On parameter estimation for based on projected data into
Pub. online: 17 June 2025
Type: Research Article
Open Access
Received
6 November 2024
6 November 2024
Revised
12 March 2025
12 March 2025
Accepted
16 May 2025
16 May 2025
Published
17 June 2025
17 June 2025
Abstract
The projected normal distribution, with isotropic variance, on the 2-sphere is considered using intrinsic statistics. It is shown that in this case, the expectation commutes with the projection, and that the covariance of the normal variable has a 1-1 correspondence with the intrinsic covariance of the projected normal distribution. This allows us to estimate, after the model identification, the parameters of the underlying normal distribution that generates the data.
References
Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables vol. 55. US Government printing office (1968) MR0415956
Ahidar-Coutrix, A., Le Gouic, T., Paris, Q.: Convergence rates for empirical barycenters in metric spaces: curvature, convexity and extendable geodesics. Probab. Theory Relat. Fields 177(1), 323–368 (2020) MR4095017. https://doi.org/10.1007/s00440-019-00950-0
Dawson, H.G.: On the numerical value of ${\textstyle\int _{0}^{h}}{e^{{x^{2}}}}dx$. Proc. Lond. Math. Soc. 1(1), 519–522 (1897) MR1576451. https://doi.org/10.1112/plms/s1-29.1.519
Fisher, N.I., Lewis, T., Embleton, B.J.J.: Statistical Analysis of Spherical Data. Cambridge University Press (1993) MR1247695
Hernandez-Stumpfhauser, D., Breidt, F.J., van der Woerd, M.J.: The general projected normal distribution of arbitrary dimension: Modeling and Bayesian inference. Bayesian Anal. 12(1), 113–133 (2017) MR3597569. https://doi.org/10.1214/15-BA989
Hotz, T., Le, H., Wood, A.T.A.: Central limit theorem for intrinsic Frechet means in smooth compact Riemannian manifolds. Probab. Theory Relat. Fields (2024) MR4771114. https://doi.org/10.1007/s00440-024-01291-3
Kells, L.M., Kern, W.F., Bland, J.R.: Plane and Spherical Trigonometry. US Armed Forces Institute (1940) MR1524230. https://doi.org/10.2307/2302987
Nuñez-Antonio, G., Ausín, M.C., Wiper, M.P.: Bayesian nonparametric models of circular variables based on Dirichlet process mixtures of normal distributions. J. Agric. Biol. Environ. Stat. 20, 47–64 (2015) MR3334466. https://doi.org/10.1007/s13253-014-0193-y
Nuñez-Antonio, G., Gutiérrez-Peña, E.: A Bayesian analysis of directional data using the projected normal distribution. J. Appl. Stat. 32, 995–1001 (2005) MR2221902. https://doi.org/10.1080/02664760500164886
Nuñez-Antonio, G., Gutiérrez-Peña, E., Escarela, G.: A Bayesian regression model for circular data based on the projected normal distribution. Stat. Model. 11, 185–201 (2011) MR2849683. https://doi.org/10.1177/1471082X1001100301
Pennec, X.: Intrinsic statistics on Riemannian manifolds: Basic tools for geometric measurements. J. Math. Imaging Vis. 25, 127–154 (2006) MR2254442. https://doi.org/10.1007/s10851-006-6228-4
Pennec, X., Arsigny, V.: Exponential barycenters of the canonical Cartan connection and invariant means on Lie groups. In: Matrix Information Geometry, pp. 123–166. Springer (2012) MR2964451. https://doi.org/10.1007/978-3-642-30232-9_7
Presnell, B., Morrison, S.P., Littell, R.C.: Projected multivariate linear models for directional data. J. Am. Stat. Assoc. 93, 1068–1077 (1998) MR1649201. https://doi.org/10.2307/2669850
Tanabe, A., Fukumizu, K., Oba, S., Takenouchi, T., Ishii, S.: Parameter estimation for von mises–fisher distributions. Comput. Stat. 22, 145–157 (2007) MR2299252. https://doi.org/10.1007/s00180-007-0030-7
Wang, F., Gelfand, A.E.: Directional data analysis under the general projected normal distribution. Stat. Methodol. 10(1), 113–127 (2013) MR2974815. https://doi.org/10.1016/j.stamet.2012.07.005