Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. To appear
  3. First-return time in fractional kinetics

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • More
    Article info Full article Related articles

First-return time in fractional kinetics
Marcus Dahlenburg ORCID icon link to view author Marcus Dahlenburg details   Gianni Pagnini ORCID icon link to view author Gianni Pagnini details  

Authors

 
Placeholder
https://doi.org/10.15559/25-VMSTA288
Pub. online: 13 November 2025      Type: Research Article      Open accessOpen Access

Received
2 July 2025
Revised
14 October 2025
Accepted
31 October 2025
Published
13 November 2025

Abstract

The first-return time is the time that it takes a random walker to go back to the initial position for the first time. In this paper, the first-return time is studied when random walkers perform fractional kinetics, specifically fractional diffusion, that is modelled within the framework of the continuous-time random walk on homogeneous space in the uncoupled formulation with Mittag-Leffler distributed waiting-times. Both the Markovian and non-Markovian settings are considered, as well as any kind of symmetric jump-size distributions, namely with finite or infinite variance. It is shown that the first-return time density is indeed independent of the jump-size distribution when it is symmetric, and therefore it is affected only by the waiting-time distribution that embodies the memory of the process. The analysis is performed in two cases: first jump then wait and first wait then jump, and several exact results are provided, including the relation between results in the Markovian and non-Markovian settings and the difference between the two cases.

References

[1] 
Artuso, R., Cristadoro, G., Degli Esposti, M., Knight, G.: Sparre–Andersen theorem with spatiotemporal correlations. Phys. Rev. E 89, 052111 (2014)
[2] 
Aurzada, F., Simon, T.: Persistence Probabilities and Exponents, pp. 183–224. Springer, Cham (2015) MR3468226. https://doi.org/10.1007/978-3-319-23138-9_3
[3] 
Bray, A.J., Majumdar, S.N., Schehr, G.: Persistence and first-passage properties in nonequilibrium systems. Adv. Phys. 62, 225–361 (2013)
[4] 
Chechkin, A.V., Metzler, R., Gonchar, V.Y., Klafter, J., Tanatarov, L.V.: First passage and arrival time densities for Lévy flights and the failure of the method of images. J. Phys. A, Math. Gen. 36, 537–544 (2003) MR2024818. https://doi.org/10.1088/0305-4470/36/41/L01
[5] 
Chechkin, A.V., Metzler, R., Klafter, J., Gonchar, V.Y.: Introduction to the theory of Lévy flights. In: Klages, R., Radons, G., Sokolov, I.M. (eds.) Anomalous Transport: Foundations and Applications, pp. 129–162. Wiley–VCH Verlag GmbH & Co. KGaA, Weinheim (2008). Chap. 5
[6] 
Colaiori, F., Baldassarri, A., Castellano, C.: Average trajectory of returning walks. Phys. Rev. E 69, 041105 (2004)
[7] 
Dahlenburg, M., Pagnini, G.: Exact calculation of the mean first-passage time of continuous-time random walks by nonhomogeneous Wiener–Hopf integral equations. J. Phys. A, Math. Theor. 55, 505003 (2022) MR4543271
[8] 
Dahlenburg, M., Pagnini, G.: Sturm–Liouville systems for the survival probability in first-passage time problems. Proc. Royal Soc. A 479, 20230485 (2023) MR4677864
[9] 
Ding, M., Yang, W.: Distribution of the first return time in fractional Brownian motion and its application to the study of on-off intermittency. Phys. Rev. E 52, 207–213 (1995)
[10] 
Dybiec, B., Gudowska–Nowak, E., Chechkin, A.: To hit or to pass it over–remarkable transient behavior of first arrivals and passages for Lévy flights in finite domains. J. Phys. A, Math. Theor. 49, 504001 (2016) MR3584396. https://doi.org/10.1088/1751-8113/49/50/504001
[11] 
Efros, A.M.: Some applications of operational calculus in analysis. Mat. Sb. 42, 699–705 (1935)
[12] 
Estrada, R., Kanwal, R.P.: Singular Integral Equations. Springer, New York (2000) MR1728075. https://doi.org/10.1007/978-1-4612-1382-6
[13] 
Feller, W.: An Introduction to Probability Theory and Its Applications vol. 2, 2nd edn. Wiley, New York (1971) MR0270403
[14] 
Frisch, U., Frisch, H.: Non-LTE transfer. $\sqrt{\epsilon }$ revisited. Mon. Not. R. Astron. Soc. 173, 167–182 (1975)
[15] 
Frisch, U., Frisch, H.: Universality of escape from a half-space for symmetrical random walks. In: Shlesinger, M.F., Zaslavsky, G.M., Frisch, U. (eds.) Lévy Flights and Related Topics in Physics: Proceedings of the International Workshop Held at Nice, France, 27–30 June 1994. Lecture Notes in Physics, pp. 262–268. Springer, Berlin, Heidelberg (1994) MR1381493. https://doi.org/10.1007/3-540-59222-9_39
[16] 
Giuggioli, L., Bartumeus, F.: Linking animal movement to site fidelity. J. Math. Biol. 64, 647–656 (2012) MR2886029. https://doi.org/10.1007/s00285-011-0431-7
[17] 
Gorenflo, R., Mainardi, F.: Fractional calculus: integral and differential equations of fractional order. In: Carpinteri, A., Mainardi, F. (eds.) Fractals and Fractional Calculus in Continuum Mechanics, pp. 223–276. Springer, Wien and New York (1997) MR1611585
[18] 
Greenwood, P.J.: Mating systems, philopatry and dispersal in birds and mammals. Anim. Behav. 28, 1140–1162 (1980)
[19] 
Gruda, M., Biham, O., Katzav, E., Kühn, R.: The joint distribution of first return times and of the number of distinct sites visited by a 1D random walk before returning to the origin. J. Stat. Mech. 2025, 013203 (2025) https://doi.org/10.1088/1742-5468/ad9a97, MR4863355
[20] 
Hilfer, R., Anton, L.: Fractional master equations and fractal time random walks. Phys. Rev. E 51(2), 848–851 (1995)
[21] 
Ivanov, V.V.: Resolvent method: exact solutions of half-space transport problems by elementary means. Astron. Astrophys. 286, 328–337 (1994)
[22] 
Jeon, J.-H., Chechkin, A.V., Metzler, R.: First passage behavior of multi-dimensional fractional Brownian motion and application to reaction phenomena. In: First-Passage Phenomena and Their Applications, pp. 175–202. World Scientific (2014) MR3363066
[23] 
Klafter, J., Sokolov, I.M.: Anomalous diffusion spread its wings. Phys. World 18, 29–32 (2005)
[24] 
Koren, T., Chechkin, A.V., Klafter, J.: On the first passage time and leapover properties of Lévy motions. Phys. A 379, 10–22 (2007) MR2308361. https://doi.org/10.1016/j.physa.2006.12.039
[25] 
Koren, T., Lomholt, M.A., Chechkin, A.V., Klafter, J., Metzler, R.: Leapover lengths and first passage time statistics for Lévy flights. Phys. Rev. Lett. 99, 160602 (2007)
[26] 
Kostinski, S., Amir, A.: An elementary derivation of first and last return times of 1D random walks. Am. J. Phys. 84, 57–60 (2016)
[27] 
Lacroix-A-Chez-Toine, B., Mori, F.: Universal survival probability for a correlated random walk and applications to records. J. Phys. A, Math. Theor. 53, 495002 (2020) MR4188770. https://doi.org/10.1088/1751-8121/abc129
[28] 
Lindley, D.V.: The theory of queues with a single server. Math. Proc. Camb. Philos. Soc. 48, 277–289 (1952) MR0046597. https://doi.org/10.1017/s0305004100027638
[29] 
Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity. Imperial College Press (2010) MR2676137. https://doi.org/10.1142/9781848163300
[30] 
Mainardi, F., Luchko, Y., Pagnini, G.: The fundamental solution of the space-time fractional diffusion equation. Fract. Calc. Appl. Anal. 4(2), 153–192 (2001) MR1829592
[31] 
Mainardi, F., Mura, A., Pagnini, G.: The M-Wright function in time-fractional diffusion processes: A tutorial survey. Int. J. Differ. Equ. 2010, 104505 (2010) MR2592742. https://doi.org/10.1155/2010/104505
[32] 
Mainardi, F., Pagnini, G., Gorenflo, R.: Mellin transform and subordination laws in fractional diffusion processes. Fract. Calc. Appl. Anal. 6(4), 441–459 (2003) MR2044309
[33] 
Mainardi, F., Raberto, M., Gorenflo, R., Scalas, E.: Fractional calculus and continuous-time finance II: the waiting-time distribution. Phys. A 287(3–4), 468–481 (2000) MR1773804. https://doi.org/10.1016/S0378-4371(00)00255-7
[34] 
Majumdar, S.N.: Universal first-passage properties of discrete-time random walks and Lévy flights on a line: Statistics of the global maximum and records. Phys. A 389, 4299–4316 (2010) MR2673925. https://doi.org/10.1016/j.physa.2010.01.021
[35] 
Majumdar, S.N., Comtet, A., Ziff, R.M.: Unified solution of the expected maximum of a discrete time random walk and the discrete flux to a spherical trap. J. Stat. Phys. 122, 833–856 (2006) MR2219814. https://doi.org/10.1007/s10955-005-9002-x
[36] 
Majumdar, S.N., Mounaix, P., Schehr, G.: Survival probability of random walks and Lévy flights on a semi-infinite line. J. Phys. A, Math. Theor. 50, 465002 (2017) MR3718906. https://doi.org/10.1088/1751-8121/aa8d28
[37] 
Montroll, E.W., Weiss, G.H.: Random walks on lattices. II. J. Math. Phys. 6(2), 167–181 (1965) MR0172344. https://doi.org/10.1063/1.1704269
[38] 
Padash, A., Chechkin, A.V., Dybiec, B., Pavlyukevich, I., Shokri, B., Metzler, R.: First-passage properties of asymmetric Lévy flights. J. Phys. A, Math. Theor. 52, 454004 (2019) MR4028929. https://doi.org/10.1088/1751-8121/ab493e
[39] 
Pagnini, G.: The M-Wright function as a generalization of the Gaussian density for fractional diffusion processes. Fract. Calc. Appl. Anal. 16(2), 436–453 (2013) MR3033698. https://doi.org/10.2478/s13540-013-0027-6
[40] 
Pollaczek, F.: Fonctions caractéristiques de certaines répartitions définies au moyen de la notion d’ordre. Application à la théorie des attentes. C. R. Acad. Sci. Paris 234, 2334–2336 (1952) MR0047945
[41] 
Redner, S.: A Guide to First-Passage Processes. Cambridge University Press, Cambridge (2001) MR1851867. https://doi.org/10.1017/CBO9780511606014
[42] 
Shkilev, V.P.: First-passage and first-arrival problems in continuous-time random walks: Beyond the diffusion approximation. Phys. Rev. E 110, 024139 (2024) MR4804635. https://doi.org/10.1103/physreve.110.024139
[43] 
Sokolov, I.M., Klafter, J., Blumen, A.: Fractional kinetics. Phys. Today 55, 48–54 (2002)
[44] 
Sparre Andersen, E.: On the number of positive sums of random variables. Scand. Actuar. J. 1, 27–36 (1949) MR0032115. https://doi.org/10.1080/03461238.1949.10419756
[45] 
Sparre Andersen, E.: On the fluctuations af sums of random variables. Math. Scand. 1, 263–285 (1953) MR0058893. https://doi.org/10.7146/math.scand.a-10385
[46] 
Sparre Andersen, E.: On the fluctuations af sums of random variables II. Math. Scand. 2, 195–223 (1954) MR0068154
[47] 
Sparre Andersen, E.: Remarks to the paper: On the fluctuations of sums of random variables. Math. Scand. 2, 193–194 (1954) MR0068155. https://doi.org/10.7146/math.scand.a-10407
[48] 
Spitzer, F.: A combinatorial lemma and its application to probability theory. Trans. Am. Math. Soc. 82, 323–339 (1956) MR0079851. https://doi.org/10.2307/1993051
[49] 
Spitzer, F.: The Wiener–Hopf equation whose kernel is a probability density. Duke Math. J. 24, 327–343 (1957) MR0090917
[50] 
Spitzer, F.: The Wiener–Hopf equation whose kernel is a probability density. II. Duke Math. J. 27, 363–372 (1960) MR0121829
[51] 
Włodarski, L.: Sur une formule de Efros. Stud. Math. 13, 183–187 (1952) MR0058743. https://doi.org/10.4064/sm-13-2-183-187
[52] 
Zeng, C., Chen, Y.: Optimal random search, fractional dynamics and fractional calculus. Fract. Calc. Appl. Anal. 17, 321–332 (2014) MR3181057. https://doi.org/10.2478/s13540-014-0171-7
[53] 
Zwanzig, R.: From classical dynamics to continuous time random walks. J. Stat. Phys. 30, 255–262 (1983) MR0710741. https://doi.org/10.1007/BF01012300

Full article Related articles PDF XML
Full article Related articles PDF XML

Copyright
© 2025 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
First-return time fractional kinetics fractional diffusion continuous-time random walk first-passage time Sparre Andersen theorem

MSC2020
82C05 60K50 60J76

Funding
This research is supported by the Basque Government through the BERC 2022–2025 program and by the Ministry of Science and Innovation: BCAM Severo Ochoa accreditation CEX2021-001142-S / MICIN / AEI / 10.13039/501100011033.

Metrics
since March 2018
3

Article info
views

0

Full article
views

2

PDF
downloads

0

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

Journal

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy