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Abstract The projected normal distribution, with isotropic variance, on the 2-sphere is con-
sidered using intrinsic statistics. It is shown that in this case, the expectation commutes with the 
projection, and that the covariance of the normal variable has a 1-1 correspondence with the in-
trinsic covariance of the projected normal distribution. This allows us to estimate, after the model 
identification, the parameters of the underlying normal distribution that generates the data.
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1 Introduction

Directional statistics (aka. spherical statistics) form a relevant subfield of statistics 
in which one studies directions, rotations, and axes. A typical situation in spherical 
statistics is that observations are gathered on a sphere, say S2, and consequently the 
methods have to be adapted to non-Euclidean geometry. More generally, one can think 
of observations on more general compact Riemannian manifolds. Application areas 
are numerous as, for example, one can think of S2 representing the Earth surface, and 
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measurements are then observations on this surface. To name just a few application 
areas, see [11, 22] for navigation/control in robotics, [14, 16] for modeling wind 
directional changes, [6] for finding lymphoblastic leukemia cells, [3] for movement 
of tectonic plates, [12] for modelling of protein chains, and [9, 19, 21] for radiology 
applications in the context of MIMO-systems. For details on spherical statistics, we 
refer to the monograph [5].

One of the central problems in statistics is to estimate model parameters from 
observations. In the spherical context, this can mean, for example, that one assumes 
a parametric distribution 𝑃𝜃 on S2 and then uses the data to estimate the unknown 
𝜃. The most commonly applied distributions on the sphere are von Mises–Fisher 
distributions (also called von Mises distributions in S or Kent distributions in S2) 
that can be viewed as the equivalent of the normal distribution on the sphere. For 
the parameter estimation for von Mises–Fisher distributions, see [23]. Another widely 
applied distribution on S𝑑 is the projected normal distribution. That is, the distribution 
of 𝑋/‖𝑋 ‖ for 𝑋 ∼ 𝑁 (𝜇,Σ). While the density function of the projected normal is well 
known (see [7]), the parameter estimation is much less studied due to the complicated 
nature of the density. In particular, the parameter estimation is studied in the circular 
case (S), see [15, 16, 20, 24].

In this article, we consider the problem of parameter estimation related to the 
projected normal distribution onto S2. In contrast to the existing literature, we do not 
consider estimation of the parameters of the projected normal that can be obtained 
via standard methodology, as the density is completely known. Instead, our aim is to 
extract information on the underlying normal distribution 𝑁 (𝜇,Σ) (with support on 
the ambient Euclidean space R3) based solely on data consisting of projected points 
on S2. Obviously, we immediately run into identifiability issues if we observe only 
𝑋/‖𝑋 ‖ instead of 𝑋 ∼ 𝑁 (𝜇,Σ). First of all, it is clear that one cannot identify arbitrary 
shapes of Σ (for example, the distribution can be arbitrarily spread in the direction 
𝜇 and this cannot be observed as all points in this direction are equally projected). 
For this reason, we assume, for the sake of simplicity, isotropic variance Σ = 𝜎2𝐼3
and assume 𝑋 ∼ 𝑁 (𝜇, 𝜎2𝐼3). However, even in this case, we can only estimate the 
quantities 𝜇/‖𝜇‖ (the direction of the location) and 𝜎2/‖𝜇‖2, the reason being that the 
distribution of the projection pr(𝑎𝑋) is invariant on 𝑎 > 0. This is indeed natural, as 
intuitively one can only estimate the direction 𝜇/‖𝜇‖ from the projections (onto S2). 
Similarly, 𝑁 (𝜇, 𝜎2𝐼3) for larger 𝜎 located in a distant 𝜇 seems similar to the normal 
distribution with smaller variance but located closer, if one is only observing both 
distributions on the surface of a sphere. We also note that estimation of the direction 
𝜇/‖𝜇‖ is already well known, and we claim no originality in this respect. Instead, our 
main contribution is the estimation of 𝜆 = 𝜎2/‖𝜇‖2. For this, we study the covariance 
matrix of 𝑋/‖𝑋 ‖ on S2 and by linking it to certain special functions and analyzing 
their series expansions, we show that there is a bijective mapping between 𝜆 and the 
covariance matrix of 𝑋/‖𝑋 ‖ on S2. As the latter can be estimated by using the methods 
of spherical statistics, we obtain a consistent estimator for 𝜆 via the inverse mapping 
that can be computed, e.g., via the bisection method.

The rest of the article is organized as follows. In Section 2 we present and dis-
cuss our main results. We begin with Section 2.1 where we introduce our setup and 
notation. After that, we discuss the convergence of sample estimators (for mean and 
covariance) in the context of a general Riemannian manifold. The case of the pro-
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jected normal in S2 is then discussed in Section 2.3. All the proofs are postponed to 
Section 3.

2 Main result

In this section we present and discuss our main results. First, in Section 2.1, we shall 
introduce some notation and clarify some terminology used in the context of manifold-
valued random variables. Some of the theory relies on differential geometric concepts 
which are briefly summarized in Appendix A. The convergence of sample covariances 
on a general compact manifold is discussed in Section 2.2, while the special case of 
S

2 and the projected normal distribution is treated in Section 2.3.

2.1 General setting
Let 𝑀 ⊂ R

𝑘 be a smooth 𝑛-dimensional manifold. Let 𝑆 ∈ R
𝑘 be a dense subset and 

let pr : 𝑆 → 𝑀 be the projection onto 𝑀 ⊆ R
𝑘 , assumed smooth everywhere on 𝑆

and hence almost everywhere in R𝑘 . Let (Ω, P) be a probability space and consider a 
normally distributed (multivariate) random variable

𝑋 : Ω → R
𝑘

such that
P(𝑋 ∉ 𝑆) = 0.

Let 𝑥1, . . . , 𝑥𝐿 be an independently drawn sample of 𝑋 . Suppose now that we observe

pr(𝑥1), . . . , pr(𝑥𝐿).

The question is now, can one estimate the mean and covariance of this projected 
sample?

In order for this question to have meaning, a notion of mean and covariance is 
needed for manifold-valued random variables. The intrinsic mean, a.k.a. the Frechét 
mean (see [17]), of an absolutely continuous random variable 𝑋 : Ω → 𝑀 is defined 
as follows.
Definition 2.1. Let 𝑀 be a Riemannian manifold with corresponding distance function 
dist and volume form dVol𝑀 . Moreover, suppose 𝑝𝑋 : 𝑀 → [0,∞) is a probability 
density function of some absolutely continuous random variable 𝑋 : Ω → 𝑀 . The 
expected value of 𝑋 is then defined by

arginf
𝑞∈𝑀 

∫
𝑀

dist(𝑞, 𝑦)2𝑝𝑋 (𝑦) dVol𝑀 (𝑦) = E[𝑋] . (2.1)

Remark. The argument in the infimum in (2.1) need not exist nor does it need to 

be unique. For example, consider 𝑋 d 
= 𝑁 (0, 𝜎2𝐼) ∈ R

𝑛+1, then pr(𝑋) follows the 
uniform distribution on S𝑛 and all points in S𝑛 satisfy the infimum in (2.1). This is 
a very important difference from the case of R𝑛-valued random variables. In R𝑛 we 
know that if 𝑋 is absolutely continuous, integrable and square integrable, then any 
point 𝜇 ∈ R

𝑛 which minimizes the least square integral∫
R𝑛

|𝑥 − 𝜇 |2𝑝𝑋d𝑥

is unique.
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The intrinsic definition of the covariance matrix for a random variable on a 
Riemannian manifold is well known as well (see, e.g., [17]).
Definition 2.2. Let 𝑀 be a geodesically complete Riemannian manifold, and let 
log𝑞 : 𝑀 → 𝑇𝑞𝑀 be the natural log map (defined a.e.). Let 𝑋 be an 𝑀-valued 
absolutely continuous random variable with the intrinsic mean 𝜇 = E[𝑋] ∈ 𝑀 . Then, 
the covariance matrix for 𝑋 is the linear map Cov(𝑋) : 𝑇𝜇𝑀 → 𝑇𝜇𝑀 defined by the 
integral

Cov(𝑋) =
∫
𝑀

log𝜇 (𝑦) log𝜇 (𝑦)𝑇 𝑝𝑋 (𝑦) dVol𝑀 (𝑦).

2.2 Convergence of sample estimators on a compact manifold
Let 𝑦ℓ be a sample of 𝐿 independent measurements on a compact manifold 𝑀 . In 
order to estimate the mean of such a sample, we shall utilize the discrete version of 
Definition 2.1. This definition follows that of [17].
Definition 2.3. Let {𝑦ℓ}𝐿ℓ=1 be a sample of 𝐿 points on a Riemannian manifold 𝑀 . 
Then the empirical mean is defined as

arginf
𝑞∈𝑀 

𝐿∑
ℓ=1 

dist2(𝑦ℓ , 𝑞).

Note that since the function dist2 has good regularity, one may hope to find such 
an infimum by solving the (nonlinear) equation

𝑞 :
𝐿∑
ℓ=1 

log𝑞 (𝑦ℓ) = 0.

It was shown in [8] that if 𝑀 is compact and if 𝑦ℓ is sampled from a distribution with 
a unique empirical mean 𝑥0, then the distribution of the above follows a central limit 
theorem. More precisely, if 𝜇 = E[𝑦ℓ ] is the true mean of the underlying distribution 
and if �̂� is the empirical mean, it holds that

√
𝐿 log𝜇 ( �̂�)

d −→ 𝑁 (0, 𝑉)

for some linear map 𝑉 ∈ L(𝑇𝜇𝑀,𝑇𝜇𝑀).
Definition 2.4. Let {𝑦ℓ}𝐿ℓ=1 be a sample of 𝐿 points on a Riemannian manifold 𝑀
with a unique empirical mean 𝜉. Then the empirical covariance of the sample is 
defined by

�̂� =
1 

𝐿 − 1

𝐿∑
ℓ=1 

log𝜉 (𝑦ℓ) log𝜉 (𝑦ℓ )
𝑇 (2.2)

where �̂� : 𝑇𝜉𝑀 → 𝑇𝜉𝑀 is a linear map.
Since the empirical mean converges by the results of [8], it remains to verify 

that the empirical covariance in Equation (2.2) converges to the covariance 𝑉 of the 
limiting distribution lim𝐿→∞

√
𝐿 log𝜉

(
𝜉
)
.

The following result shows that, in the case of isotropic covariance, the empirical 
covariance converges. The proof is postponed to Section 3.1.
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Theorem 2.5. Let {𝜉ℓ}𝐿ℓ=1 be 𝐿 independent identically distributed random variables 
on a compact geodesically complete manifold 𝑀 . Suppose further they have a unique 
mean E[𝜉ℓ] = 𝜇 and an isotropic covariance Cov(𝜉ℓ ) = 𝑣𝐼. Then,

1 
𝐿 − 1

𝐿∑
ℓ=1 

log�̂� (𝜉ℓ ) log�̂� (𝜉ℓ )𝑇
P −→ 𝑣𝐼

with the same rate of convergence as the empirical mean �̂� of the sample {𝜉ℓ}𝐿ℓ=1.

Remark. As far as we know, the rate of convergence for the empirical mean on compact 
manifolds is not completely solved as of now. In [8] it has been shown that the empirical 
mean has a rate of convergence 

√
𝐿 for a large class of manifolds, but not all compact 

geodesically complete manifolds. However, [2] provides rates of convergence for the 
empirical mean for a general class of metric spaces, from which it seems that the rate 
of convergence 

√
𝐿 isn’t necessarily true.

Following a similar method as in [18] the update scheme for a sample of observa-
tions is given in Algorithm 1.

Algorithm 1 Estimating intrinsic average and covariance for a sample 𝑦ℓ on a mani-
fold 𝑀
1: Make initial guess �̂�0 for average point, take, e.g., �̂�0 = 𝜉1.
2: Compute

𝑋 =
1 
𝐿

𝐿∑
ℓ=1 

log�̂�0 (𝑦ℓ ) .

3: Update estimate by setting
�̂� = exp�̂�0 (𝑋) .

4: Repeat step 2-3 with �̂�0 = �̂� until ‖𝑋‖ is small.
5: Compute sample covariance by

�̂� =
1 

𝐿 − 1

𝐿∑
ℓ=1 

log�̂� (𝑦ℓ ) log�̂� (𝑦ℓ )𝑇 .

2.3 Observing the projected normal in S2

In this section we consider 𝑀 = S
2, the unit 2-sphere in R3. In this case, the projection 

map is simply
pr(𝑥) = 𝑥

‖𝑥‖

and the domain of definition for pr is 𝑆 = R
3\{0}.

Throughout, we shall use spherical coordinates, i.e. for the classical Cartesian 
coordinates (𝑥, 𝑦, 𝑧)𝑇 in R3 we set 𝑥 = cos(𝜃) sin(𝜙), 𝑦 = sin(𝜃) sin(𝜙), and 𝑧 =
cos(𝜙). Consider two points (𝜃1, 𝜙1)𝑇 and (𝜃2, 𝜙2)𝑇 . Then it is a classical result (see, 
e.g., [10]) that the distance function may be written as

dist((𝜃1, 𝜙1)𝑇 , (𝜃2, 𝜙2)𝑇 )
= acos (cos(𝜙1) cos(𝜙2) + sin(𝜙1) sin(𝜙2) cos(𝜃2 − 𝜃1)) .
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It has been shown in [7] that the projected normal, i.e. the random variable defined by 

pr(𝑋) where 𝑋
d 
= 𝑁 (𝜇,Σ), has the probability density function

𝑝pr(𝑋) (𝜃, 𝜙) =
(

1 
2𝜋𝐴

)3/2
|Σ |−

1
2 exp(𝐶)

(
K+K2 Φ(K)

𝜑(K) +
Φ(K)
𝜑(K) 

)
(2.3)

at a point 𝑢 = (cos(𝜃) sin(𝜙), sin(𝜃) sin(𝜙), cos(𝜙))𝑇 , where 𝐴 = 𝑢𝑇Σ−1𝑢, 𝐵 =
𝑢𝑇Σ−1𝜇, 𝐶 = − 1

2 𝜇
𝑇Σ−1𝜇, and K = 𝐵𝐴− 1

2 . Moreover, the functions 𝜑,Φ : R → R are 
defined as

𝜑(𝑥) = exp
(
−𝑥2

2 

)

and

Φ(𝑎) =
∫ 𝑎

−∞
𝜑(𝑥)d𝑥,

respectively.
In our context, this random variable is then observed in S2. As S2 is an isometrically 

embedded Riemannian manifold, Definition 2.1 applies for the projected normal. 
Intuitively, the expectation of a projected normal distribution ought to be pr(𝜇). 
Unfortunately, for the fully general case of the projected normal, this conjecture will 
be false. However, by imposing an isotropic covariance Σ onto 𝑋 we shall show that 
this intuition is indeed correct. This is the topic of the next result whose proof is 
postponed in Section 3.2.

Theorem 2.6. Let 𝑋 be a normally distributed random variable with average 𝜇 ∈ R
3

and covariance matrix Σ, i.e. 𝑋 d 
= 𝑁 (𝜇,Σ) ∈ R

3. If Σ = 𝜎2𝐼3, then E[pr(𝑋)] = 
pr(𝜇).

Remark. The above theorem is true whenever 𝜇 is an eigenvector of Σ. However, if 𝜇
is not an eigenvector of Σ, then the statement of Theorem 2.6 is false in general. To 
see this, let 𝜇 = (0, 0, 1)𝑇 and

Σ =

⎛
⎝1 0 0

0 1 0.5
0 0.5 1

⎞
⎠ .

In this case it follows that the probability density function is not symmetric around 𝜇, 
see Figure 1 below.

In general, the tangent space of S2 at a point 𝑞 is the set of vectors orthogonal (in the 
Euclidean product inherited from R3) to 𝑞. Note that the initial velocity of the geodesic 
connecting a point 𝜇 to 𝑞 has the same direction as 𝑞 × 𝜇 (i.e. the cross-product of 
R

3). The logarithm map of 𝑞 centered at a point 𝜇 is thus the vector of the normalised 
starting velocity of the geodesic connecting 𝜇 with 𝑞 times the length of the geodesic 
connecting 𝜇 and 𝑞, see [13]. Without loss of generality, consider 𝜇 = (0, 0, 1)𝑇 . Then

log𝜇 (𝑞) =
(

cos(𝜃) sin(𝜙)
sin(𝜃) sin(𝜙)

)
𝜙 

|sin(𝜙) | ,
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Fig. 1. A normally distributed random variable 𝑋 d 
= 𝑁 (𝜇, Σ), with the covariance matrix Σ

such that the mean 𝜇 is not an eigenvector for Σ, for which E[pr(𝑋)] ≠ pr(𝜇)

where the basis for the vector is in a rewritten form of the basis (of 𝑇𝜇S2)⎧⎨
⎩
⎛
⎝1

0
0

⎞
⎠ ,

⎛
⎝0

1
0

⎞
⎠
⎫⎬
⎭ .

Hence the intrinsic covariance of pr(𝑋) can be written as

Cov(pr(𝑋)) =
∫ 2𝜋

0

∫ 𝜋

0

(
cos2 (𝜃) sin2 (𝜙) cos(𝜃) sin(𝜃) sin2(𝜙)

cos(𝜃) sin(𝜃) sin2 (𝜙) sin2(𝜃) sin2(𝜙)

)

× 𝜙2

sin2(𝜙)

(
1 

2𝜋

)3/2
exp

(
− 1 

2𝜎2

)

×
(

K+K2 Φ(K)
𝜑(K) +

Φ(K)
𝜑(K) 

)
sin(𝜙)d𝜙d𝜃,

where K = 1 
𝜎 cos(𝜙). Or, equivalently, by simplifying and integrating w.r.t. 𝜃,

Cov(pr(𝑋)) = 𝜋

(2𝜋)3/2 exp
(
− 1 

2𝜎2

)(
1 0
0 1

)

×
∫ 𝜋

0
𝜙2

(
cos(𝜙)

𝜎
+
(

cos2 (𝜙)
𝜎2 + 1

)
Φ( cos(𝜙)

𝜎 )

𝜑( cos(𝜙)
𝜎 ) 

)
sin(𝜙)d𝜙

=:
(

1 0
0 1

)
𝑓 (𝜎).

(2.4)
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Remark. In the limit as 𝜎 → ∞, it holds that 𝑝pr(𝑋) → 1 
4𝜋1S2 . The intrinsic covariance 

in this limit is
𝜋2 − 4

4 

(
1 0
0 1

)
.

On the other hand, in the limit as 𝜎 → 0, 𝑝pr(𝑋) converges to the point mass distribu-
tion while the covariance goes to zero.

Note that the above estimates are only for the intrinsic expectation and covariance. 
If we want to relate these estimates to the extrinsic expectation and covariance, we 
end up with the obvious problem that pr(𝑋) and pr(𝑎𝑋), 𝑎 > 0, have the same 
distribution. Hence we need to choose which normal distribution in R3 corresponds 
to the intrinsic covariance and average. By Lemma 2.6 the average is known (up to 
a factor). Moreover, it turns out there is a one-to-one correspondence between the 
extrinsic covariance and the intrinsic covariance up to a factor 𝑎 > 0, and thus one 
may estimate the underlying covariance parameter 𝜎 using the relation (2.4) with, e.g., 
the bisection method.

The degeneracy of the factor 𝑎 essentially means that we can only estimate the 
parameter 𝜎 in the case when the projected average is the true average of the R3-
valued normal random variable. More generally, if 𝑋 d 

= 𝑁 (𝜇, 𝜎2𝐼3), then 𝑋
‖𝜇‖

d 
=

𝑁
(

𝜇
‖𝜇‖ ,

𝜎2

‖𝜇‖2 𝐼3

)
. Consequently, we can only estimate the quantities 𝜇

‖𝜇‖ ∈ S
2 and 

𝜎2

‖𝜇‖2 . This means that, as expected, we can estimate the direction 𝜇
‖𝜇‖ of the extrinsic 

distribution 𝑋
d 
= 𝑁 (𝜇, 𝜎2𝐼3) but not the distance ‖𝜇‖. On the other hand, for the 

variance we can only estimate the quantity 𝜎2

‖𝜇‖2 . This is expected as well, as for the 

distribution 𝑁 (𝜇, 𝜎2𝐼3) located far away (‖𝜇‖ large) the projections onto S2 are not 
wide spread even if 𝜎 > 0 is large.

The required one-to-one correspondence between extrinsic and intrinsic covari-
ances is formulated in the following proposition, whose proof is presented in Sec-
tion 3.3. The statement is also illustrated in Figure 2.
Proposition 2.7. Let 𝑋 be a normally distributed random variable with mean 𝜇 ∈ R

3

and isotropic variance 𝜎2𝐼3, i.e. 𝑋
‖𝜇‖

d 
= 𝑁 ( 𝜇

‖𝜇‖ ,
𝜎2

‖𝜇‖2 𝐼3). Then

Cov(pr(𝑋)) = 𝑣𝐼2

for 0 ≤ 𝑣 < 𝜋2−4
4 and the relation

𝑓

(
𝜎2

‖𝜇‖2

)
:=

tr(Cov(pr(𝑋)))
2 

= 𝑣

is a bijection.

The bijection 𝑓 is crucial for observing projected normal random variables. Utiliz-
ing this 𝑓 , if the scalar variance of some normal random variable 𝑋

d 
= 𝑁 (𝜇, 𝜎2𝐼3) in 

R
3 is known, then the intrinsic scalar variance of the corresponding projected normal 

random variable is precisely 𝑓 ( 𝜎2

‖𝜇‖2 ). Conversely, if some projected isotropic normal 
random variable has mean 𝜇 and covariance 𝑣𝐼2, then the normal random variable 𝑋
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Fig. 2. A plot of the scalar variance of pr(𝑋), i.e. 𝑓 (𝜎2) from Proposition 2.7, where 𝑋 d 
=

𝑁 (𝜇, 𝜎2𝐼3) and 𝜇 ∈ S
2 is arbitrary. The red line indicates the upper bound (𝜋2 − 4)/4 =

lim𝜎→∞
tr(Cov(pr(𝑋) ) )

2 

such that pr(𝑋) has these parameters is precisely 𝑋
d 
= 𝑁 (𝜇, 𝑓 −1(𝑣)𝐼3) (up to a positive 

scalar factor).
As a consequence of Proposition 2.7 and Theorem 2.5 we can conclude that given 

measurements on the sphere, we can estimate the scalar variance of an isotropically 
distributed normal random vector in R3. This leads to the next result that can be viewed 
as the main theorem of the present paper. Its proof follows directly from Theorem 2.5
and Proposition 2.7. The rate of convergence is obtained immediately from noting that 
[8, Theorem 2] applies to S2, and thus the empirical mean has rate of convergence √
𝐿, and by Theorem 2.5 so does the empirical covariance.

Theorem 2.8. Let 𝑋 be a normally distributed random variable with mean 𝜇 ∈ R
3

and isotropic variance 𝜎2𝐼3, i.e. 𝑋 d 
= 𝑁 (𝜇, 𝜎2𝐼3). Given independent measurements 

(𝑥1, 𝑥2, . . . , 𝑥𝐿) from pr(𝑋), we can estimate 𝜆 = 𝜎2

‖𝜇‖2 by

�̂� = 𝑓 −1
(

tr(�̂�)
2 

)

where �̂� is the empirical covariance matrix given in Equation (2.2) and where 𝑓 is the 
bijection given in Proposition 2.7 and defined in Equation (2.4). Moreover, it holds 
that

�̂�
P −→ 𝜎2

‖𝜇‖2

as 𝐿 → ∞, with rate of convergence 
√
𝐿.

We conclude this section with some simulations. Firstly, Table 1 illustrates an 
empirical verification of Theorem 2.5 for the case of the manifold S2. The simulations 
are conducted by generating 𝐿 samples from 𝑋

d 
= 𝑁 (𝜇, 𝜎2𝐼3) with 𝜇(0, 0, 1)𝑇 ∈ S

2
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Table 1. The absolute error of 100 times repeated Monte Carlo simulations of the empirical 
covariance, Equation (2.2), compared to the theoretical covariance of the projected normal 
distribution, tr(Cov(pr(𝑋)))/2. Each simulation run uses 𝐿 data points and 𝜎 = 1

L 30 50 100 1000 104 105 106

error 0.013 0.0080 0.0055 0.0033 0.0015 8.4e-05 2.9e-05 

and 𝜎 = 1 and projecting these samples onto S2. The sample covariance is computed 
as in Algorithm 1, and its error is then compared to the theoretical covariance using the 
Frobenius norm. This error is then averaged over using 100 repetitions of the Monte 
Carlo method.

Secondly, Figure 3 is an illustration of the convergence result in Theorem 2.8. The 

simulations are done by generating 𝐿 samples from 𝑋
d 
= 𝑁 (𝜇, 𝜎2𝐼3) with 𝜇(0, 0, 1)𝑇 ∈

S
2 and 𝜎 = 1. The empirical covariance �̂� , Equation (2.2), is computed for each set 

of samples. Then, for each set of samples, the estimator �̂� for 𝜎2, see Theorem 2.8, is 
computed by 𝑓 −1 (tr(�̂�)/2). This is done with a 1000-fold repetition.

Fig. 3. A box plot of the inferred estimator �̂� in Theorem 2.8 using the empirical covariance, 
Equation (2.2), for 𝐿 randomly generated projected normal random variables with 𝜎2 = 1
and 𝜇 = (0, 0, 1)𝑇 . For each 𝐿 this is done with 1000 repetitions. The true underlying scalar 
variance, 𝜆 = 𝑓 −1 (tr(Cov(pr(𝑋)))/2) = 1, is shown in red color. Note that some outliers are 
omitted for readability of the graph

3 Proofs

3.1 Proof of Theorem 2.5
First, note that

1 
𝐿 − 1

𝐿∑
ℓ=1 

log�̂� (𝜉ℓ ) log�̂� (𝜉ℓ )𝑇
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is a linear map 𝑇�̂�S2 → 𝑇�̂�S
2, and Cov(𝜉) is by definition a linear map 𝑇𝜇S2 → 𝑇𝜇S

2. 
In order to compare �̂� and Cov(𝜉) we shall transport parallelly the linear map �̂� :
𝑇�̂� → 𝑇�̂� to a linear map 𝑇𝜇S2 → 𝑇𝜇S

2. That is, we look at 𝑃�̂�,𝜇�̂�𝑃𝜇,�̂� and see how far 
away it is from 𝑣𝐼2. It follows from Equation (A.1) that 𝑃�̂�,𝜇 log�̂� (𝜉ℓ ) log�̂� (𝜉ℓ )𝑇𝑃𝜇,�̂�

has the first order expansion

𝑃�̂�,𝜇 log�̂� (𝜉ℓ ) log�̂� (𝜉ℓ )𝑇𝑃𝜇,�̂�

= log𝜇 (𝜉ℓ ) log𝜇 (𝜉ℓ )𝑇 +
(
∇log𝜇 ( �̂�) log𝜇 (𝜉ℓ )

)
log𝜇 (𝜉ℓ )𝑇

+ log𝜇 (𝜉ℓ )
(
∇log𝜇 ( �̂�) log𝜇 (𝜉ℓ )

)𝑇
+O(dist(𝜇, �̂�)2).

Therefore,

lim 
𝑛→∞

�����E
[
𝑃�̂�,𝜇

1 
𝑛 − 1

𝑛∑
ℓ=1 

log�̂� (𝜉ℓ ) log�̂� (𝜉ℓ )𝑇𝑃𝜇,�̂� − 𝑣𝐼

]�����
≤ lim 

𝑛→∞

�����
1 

𝑛 − 1

𝑛∑
ℓ=1 

E
[
log𝜇 (𝜉ℓ ) log𝜇 (𝜉ℓ )𝑇

]
− 𝑣𝐼

�����
+ lim 
𝑛→∞

����E
[(

∇log𝜇 ( �̂�) log𝜇 (𝜉ℓ )
)

log𝜇 (𝜉ℓ )𝑇 + log𝜇 (𝜉ℓ )
(
∇log𝜇 ( �̂�) log𝜇 (𝜉ℓ )

)𝑇]����
+ lim 
𝑛→∞

E
[
O(dist( �̂�, 𝜇)2)

]
≤ ‖𝑣𝐼 − 𝑣𝐼 ‖ + lim 

𝑛→∞
E [O(dist( �̂�, 𝜇))]

Here, according to [8, Proposition 1], it holds that dist(𝜇, �̂�) converges to zero almost 
surely. Since 𝑀 is compact, it has finite mass and thus dist(𝜇, �̂�) converges in expec-
tation to 0 by the dominated convergence theorem. Finally, the fact that the empirical 
covariance has the same rate of convergence as the empirical mean follows from the 
last inequality. This completes the proof.

�

3.2 Proof of Theorem 2.6
By the very definition, we need to show that

arginf
𝑞∈S2

∫
S2

dist(𝑞, 𝑦)2𝑝pr(𝑋) (𝑦)𝑑S2(𝑦) = pr(E[𝑋]) (3.1)

for 𝑋 d 
= 𝑁 (𝜇, 𝜎2𝐼3). By rescaling 𝑋 with a factor of 1 

‖𝜇‖ and by a rotational symmetry, 
we may assume 𝜇 = (−1, 0, 0)𝑇 without loss of generality.

We make a simple first-derivative test to find the minimum in (3.1). Let (𝜃1, 𝜙1)
be the spherical coordinates that are integrated over the sphere and let (𝜃2, 𝜙2) be the 
coordinates that minimize the integral. Hence we need to show that (𝜃2, 𝜙2) = (𝜋, 𝜋/2). 
Writing the integral in spherical coordinates and using the fact that the derivative with 
respect to 𝜙2 is zero, it follows that (𝜃2, 𝜙2) satisfies

𝜕

𝜕𝜙2

∫
S2

dist2 ((𝜃1, 𝜙1), (𝜃2, 𝜙2))𝑝pr(𝑋) (𝜃1, 𝜙1) sin(𝜙1)𝑑𝜃1𝑑𝜙1 = 0.
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Now by the Leibniz integral rule the derivative may be moved inside the integral, and 
it holds

∫ 2𝜋

0

∫ 𝜋

0
2 dist((𝜃1, 𝜙1), (𝜃2, 𝜙2))

× (cos(𝜙1) sin(𝜙2) − sin(𝜙1) cos(𝜙2) cos(𝜃2 − 𝜃1)) √
1 − (cos(𝜙1) cos(𝜙2) + sin(𝜙1) sin(𝜙2) cos(𝜃2 − 𝜃1))2

× 𝑝pr(𝑋) (𝜃1, 𝜙1) sin(𝜙1)d𝜃1d𝜙1

= 0.

Plugging (𝜃2, 𝜙2) = (𝜋, 𝜋/2) into the integral on the left-hand side yields an integral

2
∫ 2𝜋

0

∫ 𝜋

0
acos(sin(𝜙1) cos(𝜋 − 𝜃1))

cos(𝜙1)√
1 − sin2(𝜙1) cos2(𝜋 − 𝜃1)

× 𝑝pr(𝑋) (𝜃1, 𝜙1) sin(𝜙1)d𝜃1d𝜙1.

This integral equals zero, which can be seen by observing that the integrand is odd 
along 𝜙1 around 𝜋2 , since 𝑝pr(𝑋) is symmetric around 𝜇 by construction. By similar 
arguments, we obtain that

𝜕

𝜕𝜃2

∫
S2

dist2((𝜃1, 𝜙1), (𝜃2, 𝜙2))𝑝pr(𝑋) (𝜃1, 𝜙1) sin(𝜙1)d𝜙1d𝜃1

reduces at (𝜃2, 𝜙2) = (𝜋, 𝜋/2) to

2
∫ 2𝜋

0

∫ 𝜋

0
acos(sin(𝜙1) cos(𝜋 − 𝜃1))

sin2 (𝜙1) sin(𝜋 − 𝜃1)√
1 − sin2(𝜙1) cos2(𝜋 − 𝜃1)

× 𝑝pr(𝑋) (𝜃1, 𝜙1)d𝜙1d𝜃1

which equals zero by symmetry around 𝜃1 = 𝜋. Therefore, one can conclude that 
𝜇 = pr(E[𝑋]) is a local extremum for the integral in Equation (3.1).

Next we shall argue why it is a global minimum. Note that a very similar compu-
tation will show that −𝜇, i.e. in spherical coordinates (𝜃2, 𝜙2) = (0, 𝜋/2) is another 
local extremum. In fact, 𝜇 and −𝜇 are the only local extremum for the integral in Equa-
tion (3.1) since it is the only two points for which the distance function is rotationally 
symmetric around the line in R3 which is spanned by 𝜇. By direct computation,

𝑝pr(𝑋)

(
𝜋,

𝜋

2 

)
=

1 
(2𝜋)3/2 exp

(
− 1 

2𝜎2

)(
1 
𝜎

+ 1 
𝜎2

Φ( 1 
𝜎 )

𝜑( 1 
𝜎 ) 

+
Φ( 1 

𝜎 )
𝜑( 1 

𝜎 ) 

)

and

𝑝pr(𝑋)

(
0,

𝜋

2 

)
=

1 
(2𝜋)3/2 exp

(
− 1 

2𝜎2

)(
−1
𝜎

+ 1 
𝜎2

Φ( −1
𝜎 )

𝜑( −1
𝜎 ) 

+
Φ( −1

𝜎 )
𝜑( −1

𝜎 ) 

)
,

hence 𝑝pr(𝑋) (𝜇) > 𝑝pr(𝑋) (−𝜇). More generally, a similar computation shows that 
𝑝pr(𝑋) (𝑦) > 𝑝pr(𝑋) (𝑅𝑦), if 〈𝑦, 𝜇〉 > 0, where 𝑅 is the reflection mapping over the 
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𝑦, 𝑧-plane, i.e.

𝑅

⎛
⎝𝑎
𝑏
𝑐

⎞
⎠ =

⎛
⎝−𝑎

𝑏
𝑐

⎞
⎠ .

Tautologically, the distance function increases when one goes father, and points being 
farther away will contribute more into the integral. Therefore (𝜃2, 𝜙2) = (𝜋, 𝜋/2)
yields a global minimum for the integral in Equation (3.1).

�

3.3 Proof of Proposition 2.7

Without loss of generality, we assume 𝜇 = (0, 0, 1)𝑇 . In this case the functions 
𝐴, 𝐵, 𝐶,K inside Equation (2.3) are given by

𝐴 =
1 
𝜎2 ,

𝐵 =
1 
𝜎2 cos(𝜙),

𝐶 = − 1 
2𝜎2 ,

and
K =

1 
𝜎

cos(𝜙).

By (2.4) it holds that Cov(pr(𝑋)) is isotropic and we can write

tr(Cov(pr(𝑋)))
2 

=
1 

(2𝜋)1/2 exp
(
− 1 

2𝜎2

)

×
∫ 𝜋

0
𝜙2

(
cos(𝜙)

𝜎
+
(

cos2 (𝜙)
𝜎2 + 1

)
Φ( cos(𝜙)

𝜎 )

𝜑( cos(𝜙)
𝜎 ) 

)
sin(𝜙)d𝜙.

Denote

𝑓 (𝜎) = exp
(
− 1 

2𝜎2

)∫ 𝜋

0
𝜙2

(
cos(𝜙)

𝜎
+
(

cos2(𝜙)
𝜎2 + 1

)
Φ( cos(𝜙)

𝜎 )

𝜑( cos(𝜙)
𝜎 ) 

)
sin(𝜙)d𝜙.

In order to obtain the claim, it suffices to prove that 𝑓 (𝜎) is strictly increasing, from 
which it follows that tr(Cov(pr(𝑋) ) )

2 is strictly increasing in 𝜎 as well. For notational 
simplicity, we set 𝑥 = 1 

𝜎 and show that 𝑓 (𝑥) is strictly decreasing in 𝑥, where now 
𝑓 (𝑥), with a slight abuse of notation, is given by

𝑓 (𝑥) = exp
(
−𝑥2

2 

)

×
∫ 𝜋

0
𝜙2

(
𝑥 cos(𝜙) +

(
𝑥2 cos2(𝜙) + 1

) Φ(𝑥 cos(𝜙))
𝜑(𝑥 cos(𝜙)) 

)
sin(𝜙)d𝜙.

(3.2)
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By differentiating in 𝑥, we get

𝑓 ′ (𝑥) = exp
(
−𝑥2

2 

)
(𝐼1 + 𝐼2 + 𝐼3), where

𝐼1 := −𝑥
∫ 𝜋

0
𝜙2 cos(𝜙)𝑥 sin(𝜙)d𝜙,

𝐼2 :=
∫ 𝜋

0
𝜙2 (−𝑥3 cos2(𝜙) − 𝑥 + 3𝑥 cos2(𝜙) + 𝑥3 cos4(𝜙)

) Φ(𝑥 cos(𝜙))
𝜑(𝑥 cos(𝜙)) sin(𝜙)d𝜙,

𝐼3 :=
∫ 𝜋

0
𝜙2 (2 cos(𝜙) + 𝑥2 cos3(𝜙)

)
sin(𝜙)d𝜙.

Immediately, we have that

𝐼1 = 𝑥2 𝜋
2

4 

and

𝐼3 = −𝜋2

2 
− 5𝜋2

32 
𝑥2.

In order to show 𝑓 ′ (𝑥) < 0, we need to decipher 𝐼2, which is more complicated. 
The main idea is to show that 𝑓 ′ (𝑥) is analytic for all 𝑥 ≥ 0 and then to show 
that there is a strictly decreasing analytic function between 𝑓 ′ (𝑥) and 0. We begin 
with Lemma 3.1 showing that Φ𝜑 is a Dawson-like function and therefore analytic. In 
Lemma 3.2 the series expansion of 𝐼2 is integrated term-wise. The terms of the series 
expression for 𝐼2 are given inductively in Lemma 3.3, which are then inserted to give 
explicit expressions for the terms of 𝑓 ′ (𝑥) exp

(
𝑥2/2

)
in Lemma 3.4. Lemma 3.5 then 

gives a lower bound on the odd terms of 𝑓 ′ (𝑥) exp
(
𝑥2/2

)
, and Lemma 3.7 gives an 

upper bound. By Lemma 3.8 we show that the series expression of 𝑓 ′ (𝑥) exp
(
𝑥2/2

)
is 

eventually decreasing as a series, and in combination with Corollary 3.6 it is concluded 
that 𝑓 ′ (𝑥) exp

(
𝑥2/2

)
is entire. The proof is finished by comparing 𝑓 ′ (𝑥) exp

(
𝑥2/2

)
to 

a linear combination of analytic functions computed in Lemma 3.9.
Lemma 3.1. It holds that

Φ
𝜑 
(𝑥) =

∞ ∑
𝑘=0 

1 
(2𝑘 + 1)!!𝑥

2𝑘+1 +
√

2𝜋
2 

∞ ∑
𝑘=0 

1 
(2𝑘)!!𝑥

2𝑘 =:
∞ ∑
𝑘=0 

𝑑𝑘𝑥
𝑘

where the series converges everywhere.

Proof. Note that Φ𝜑 (𝑥) is very similar to the Dawson function (originally studied in 
[4], see also [1] for further details) given by

𝐷− (𝑥) = exp
(
𝑥2)∫ 𝑥

0
exp

(
−𝑡2

)
d𝑡,

and it has the series expansion

𝐷− (𝑥) =
∞ ∑
𝑘=0 

2𝑘

(2𝑘 + 1)!!𝑥
2𝑘+1.
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Note that ∫ 𝑥

0
exp

(
− 𝑡2

2 

)
d𝑡 =

√
2
∫ 𝑥/

√
2

0
exp

(
−𝑢2)d𝑢

by the variable substitution 𝑢 = 𝑡/
√

2. Hence,

exp
(
𝑥2

2 

)∫ 𝑥

0
exp

(
− 𝑡2

2 

)
d𝑡 =

√
2𝐷− (𝑥/

√
2)

=
√

2
∞ ∑
𝑘=0 

2𝑘

(2𝑘 + 1)!!
𝑥2𝑘+1

2𝑘
√

2
=

∞ ∑
𝑘=0 

1 
(2𝑘 + 1)!!𝑥

2𝑘+1.

Moreover, ∫ 0

−∞
exp

(
− 𝑡2

2 

)
d𝑡 =

√
2𝜋
2 

and hence

exp
(
𝑥2

2 

)∫ 0

−∞
exp

(
− 𝑡2

2 

)
d𝑡

has the series expansion
√

2𝜋
2 

∞ ∑
𝑘=0 

1 
𝑘!

𝑥2𝑘

2𝑘
=

√
2𝜋
2 

∞ ∑
𝑘=0 

1 
(2𝑘)!!𝑥

2𝑘 .

It follows that

Φ
𝜑 
(𝑥) = exp

(
𝑥2

2 

)∫ 0

−∞
exp

(
− 𝑡2

2 

)
d𝑡 + exp

(
𝑥2

2 

)∫ 𝑥

0
exp

(
− 𝑡2

2 

)
d𝑡

=
∞ ∑
𝑘=0 

1 
(2𝑘 + 1)!!𝑥

2𝑘+1 +
√

2𝜋
2 

∞ ∑
𝑘=0 

1 
(2𝑘)!!𝑥

2𝑘

proving the claimed series representation. Finally, the convergence everywhere follows 
from the fact that the Dawson function converges everywhere. �

Using Lemma 3.1 it follows that 𝐼2 can be rewritten as

𝐼2 =
∞ ∑
𝑘=0 

𝑑𝑘

∫ 𝜋

0
𝜙2 (−𝑥3 cos2(𝜙) − 𝑥 + 3𝑥 cos2(𝜙) + 𝑥3 cos4(𝜙)

)
× 𝑥𝑘 cos𝑘 (𝜙) sin(𝜙)d𝜙.

(3.3)

Each term in Equation (3.3) involves

𝐽𝑚 =
∫ 𝜋

0
𝜙2 cos𝑚 (𝜙) sin(𝜙)d𝜙

which we will study next.
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Lemma 3.2. The sequence 𝐽𝑚 satisfies 𝐽0 = 𝜋2 − 4, and for even 𝑚 ≠ 0

𝐽𝑚 =
1 

𝑚 + 1

⎛
⎝𝜋2 − 4

𝑚!! 
(𝑚 + 1)!!

⎛
⎝1 +

𝑚
2 −1∑
𝑗=0 

1 
22 𝑗+1(2 𝑗 + 3)

(
2 𝑗 + 1

𝑗

)⎞⎠
⎞
⎠ ,

while for 𝑚 ∈ N odd

𝐽𝑚 =
𝜋2

𝑚 + 1

(
𝑚!! 

(𝑚 + 1)!! − 1
)
.

Proof. For 𝐽0 we observe immediately that

𝐽0 =
∫ 𝜋

0
𝜙2 sin(𝜙)d𝜙 = 𝜋2 − 4.

Next, let 𝑚 be odd. Then integration by parts gives

𝐽𝑚 =

[
−𝜙2 cos𝑚+1(𝜙)

𝑚 + 1 

]𝜋
0
+ 2 
𝑚 + 1

∫ 𝜋

0
𝜙 cos𝑚+1(𝜙)d𝜙

= − 𝜋2

𝑚 + 1
+ 2 
𝑚 + 1

[
𝑚!! 

(𝑚 + 1)!!𝜙
2 + 𝜙

𝑚−1
2 ∑
𝑗=0 

cos𝑚−2 𝑗 (𝜙) sin(𝜙) 𝑚!! 
(𝑚 − 2 𝑗)!!

× (𝑚 − 2 𝑗 − 1)!!
(𝑚 + 1)!! 

]𝜋

0

− 2 
𝑚 + 1

𝑚−1
2 ∑
𝑗=0 

𝑚!! 
(𝑚 − 2 𝑗)!!

(𝑚 − 2 𝑗 − 1)!!
(𝑚 + 1)!! 

×
∫ 𝜋

0
cos𝑚−2 𝑗 (𝜙) sin(𝜙)𝑑𝜙 − 2 

𝑚 + 1
𝑚!! 

(𝑚 + 1)!!

∫ 𝜋

0
𝜙d𝜙

= − 𝜋2

𝑚 + 1
+ 2 
𝑚 + 1

𝑚!! 
(𝑚 + 1)!!𝜋

2 − 1 
𝑚 + 1

𝑚!! 
(𝑚 + 1)!!𝜋

2

=
𝜋2

𝑚 + 1

(
𝑚!! 

(𝑚 + 1)!! − 1
)
.

Similarly, when 𝑚 > 0 is even, integration by parts gives

𝐽𝑚 =

[
−𝜙2 cos𝑚+1(𝜙)

𝑚 + 1 

]𝜋
0
+ 2 
𝑚 + 1

∫ 𝜋

0
𝜙 cos𝑚+1(𝜙)d𝜙

=
𝜋2

𝑚 + 1
+ 2 
𝑚 + 1

[
𝜙 sin(𝜙) 𝑚!! 

(𝑚 + 1)!! + 𝜙

𝑚
2 −1∑
𝑗=0 

cos𝑚−2 𝑗 sin(𝜙) 𝑚!! 
(𝑚 − 2 𝑗)!!

× (𝑚 − 1 − 2 𝑗)!!
(𝑚 + 1)!! 

]𝜋

0

− 2 
𝑚 + 1

𝑚!! 
(𝑚 + 1)!!

∫ 𝜋

0
sin(𝜙)𝑑𝜙

− 2 
𝑚 + 1

𝑚
2 −1∑
𝑗=0 

𝑚!! 
(𝑚 − 2 𝑗)!!

(𝑚 − 1 − 2 𝑗)!!
(𝑚 + 1)!! 

∫ 𝜋

0
cos𝑚−2 𝑗 (𝜙) sin(𝜙)d𝜙

=
𝜋2

𝑚 + 1
− 4 
𝑚 + 1

𝑚!! 
(𝑚 + 1)!!
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− 4 
𝑚 + 1

𝑚!! 
(𝑚 + 1)!!

𝑚
2 −1∑
𝑗=0 

(𝑚 − 1 − 2 𝑗)!! 
(𝑚 − 2 𝑗)!!(𝑚 + 1 − 2 𝑗)

=
1 

𝑚 + 1

⎛
⎝𝜋2 − 4

𝑚!! 
(𝑚 + 1)!!

⎛
⎝1 +

𝑚
2 −1∑
𝑗=0 

1 
22 𝑗+1(2 𝑗 + 3)

(
2 𝑗 + 1

𝑗

)⎞⎠
⎞
⎠ .

This completes the proof. �

Lemma 3.3. Denote

𝐼2 =
∞ ∑
𝑛=1 

𝑎𝑛𝑥
𝑛.

Then the coefficients 𝑎𝑘 satisfy

𝑎1 =
4
√

2𝜋
9 

, 𝑎2 = −7𝜋2

32 
,

and
𝑎𝑘 = 𝑑𝑘−1 (3𝐽𝑘+1 − 𝐽𝑘−1) + 𝑑𝑘−3(𝐽𝑘+1 − 𝐽𝑘−1), 𝑘 ≥ 3.

Proof. Immediately 𝐼2(0) = 0, so the constant term is zero. Next, we get expressions 
for 𝑎𝑛 in terms of 𝑑𝑛’s and 𝐽𝑛’s from Equation (3.3). Then straightforward calculations 
give

𝑎1 = 𝑑0(−𝐽0 + 3𝐽2) =
√

2𝜋
2 

(
4 − 𝜋2 + 3

3

(
𝜋2 − 4

2
3

(
1 + 1

6

)))
=

4
√

2𝜋
9 

,

𝑎2 = 𝑑1(−𝐽1 + 3𝐽3) =
𝜋2

4 
+ 3𝜋2

4 

(
3
8
− 1

)
= −7𝜋2

32 
,

and, for 𝑘 ≥ 3,

𝑎𝑘 = 𝑑𝑘−1 (3𝐽𝑘+1 − 𝐽𝑘−1) + 𝑑𝑘−3 (𝐽𝑘+1 − 𝐽𝑘−1).

�

Lemma 3.4. Denote

𝑓 ′ (𝑥) exp
(
𝑥2

2 

)
=
∑
𝑘=0 

𝑐𝑘𝑥
𝑘 . (3.4)

Then

𝑐0 = −𝜋2

2 
, 𝑐1 =

4
√

2𝜋
9 

, 𝑐2 = −𝜋2

8 
,

for 𝑘 ≥ 3 odd

𝑐𝑘 =
2
√

2𝜋
(𝑘 + 2)!!

⎛
⎝1 +

𝑘−1
2 −1∑
𝑗=0 

1 
22 𝑗+1(2 𝑗 + 3)

(
2 𝑗 + 1

𝑗

)
− 𝑘 + 1 

2𝑘 (𝑘 + 2)

(
𝑘
𝑘−1

2 

)⎞⎠ ,

and for 𝑘 ≥ 4 even

𝑐𝑘 = − 𝜋2

(𝑘 + 2)!! .
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Proof. Considering the expressions for 𝐼1, 𝐼2, and 𝐼3 gives

𝑐0 = −𝜋2

2 
,

𝑐1 = 𝑎1 =
4
√

2𝜋
9 

,

𝑐2 = 𝑎2 +
3𝜋2

32 
= −𝜋2

8 
,

and
𝑐𝑘 = 𝑎𝑘 whenever 𝑘 ≥ 3,

where 𝑎𝑘 is given in Lemma 3.3. It follows that for 𝑘 ≥ 3 odd we have

𝑐𝑘 = 𝑑𝑘−1 (3𝐽𝑘+1 − 𝐽𝑘−1) + 𝑑𝑘−3 (𝐽𝑘+1 − 𝐽𝑘−1)

=

√
2𝜋
2 

(
1 

(𝑘 − 1)!!

[
3 

𝑘 + 2

(
𝜋2 − 4

(𝑘 + 1)!!
(𝑘 + 2)!!

×
(

1 +
𝑘+1

2 −1∑
𝑗=0 

1 
22 𝑗+1(2 𝑗 + 3)

(
2 𝑗 + 1

𝑗

)))

− 1 
𝑘

(
𝜋2 − 4

(𝑘 − 1)!!
𝑘!! 

(
1 +

𝑘−1
2 −1∑
𝑗=0 

1 
22 𝑗+1(2 𝑗 + 3)

(
2 𝑗 + 1

𝑗

)))]

+ 1 
(𝑘 − 3)!!

[
1 

𝑘 + 2

(
𝜋2 − 4

(𝑘 + 1)!!
(𝑘 + 2)!!

×
(

1 +
𝑘+1

2 −1∑
𝑗=0 

1 
22 𝑗+1(2 𝑗 + 3)

(
2 𝑗 + 1

𝑗

)))

− 1 
𝑘

(
𝜋2 − 4

(𝑘 − 1)!!
𝑘!! 

(
1 +

𝑘−1
2 −1∑
𝑗=0 

1 
22 𝑗+1(2 𝑗 + 3)

(
2 𝑗 + 1

𝑗

)))])
,

and after simplifying we have

𝑐𝑘 =
2
√

2𝜋
(𝑘 + 2)!!

⎛
⎝1 +

𝑘−1
2 −1∑
𝑗=0 

1 
22 𝑗+1(2 𝑗 + 3)

(
2 𝑗 + 1

𝑗

)
− 𝑘 + 1 

2𝑘 (𝑘 + 2)

(
𝑘
𝑘−1

2 

)⎞⎠ .

Similarly for 𝑘 ≥ 4 even we get

𝑐𝑘 = 𝑑𝑘−1 (3𝐽𝑘+1 − 𝐽𝑘−1) + 𝑑𝑘−3(𝐽𝑘+1 − 𝐽𝑘−1)

=
𝜋2

(𝑘 − 1)!!

[
3 

𝑘 + 2

(
(𝑘 + 1)!!
(𝑘 + 2)!! − 1

)
− 1 

𝑘

(
(𝑘 − 1)!!

𝑘!! 
− 1

)]

+ 𝜋2

(𝑘 − 3)!!

[
1 

𝑘 + 2

(
(𝑘 + 1)!!
(𝑘 + 2)!! − 1

)
− 1 

𝑘

(
(𝑘 − 1)!!

𝑘!! 
− 1

)]



On parameter estimation for 𝑁 (𝜇, 𝜎2𝐼3 ) based on projected data into S2 19

= − 𝜋2

(𝑘 + 2)!! .

This completes the proof. �

Lemma 3.5. For all 𝑘 ≥ 3 odd, set

𝑆(𝑘) = 1 +
𝑘−1

2 −1∑
𝑗=0 

1 
22 𝑗+1(2 𝑗 + 3)

(
2 𝑗 + 1

𝑗

)
− 𝑘 + 1 

2𝑘 (𝑘 + 2)

(
𝑘
𝑘−1

2 

)
. (3.5)

Then 𝑆(𝑘) is increasing and satisfies 2
√

2𝜋𝑆(𝑘) ≥ 𝜋.

Proof. First note that

2
√

2𝜋𝑆(3) = 2
√

2𝜋
(

1 + 1
6

(
1
0

)
− 4

5
1 
23

(
3
1

))

= 2
√

2𝜋
(

1 + 1
6
− 3 

10

)

=
26

√
2𝜋

15 
≥ 𝜋.

It remains to show that 𝑆(𝑘) is an increasing function. We have

𝑆(𝑘 + 2) = 1 +
𝑘−1

2 ∑
𝑗=0 

1 
22 𝑗+1(2 𝑗 + 3)

(
2 𝑗 + 1

𝑗

)
− 𝑘 + 3 

2𝑘+2(𝑘 + 4)

(
𝑘 + 2
𝑘+1

2 

)

= 𝑆(𝑘) + 𝑘 + 1 
2𝑘 (𝑘 + 2)

(
𝑘
𝑘−1

2 

)
+ 1 

2𝑘 (𝑘 + 2)

(
𝑘
𝑘−1

2 

)

− 𝑘 + 3 
2𝑘+2(𝑘 + 4)

(
𝑘 + 2
𝑘+1

2 

)

= 𝑆(𝑘) + 1 
2𝑘

(
𝑘
𝑘−1

2 

)
− 𝑘 + 3 

2𝑘+2(𝑘 + 4)

(
𝑘 + 2
𝑘+1

2 

)

≥ 𝑆(𝑘) + 1 
2𝑘

(
𝑘
𝑘−1

2 

)
− 1 

2𝑘+2

(
𝑘 + 2
𝑘+1

2 

)

= 𝑆(𝑘) + (𝑘 + 1)! 
2𝑘+2

(
𝑘+1

2 
)
!
(
𝑘+3

2 
)
!
(𝑘 + 3 − (𝑘 + 2))

= 𝑆(𝑘) + (𝑘 + 1)! 
2𝑘+2

(
𝑘+1

2 
)
!
(
𝑘+3

2 
)
!

and hence 𝑆(𝑘 + 2) ≥ 𝑆(𝑘). This completes the proof. �

Corollary 3.6. For 𝑥 > 0 the series

∞ ∑
𝑘=0 

𝑐𝑘𝑥
𝑘 ,

where the coefficients 𝑐𝑘 are determined by (3.4), is alternating.
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Proof. For 𝑘 even we clearly have 𝑐𝑘 < 0. On the other hand, for 𝑘 odd 𝑐𝑘 is positive 
since

𝑐𝑘 ≥ 𝜋

(𝑘 + 2)!!
by Lemma 3.5. �

The following result shows that the sum in Lemma 3.5 can also be bounded from 
above.
Lemma 3.7. For all 𝑘 ≥ 3 odd, 𝑆(𝑘) defined by (3.5) satisfies 2

√
2𝜋𝑆(𝑘) ≤ 𝜋2.

Proof. By elementary manipulations as in the proof of Lemma 3.5 we obtain

𝑆(𝑘 + 2) = 𝑆(𝑘) + 2
√

2𝜋(𝑘 + 3) 
2𝑘+2(𝑘 + 2)(𝑘 + 4)

(
𝑘 + 2
𝑘+1

2 

)
.

From the Stirling approximation we infer(
𝑘 + 2
𝑘+1

2 

)
≤
√

2 
𝜋

2𝑘+2√
(𝑘 + 2)

,

and hence

𝑆(𝑘 + 2) ≤ 𝑆(𝑘) +
√

2
√
𝜋(𝑘 + 2)3/2 .

Moreover,
𝑆(3) = 1 + 1

6
− 3 

10
≤ 1 + 1 

33/2

allows us to get the estimates

lim 
𝑘→∞

2
√

2𝜋𝑆(𝑘) ≤ 4
∞ ∑
𝑘=0 

1 
(2𝑘 + 1)3/2 ≤ 𝜋2.

Since 𝑆 is increasing by Lemma 3.5, it follows that 𝑆(𝑘) ≤ 𝜋2 for all 𝑘 ≥ 3 odd. This 
completes the proof. �

Lemma 3.8. Let the coefficients 𝑐𝑘 , 𝑘 = 1, 2, . . ., be given by (3.4) and let 𝑥 > 0 be 
fixed. Then the terms in the series

∞ ∑
𝑘=𝑀

𝑐𝑘𝑥
𝑘

decreases monotonically for 𝑀 large enough.

Proof. Consider first the case when 𝑘 is odd. Then, using the upper bound of 
Lemma 3.7 yields ����𝑐𝑘+1𝑥

𝑘+1

𝑐𝑘𝑥𝑘

���� ≤
𝜋2

(𝑘+3)!!
𝜋2

(𝑘+2)!!
𝑥 =

(𝑘 + 2)!!
(𝑘 + 3)!!𝑥

which is less than one for sufficiently large 𝑘 (depending on 𝑥). Similarly for 𝑘 even 
we can use the lower bound from Lemma 3.5 to obtain
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����𝑐𝑘+1𝑥
𝑘+1

𝑐𝑘𝑥𝑘

���� ≤
𝜋2

(𝑘+3)!!
𝜋

(𝑘+2)!!
𝑥 =

(𝑘 + 2)!!
(𝑘 + 3)!!𝜋𝑥

which again is less than one for large enough 𝑘 . This yields the claim. �

Lemma 3.9. Denote

𝑀 (𝑥) =
∞ ∑
𝑘=0 

𝑥2𝑘

(2𝑘 + 2)!!

and

𝑁 (𝑥) =
∞ ∑
𝑘=0 

𝑥2𝑘+1

(2𝑘 + 3)!! .

Then
𝑀 (𝑥) > 𝑁 (𝑥)

for all 𝑥 ≥ 0.

Proof. By differentiating, we get

𝑀 ′ (𝑥) =
∞ ∑
𝑘=0 

(2𝑘 + 2)𝑥2𝑘+1

(2𝑘 + 4)!! =
∞ ∑
𝑘=0 

𝑥2𝑘+1

(2𝑘 + 3)!!
(𝑘 + 1)
22𝑘+2

(
2𝑘 + 3
𝑘 + 1 

)
.

Now using (
2𝑘 + 3
𝑘 + 1 

)
≥ 22𝑘+2

√
𝑘 + 1

gives

𝑀 ′ (𝑥) ≥
∞ ∑
𝑘=0 

√
𝑘 + 1

(2𝑘 + 3)!!𝑥
2𝑘+1 ≥ 𝑁 (𝑥).

Similarly, it holds that

𝑁 ′ (𝑥) =
∞ ∑
𝑘=0 

(2𝑘 + 1)𝑥2𝑘

(2𝑘 + 3)!! =
∞ ∑
𝑘=0 

𝑥2𝑘

(2𝑘 + 2)!!
(2𝑘 + 1)22𝑘+2

(𝑘 + 2)
(2𝑘+3
𝑘+1 

) .
In this case we can use (

2𝑘 + 3
𝑘 + 1 

)
≥ 22𝑘+3

2𝑘 + 3
leading to

𝑁 ′ (𝑥) ≤
∞ ∑
𝑘=0 

𝑥2𝑘

(2𝑘 + 2)!!
𝑘 + 1

2
(𝑘 + 2)(2𝑘 + 3) ≤ 𝑀 (𝑥).

Combining the two bounds above gives us

d
d𝑥

(
𝑀2(𝑥) − 𝑁2 (𝑥)

)
= 2𝑀 (𝑥)𝑀 ′ (𝑥) − 2𝑁 (𝑥)𝑁 ′ (𝑥)

≥ 𝑀 (𝑥)𝑁 (𝑥) − 𝑀 (𝑥)𝑁 (𝑥) = 0.

Consequently, 𝑀2 − 𝑁2 is an increasing function for 𝑥 ≥ 0, which leads to

𝑀2(𝑥) − 𝑁2(𝑥) ≥ 𝑀2(0) − 𝑁2 (0) = 1.
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It follows that
𝑀 (𝑥) ≥

√
1 + 𝑁2(𝑥) > 𝑁 (𝑥),

and the proof is complete. �

We are finally in the position to prove Proposition 2.7.

Proof of Proposition 2.7. By Corollary 3.6 and Lemma 3.8 the series expansion (3.4)
for 𝑓 ′ (𝑥) exp

(
𝑥2/2

)
is convergent by the Leibniz alternating series test. Since the radius 

of convergence is unbounded, it is analytic, and thus we may split the series into its 
positive part and negative part, given by

∞ ∑
𝑘=0 

𝑐2𝑘𝑥
2𝑘 =: 𝑄(𝑥), 

∞ ∑
𝑘=0 

𝑐2𝑘+1𝑥
2𝑘+1 =: 𝑃(𝑥).

By Lemma 3.4 it holds that 𝑄(𝑥) = −𝜋2𝑀 (𝑥) where 𝑀 (𝑥) is as in Lemma 3.9. Now 
Lemma 3.7 gives

𝑐2𝑘 ≤ 𝜋2

(𝑘 + 2)!! ,

and hence
𝑄(𝑥) ≤ 𝜋2𝑁 (𝑥),

where 𝑁 (𝑥) is as in Lemma 3.9. Therefore

𝑓 ′ (𝑥) exp
(
𝑥2/2

)
= 𝑄(𝑥) + 𝑃(𝑋) ≤ −𝜋2𝑀 (𝑥) + 𝜋2𝑁 (𝑥).

Applying Lemma 3.9 to the above inequality now gives

𝑓 ′ (𝑥) exp
(
𝑥2

2 

)
< 0,

and thus 𝑓 ′ (𝑥) < 0 for all 𝑥 ≥ 0, where 𝑓 is given by (3.2). The claim follows from 
this. �

A Some results from differential geometry

Here we introduce some classical concepts about manifolds and their properties used 
in the paper.

Let 𝑀 be a smooth and compact 𝑛-dimensional manifold embedded in R𝑘. At each 
point, the tangent space, 𝑇𝑥𝑀 , is equipt with the Euclidean inner product (Riemannian 
metric), inherited from the ambient space R𝑘 making 𝑀 an isometrically embedded 
manifold as a Riemannian manifold. The Riemannian metric, denoted 〈·, ·〉, induces 
a notion of length along smooth curves, 𝛾 : [𝑎, 𝑏] → 𝑀 , by the formula

𝐿(𝛾) =
∫ 𝑏

𝑎
‖ �𝛾(𝑡)‖d𝑡.

Given two points, or equivalently a starting point and starting velocity, the curve 
which minimizes this distance is called a geodesic. Centered at a point 𝑥 ∈ 𝑀 , the 
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map exp𝑥 : 𝑇𝑥𝑀 → 𝑀 is called the Riemannian exponential map centered at 𝑥 ∈ 𝑀 . 
Given a tangent vector 𝑣𝑥 ∈ 𝑇𝑥𝑀 , let 𝛾 be the unit speed geodesic such that 𝛾(0) = 𝑥
and �𝛾(0) = 𝑣𝑥

‖𝑣𝑥 ‖ , then
exp(𝑣𝑥) = 𝛾(‖𝑣𝑥 ‖).

We shall assume that 𝑀 is geodesically complete, meaning that the exponential map 
is defined on the whole 𝑇𝑥𝑀 for all 𝑥 ∈ 𝑀 . Denote the inverse of exp𝑝 (restricted 
to all points 𝑦 for which there is a unique geodesic connecting 𝑦 to 𝑝) by log𝑝 . The 
distance function, dist : 𝑀 × 𝑀 → [0,∞) (which is a topological metric) is then 
defined as dist(𝑥, 𝑦) =

��log𝑥 (𝑦)
��. The Riemannian metric also gives a way to measure 

the volume (and orientation) of a parallelotope inside the tangent space, i.e. a rescaling 
of the determinant from linear algebra. This generalized determinant shall be referred 
to as dVol𝑀 , or the Riemannian volume form, which locally looks like the Lebesgue 
measure. By vector field, we mean a smooth assignment of a point 𝑥 ∈ 𝑀 to a tangent 
vector 𝑇𝑥𝑀 , and the space of vector fields is denoted by 𝔛(𝑀). For a given smooth 
function 𝑓 ∈ 𝐶∞(𝑀), a vector field 𝑋 acts as a derivation on 𝑓 in the following 
sense. Take a smooth curve (−𝜀, 𝜀) → 𝑀 such that 𝛾(0) = 𝑝, �𝛾(0) = 𝑋 (𝑝). Then the 
function 𝑋 ( 𝑓 ) : 𝑀 → R is point-wise defined by 𝑋 ( 𝑓 )(𝑝) = ( 𝑓 ◦ 𝛾)′ (0).

Note that for given vector fields 𝑋,𝑌 : 𝑀 → 𝑇𝑀 , the expression 〈𝑋,𝑌〉 is a 
smooth function 𝑀 → R. In order to differentiate vector fields, a notion of connection 
is required. Here we shall use the Levi-Civita connection ∇ : 𝔛(𝑀) ×𝔛(𝑀) → 𝔛(𝑀)
which is uniquely defined by the following identities:

i) ∇ 𝑓 𝑋+𝑔𝑌 𝑍 = 𝑓∇𝑋𝑍 + 𝑔∇𝑌 𝑍
for all smooth functions 𝑓 , 𝑔 ∈ C∞(𝑀) and all smooth vector fields
𝑋,𝑌, 𝑍 ∈ 𝔛(𝑀);

ii) ∇𝑋 (𝑔𝑌 + ℎ𝑍) = 𝑔∇𝑋𝑌 + 𝑋 (𝑔)𝑌 + ℎ∇𝑋𝑍 + 𝑋 (ℎ)𝑍
for all smooth functions 𝑔, ℎ ∈ C∞(𝑀) and all smooth vector fields
𝑋,𝑌, 𝑍 ∈ 𝔛(𝑀);

iii) 𝑋 (〈𝑌, 𝑍〉) = 〈∇𝑋 (𝑌 ), 𝑍〉 + 〈𝑌,∇𝑋 (𝑍)〉
for all smooth vector fields 𝑋,𝑌, 𝑍 ∈ 𝔛(𝑀);

iv) (∇𝑋𝑌 − ∇𝑌𝑋)( 𝑓 ) = 𝑋 (𝑌 ( 𝑓 )) − 𝑌 (𝑋 ( 𝑓 ))
as derivations for all smooth functions 𝑓 ∈ C∞(𝑀) and all smooth vector fields 
𝑋,𝑌 ∈ 𝔛(𝑀).

Lastly, let 𝑃𝑞,ℓ : 𝑇𝑞𝑀 → 𝑇ℓ𝑀 denote the parallel transport from 𝑞 to ℓ. That 
is, 𝑃𝑞,ℓ (𝑣𝑞) is the unique point 𝜏(dist(𝑞, ℓ)) ∈ 𝑇ℓ𝑀 that satisfies the initial value 
problem

∇ �𝛾𝜏(𝑡) = 0, 𝜏(0) = 𝑣𝑞 ,

where 𝛾 : [0, dist(𝑞, ℓ)] → 𝑀 is the geodesic connecting 𝑞 to ℓ and 𝜏 is a vector field 
along 𝛾, i.e. 𝜏(𝑡) = 𝜏𝛾 (𝑡 ) . It is worthwhile to consider the parallel transport of the 
Riemannian logarithm map

𝑞 ↦−→ 𝑃𝑞,ℓ log𝑞 (𝜈),
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where 𝜈, ℓ ∈ 𝑀 are fixed points. This map has the Taylor expansion around 𝑞 = ℓ
given by

𝑃𝑞,ℓ log𝑞 (𝜈) = logℓ (𝜈) + ∇logℓ (𝑞) logℓ (𝜈) +O(dist(𝑞, ℓ)2). (A.1)
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