Convergence of hitting times for jump-diffusion processes        
        
    
        Volume 2, Issue 3 (2015): PRESTO-2015, pp. 203–218
            
    
                    Pub. online: 23 September 2015
                    
        Type: Research Article
            
                
            
Open Access
        
            
    
                Received
16 February 2015
                                    16 February 2015
                Revised
7 September 2015
                                    7 September 2015
                Accepted
7 September 2015
                                    7 September 2015
                Published
23 September 2015
                    23 September 2015
Abstract
We investigate the convergence of hitting times for jump-diffusion processes. Specifically, we study a sequence of stochastic differential equations with jumps. Under reasonable assumptions, we establish the convergence of solutions to the equations and of the moments when the solutions hit certain sets.
            References
 Cont, R., Tankov, P.: Financial Modelling with Jump Processes. Chapman and Hall/CRC, Boca Raton (2004). MR2042661 
 Moroz, A.G., Tomashyk, V.V.: Convergence of solutions and their exit times in diffusion models with jumps. Cybern. Syst. Anal. 50(2), 288–296 (2014). MR3276037. doi:10.1007/s10559-014-9616-6 
 Pham, H.: Optimal stopping, free boundary, and American option in a jump-diffusion model. Appl. Math. Optim. 35(2), 145–164 (1997). MR1424787. doi:10.1007/s002459900042 
 Situ, R.: Theory of Stochastic Differential Equations with Jumps and Applications. Springer, New York (2005). MR2160585 
 Zhang, X.L.: Valuation of American options in a jump-diffusion model. In: Numerical Methods in Finance. Publ. Newton Inst., pp. 93–114. Cambridge Univ. Press, Cambridge (1997). MR1470511