Let ${({\xi _{k}},{\eta _{k}})_{k\ge 1}}$ be independent identically distributed random vectors with arbitrarily dependent positive components and ${T_{k}}:={\xi _{1}}+\cdots +{\xi _{k-1}}+{\eta _{k}}$ for $k\in \mathbb{N}$. The random sequence ${({T_{k}})_{k\ge 1}}$ is called a (globally) perturbed random walk. Consider a general branching process generated by ${({T_{k}})_{k\ge 1}}$ and let ${Y_{j}}(t)$ denote the number of the jth generation individuals with birth times $\le t$. Assuming that $\mathrm{Var}\hspace{0.1667em}{\xi _{1}}\in (0,\infty )$ and allowing the distribution of ${\eta _{1}}$ to be arbitrary, a law of the iterated logarithm (LIL) is proved for ${Y_{j}}(t)$. In particular, an LIL for the counting process of ${({T_{k}})_{k\ge 1}}$ is obtained. The latter result was previously established in the article by Iksanov, Jedidi and Bouzeffour (2017) under the additional assumption that $\mathbb{E}{\eta _{1}^{a}}\lt \infty $ for some $a\gt 0$. In this paper, it is shown that the aforementioned additional assumption is not needed.
In this paper, functional convergence is derived for the partial maxima stochastic processes of multivariate linear processes with weakly dependent heavy-tailed innovations and random coefficients. The convergence takes place in the space of ${\mathbb{R}^{d}}$-valued càdlàg functions on $[0,1]$ endowed with the weak Skorokhod ${M_{1}}$ topology.
In the Karlin infinite occupancy scheme, balls are thrown independently into an infinite array of boxes $1,2,\dots $ , with probability ${p_{k}}$ of hitting the box k. For $j,n\in \mathbb{N}$, denote by ${\mathcal{K}_{j}^{\ast }}(n)$ the number of boxes containing exactly j balls provided that n balls have been thrown. Small counts are the variables ${\mathcal{K}_{j}^{\ast }}(n)$, with j fixed. The main result is a law of the iterated logarithm (LIL) for the small counts as the number of balls thrown becomes large. Its proof exploits a Poissonization technique and is based on a new LIL for infinite sums of independent indicators ${\textstyle\sum _{k\ge 1}}{1_{{A_{k}}(t)}}$ as $t\to \infty $, where the family of events ${({A_{k}}(t))_{t\ge 0}}$ is not necessarily monotone in t. The latter LIL is an extension of a LIL obtained recently by Buraczewski, Iksanov and Kotelnikova (2023+) in the situation when ${({A_{k}}(t))_{t\ge 0}}$ forms a nondecreasing family of events.
We introduce a branching process in a sparse random environment as an intermediate model between a Galton–Watson process and a branching process in a random environment. In the critical case we investigate the survival probability and prove Yaglom-type limit theorems, that is, limit theorems for the size of population conditioned on the survival event.