Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 2, Issue 3 (2015): PRESTO-2015
  4. Integral representation with respect to ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • Cited by
  • More
    Article info Full article Related articles Cited by

Integral representation with respect to fractional Brownian motion under a log-Hölder assumption
Volume 2, Issue 3 (2015): PRESTO-2015, pp. 219–232
Taras Shalaiko   Georgiy Shevchenko ORCID icon link to view author Georgiy Shevchenko details  

Authors

 
Placeholder
https://doi.org/10.15559/15-VMSTA35CNF
Pub. online: 25 September 2015      Type: Research Article      Open accessOpen Access

Received
6 September 2015
Revised
13 September 2015
Accepted
14 September 2015
Published
25 September 2015

Abstract

We show that if a random variable is the final value of an adapted log-Hölder continuous process, then it can be represented as a stochastic integral with respect to a fractional Brownian motion with adapted integrand. In order to establish this representation result, we extend the definition of the fractional integral.

References

[1] 
Azmoodeh, E., Mishura, Y., Valkeila, E.: On hedging European options in geometric fractional Brownian motion market model. Stat. Decis. 27(2), 129–143 (2009) MR2662719. doi:10.1524/stnd.2009.1021
[2] 
Li, W.V., Shao, Q.-M.: Gaussian processes: Inequalities, small ball probabilities and applications. Handb. Stat. 19, 533–597 (2001) MR1861734. doi:10.1016/S0169-7161(01)19019-X
[3] 
Mishura, Y.: Stochastic Calculus for Fractional Brownian Motion and Related Processes vol. 1929. Springer (2008) MR2378138. doi:10.1007/978-3-540-75873-0
[4] 
Mishura, Y., Shevchenko, G.: Small ball properties and representation results. arXiv:math.PR/1508.07134 (2015)
[5] 
Mishura, Y., Shevchenko, G., Valkeila, E.: Random variables as pathwise integrals with respect to fractional Brownian motion. Stoch. Process. Appl. 123(6), 2353–2369 (2013) MR3038509. doi:10.1016/j.spa.2013.02.015
[6] 
Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives. Gordon and Breach Science Publishers, Yverdon (1993) MR1347689
[7] 
Shevchenko, G., Viitasaari, L.: Integral representation with adapted continuous integrand with respect to fractional Brownian motion. Stoch. Anal. Appl. 32(6), 934–943 (2014) MR3270688. doi:10.1080/07362994.2014.948725
[8] 
Shevchenko, G., Viitasaari, L.: Adapted integral representations of random variables. Int. J. Mod. Phys. Conf. Ser. 36, 1560004 (2015). World Scientific
[9] 
Viitasaari, L.: Integral representation of random variables with respect to Gaussian processes. To appear in Bernoulli, available at arXiv:math.PR/1307.7559 (2013)
[10] 
Zähle, M.: Integration with respect to fractal functions and stochastic calculus. I. Probab. Theory Relat. Fields 111(3), 333–374 (1998) MR1640795. doi:10.1007/s004400050171

Full article Related articles Cited by PDF XML
Full article Related articles Cited by PDF XML

Copyright
© 2015 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Fractional Brownian motion integral representation fractional integral small deviation

MSC2010
60G22 60H05 26A33

Metrics
since March 2018
781

Article info
views

387

Full article
views

329

PDF
downloads

162

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy