Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. To appear
  3. On parameter estimation for N(μ,σ2I3) ba ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • More
    Article info Full article Related articles

On parameter estimation for N(μ,σ2I3) based on projected data into S2
Jordi-Lluís Figueras ORCID icon link to view author Jordi-Lluís Figueras details   Aron Persson ORCID icon link to view author Aron Persson details   Lauri Viitasaari ORCID icon link to view author Lauri Viitasaari details  

Authors

 
Placeholder
https://doi.org/10.15559/25-VMSTA279
Pub. online: 17 June 2025      Type: Research Article      Open accessOpen Access

Received
6 November 2024
Revised
12 March 2025
Accepted
16 May 2025
Published
17 June 2025

Abstract

The projected normal distribution, with isotropic variance, on the 2-sphere is considered using intrinsic statistics. It is shown that in this case, the expectation commutes with the projection, and that the covariance of the normal variable has a 1-1 correspondence with the intrinsic covariance of the projected normal distribution. This allows us to estimate, after the model identification, the parameters of the underlying normal distribution that generates the data.

References

[1] 
Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables vol. 55. US Government printing office (1968) MR0415956
[2] 
Ahidar-Coutrix, A., Le Gouic, T., Paris, Q.: Convergence rates for empirical barycenters in metric spaces: curvature, convexity and extendable geodesics. Probab. Theory Relat. Fields 177(1), 323–368 (2020) MR4095017. https://doi.org/10.1007/s00440-019-00950-0
[3] 
Chang, T.: Spherical regression and the statistics of tectonic plate reconstructions. Int. Stat. Rev., 299–316 (1993)
[4] 
Dawson, H.G.: On the numerical value of ${\textstyle\int _{0}^{h}}{e^{{x^{2}}}}dx$. Proc. Lond. Math. Soc. 1(1), 519–522 (1897) MR1576451. https://doi.org/10.1112/plms/s1-29.1.519
[5] 
Fisher, N.I., Lewis, T., Embleton, B.J.J.: Statistical Analysis of Spherical Data. Cambridge University Press (1993) MR1247695
[6] 
Gao, F., Chia, K., Machin, D.: On the evidence for seasonal variation in the onset of acute lymphoblastic leukemia (all). Leuk. Res. 31(10), 1327–1338 (2007)
[7] 
Hernandez-Stumpfhauser, D., Breidt, F.J., van der Woerd, M.J.: The general projected normal distribution of arbitrary dimension: Modeling and Bayesian inference. Bayesian Anal. 12(1), 113–133 (2017) MR3597569. https://doi.org/10.1214/15-BA989
[8] 
Hotz, T., Le, H., Wood, A.T.A.: Central limit theorem for intrinsic Frechet means in smooth compact Riemannian manifolds. Probab. Theory Relat. Fields (2024) MR4771114. https://doi.org/10.1007/s00440-024-01291-3
[9] 
Hussien, M.T., Seddik, K.G., Gohary, R.H., Shaqfeh, M., Alnuweiri, H., Yanikomeroglu, H.: Multi-resolution broadcasting over the Grassmann and Stiefel manifolds. In: 2014 IEEE International Symposium on Information Theory, pp. 1907–1911 (2014). IEEE
[10] 
Kells, L.M., Kern, W.F., Bland, J.R.: Plane and Spherical Trigonometry. US Armed Forces Institute (1940) MR1524230. https://doi.org/10.2307/2302987
[11] 
Lang, M., Feiten, W.: Mpg-fast forward reasoning on 6 dof pose uncertainty. In: ROBOTIK 2012; 7th German Conference on Robotics, pp. 1–6 (2012). VDE
[12] 
Levitt, M.: A simplified representation of protein conformations for rapid simulation of protein folding. J. Mol. Biol. 104(1), 59–107 (1976)
[13] 
Li, K., Frisch, D., Radtke, S., Noack, B., Hanebeck, U.D.: Wavefront orientation estimation based on progressive Bingham filtering. In: 2018 Sensor Data Fusion: Trends, Solutions, Applications (SDF), pp. 1–6 (2018). IEEE
[14] 
Nuñez-Antonio, G., Ausín, M.C., Wiper, M.P.: Bayesian nonparametric models of circular variables based on Dirichlet process mixtures of normal distributions. J. Agric. Biol. Environ. Stat. 20, 47–64 (2015) MR3334466. https://doi.org/10.1007/s13253-014-0193-y
[15] 
Nuñez-Antonio, G., Gutiérrez-Peña, E.: A Bayesian analysis of directional data using the projected normal distribution. J. Appl. Stat. 32, 995–1001 (2005) MR2221902. https://doi.org/10.1080/02664760500164886
[16] 
Nuñez-Antonio, G., Gutiérrez-Peña, E., Escarela, G.: A Bayesian regression model for circular data based on the projected normal distribution. Stat. Model. 11, 185–201 (2011) MR2849683. https://doi.org/10.1177/1471082X1001100301
[17] 
Pennec, X.: Intrinsic statistics on Riemannian manifolds: Basic tools for geometric measurements. J. Math. Imaging Vis. 25, 127–154 (2006) MR2254442. https://doi.org/10.1007/s10851-006-6228-4
[18] 
Pennec, X., Arsigny, V.: Exponential barycenters of the canonical Cartan connection and invariant means on Lie groups. In: Matrix Information Geometry, pp. 123–166. Springer (2012) MR2964451. https://doi.org/10.1007/978-3-642-30232-9_7
[19] 
Pitaval, R., Tirkkonen, O.: Joint Grassmann-Stiefel quantization for MIMO product codebooks. IEEE Trans. Wirel. Commun. 13(1), 210–222 (2013)
[20] 
Presnell, B., Morrison, S.P., Littell, R.C.: Projected multivariate linear models for directional data. J. Am. Stat. Assoc. 93, 1068–1077 (1998) MR1649201. https://doi.org/10.2307/2669850
[21] 
Seddik, K.G., Gohary, R.H., Hussien, M.T., Shaqfeh, M., Alnuweiri, H., Yanikomeroglu, H.: Multi-resolution multicasting over the Grassmann and Stiefel manifolds. IEEE Trans. Wirel. Commun. 16(8), 5296–5310 (2017)
[22] 
Sveier, A., Egeland, O.: Pose estimation using dual quaternions and moving horizon estimation. IFAC-PapersOnLine 51(13), 186–191 (2018)
[23] 
Tanabe, A., Fukumizu, K., Oba, S., Takenouchi, T., Ishii, S.: Parameter estimation for von mises–fisher distributions. Comput. Stat. 22, 145–157 (2007) MR2299252. https://doi.org/10.1007/s00180-007-0030-7
[24] 
Wang, F., Gelfand, A.E.: Directional data analysis under the general projected normal distribution. Stat. Methodol. 10(1), 113–127 (2013) MR2974815. https://doi.org/10.1016/j.stamet.2012.07.005

Full article Related articles PDF XML
Full article Related articles PDF XML

Copyright
© 2025 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Spherical statistics projected normal parameter estimation

MSC2010
62H11 62F10

Funding
This project has received partial funding from Huawei Technologies.

Metrics
since March 2018
9

Article info
views

5

Full article
views

2

PDF
downloads

1

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy