t

∥∥At(vt − wt)
∥∥

1 � 1

t
‖At‖‖vt − wt‖1.

The relation between asymptotic equivalence of vectors and our goal is the fol-
lowing.

Lemma 4. If vt ∼ wt and ut ∼ zt , then

lim
t→+∞

1

t

(
v∗
t ut − w∗

t zt

) = 0.

Proof.

1

t

∣∣v∗
t ut − w∗

t zt

∣∣ � 1

t

(∣∣v∗
t (ut − zt )

∣∣ + ∣∣(v∗
t − w∗

t

)
zt

∣∣)
� 1

t

(‖vt‖∞ ‖ut − zt‖1 + ‖zt‖∞‖vt − wt‖1
)
.

Hence the result.

Using asymptotic equivalence, (27) and (28) can easily be deduced from (8) and
(9) for 0 < α < 1/(2M). We shall not detail the passage from (8) to (27); see
Theorem 4 on p. 178 of [8]. Here is the passage from (9) to (28). For all α < 1/(2M),
it follows from (29) by point 1 of Lemma 3 that

(It + 2αKt)
−1ct ∼ (It + 2αHt)

−1ct .
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By point 2 of Lemma 3, we have

(It + 2αKt)
−1mt ∼ (It + 2αHt)

−1ct .

Lemma 4 implies

lim
t→+∞

1

t
m∗

t (It + 2αKt)mt = lim
t→+∞

1

t
c∗
t (1 + 2αHt)

−1ct .

Hence (28).
Still using asymptotic equivalence, it will now be shown that Proposition 1 is just

a particular case of Theorem 1. Indeed, consider the Gaussian process Xx with mean

mx(t) = E
[
Xx

t

] = m(t) + K(0, t)

K(0, 0)

(
x − m(0)

)
(30)

and covariance function

K•(t, s) = E
[(

Xx
t − mx(t)

)(
Xx

s − mx(s)
)] = K(t, s) − K(t, 0)K(s, 0)

K(0, 0)
. (31)

The distribution of (Xx
t )t∈N and the conditional distribution of (Xt )t∈N given

X0 = x are the same. Denote by mx,t and K•
t the mean and covariance matrix of

(Xx
s )s=0,...,t−1. Theorem 1 applies to Xx , provided that it is proved that mx,t ∼ ct and

K•
t ∼ Ht . By (H1) and (H2), ‖mx,t‖∞ is uniformly bounded. Moreover, by (30),

1

t
‖mx,t − mt‖1 � |x| + ‖mt‖∞

tK(0, 0)

t−1∑
s=0

∣∣K(0, s)
∣∣ � |x| + ‖mt‖∞

tK(0, 0)
‖Kt‖;

thus, mx,t ∼ mt , and hence mx,t ∼ ct by transitivity. Now from (31) we have

‖K•
t ‖ � ‖Kt‖ + t−1

max
r=0

∣∣K(0, r)
∣∣

K(0, 0)

t−1∑
s=0

K(0, s) � ‖Kt‖ + ‖Kt‖2

K(0, 0)
.

Moreover,

∣∣K•
t − Kt

∣∣ � 1

tK(0, 0)

( t−1∑
s=0

∣∣K(0, s)
∣∣)2

� ‖Kt‖2

tK(0, 0)
;

thus, K•
t ∼ Kt , and hence K•

t ∼ Ht by transitivity (point 1 of Lemma 2).

4 Asymptotic distributions

The results of the two previous sections establish that the conclusion of Theorem 1
holds for a small enough α. To finish the proof, the convergence must be extended to
all α � 0. The following variant of Lévy’s continuity theorem applies (see Chapter 4
of [11] and, in particular, Exercise 9 on p. 78).
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Lemma 5. Let π, π1, π2, . . . , be probability measures on R
+. Assume that for some

α0 > 0 and all α ∈ [0, α0[,

lim
n→∞

∫ +∞

0
e−αx dπn(x) =

∫ +∞

0
e−αx dπ(x).

Then (πn) converges weakly to π , and the convergence holds for all α � 0.

To apply this lemma, we have to check that (Lt (α))1/t and e−�(α) are the Laplace
transforms of probability distributions on R

+. It turns out that in our case, the function
Lt(α) defined by (2) is the Laplace transform of an infinitely divisible distribution,
and thus so are (Lt (α))1/t and its limit. We give here the probabilistic interpretation of
e−�0(α) and e−�1(α) as the Laplace transforms of two infinitely divisible distributions.
Next, the particular case of a Gauss–Markov process will be considered.

Through an orthogonal transformation diagonalizing its covariance matrix, the
squared norm of any Gaussian vector can be written as the sum of independent ran-
dom variables, each being the square of a Gaussian variable and thus having noncen-
tral chi-squared distribution. If Z is Gaussian with mean μ and variance v, then the
Laplace transform of Z2 is

φ(α) = (1 + 2αv)−1/2 exp
(−μ2α/(1 + 2αv)

)
.

The first factor is the Laplace transform of the gamma distribution with shape param-
eter 1/2 and scale parameter 2v. Assuming μ and v nonnull, rewrite the second factor
as

exp

(
−μ2

2v

(
1 − (1 + 2αv)−1)).

This is the Laplace transform of a Poisson compound of the exponential with ex-

pectation 2v by the Poisson distribution with rate μ2

2v
. Therefore, the squared norm

of a Gaussian vector has an infinitely divisible distribution, which is a convolution
of gamma distributions with Poisson compounds of exponentials. Squared Gaussian
vectors have received a lot of attention since even in dimension 2, the mean and co-
variance matrix must satisfy certain conditions for the distribution of the vector to be
infinitely divisible [17]. Yet the sum of coordinates of such a vector always has an
infinitely divisible distribution.

For all t , the distribution with Laplace transform (Lt (α))1/t is the convolution of
gamma distributions with Poisson compounds of exponentials. As t tends to infinity,
(Lt (α))1/t tends to e−�0(α) e−�1(α). The first factor e−�0(α) is the Laplace transform
of a limit of convolutions of gamma distributions, which belongs to the Thorin class
T (R+) (see [3] as a general reference). Consider now e−�1(α). Rewrite �1(α) as

�1(α) = m2∞α
(
1 + 2αf (0)

)−1

= m2∞
2f (0)

(
1 − (

1 + 2αf (0)
)−1)

.

Thus, e−�1(α) is the Laplace transform of a Poisson compound of the exponential

distribution with expectation 2f (0) by the Poisson distribution with parameter m2∞
2f (0)

.
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As an illustrating example, consider the Gauss–Markov process defined as fol-
lows. Let θ be a real such that −1 < θ < 1. Let (εt )t�1 be a sequence of i.i.d.
standard Gaussian random variables. Let Y0, independent from the sequence (εt )t�1,
follow the normal N (0, (1 − θ2)−1) distribution. For all t � 1, let

Yt = θYt−1 + εt .

Thus, (Yt )t∈N is a stationary centered autoregressive process. Consider the noncen-
tered process (Xt )t∈N with Xt = Yt +m∞. This is the case considered in [13], where
a stronger result was proved. Formula (10) on p. 72 of that reference matches (4) and
(5) here. Indeed, the spectral density is

f (λ) = 1

1 + θ2 − 2θ cos(λ)
.

Write �0(α) as a contour integral over the unit circle:

�0(α) = 1

4π

∫ 2π

0
log

(
1 + 2αf (λ)

)
dλ

= 1

4π i

∮
|ζ |=1

1

ζ
log

(
1 + 2α

1 + θ2 − θ( 1
ζ

+ ζ )

)
dζ.

Now we have

1 + 2α

1 + θ2 − θ( 1
ζ

+ ζ )
= ζ 2 − (θ + 1

θ
+ 2α

θ
)ζ + 1

ζ 2 − (θ + 1
θ
)ζ + 1

.

Observe that the two roots of the numerator have the same sign as θ , and their product
is 1. Denote them by ζ− and ζ+, so that 0 < |ζ−| < 1 < |ζ+|. The two roots of the
denominator are θ and 1

θ
. The function to be integrated has five poles, among which

0, θ, ζ− are inside the unit disk, and 1
θ
, ζ+ are outside. Rewrite �0 as

�0(α) = 1

4π i

∮
|ζ |=1

1

ζ
log

(
ζ − ζ−

ζ − θ

)
dζ + 1

4π i

∮
|ζ |=1

1

ζ
log

(
ζ − ζ+

ζ − 1
θ

)
dζ.

The first integral is null since∮
|ζ |=1

1

ζ
log

(
ζ − ζ−)

dζ =
∮

|ζ |=1

1

ζ
log(ζ − θ) dζ,

the two functions having the same residues inside the unit disk. The second integral
is

1

4π i

∮
|ζ |=1

1

ζ
log

(
ζ − ζ+

ζ − 1
θ

)
dζ = 1

2
log

(
θζ+)

.

Therefore,

�0(α) = 1

2
log

(
θζ+)
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= 1

2
log

(
1

2

(
θ2 + 1 + 2α +

√(
(θ + 1)2 + 2α

)(
(θ − 1)2 + 2α

)))
.

The expression of �1 is

�1(α) = m2∞α(1 − θ)2

(1 − θ)2 + 2α
.

It turns out that the probability distribution with Laplace transform

e−�0(α) =
(

1

2

(
θ2 + 1 + 2α +

√(
(θ + 1)2 + 2α

)(
(θ − 1)2 + 2α

)))−1/2

has an explicit density f0(x) defined on (0,+∞), which is related to the modified
Bessel function of the first kind with order 1/2 (compare with formula (3.10) on
p. 437 in [7]):

f0(x) = e− 1+θ2
2 x

(
2−1|θ |−1/2x−1I1/2(|θ |x)

)
= e− 1+θ2

2 x
(
(2π)−1/2|θ |−1x−3/2 sinh(|θ |x)

)
.
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